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Abstract

BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of

these genes increase the risk of hereditary breast and ovarian cancers. Correct

identification of these variants then becomes clinically relevant, because it may

increase the survival rates of the carriers. Unfortunately, we are still unable to

systematically predict the impact of BRCA1/2 variants. In this article, we present a

family of in silico predictors that address this problem, using a gene‐specific approach.
For each protein, we have developed two tools, aimed at predicting the impact of a

variant at two different levels: Functional and clinical. Testing their performance in

different datasets shows that specific information compensates the small number of

predictive features and the reduced training sets employed to develop our models.

When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical

Assessment of Genome Interpretation (CAGI 5) we find that these methods,

particularly those predicting the functional impact of variants, have a good

performance, identifying the large compositional bias towards neutral variants in

the CAGI sample. This performance is further improved when incorporating to our

prediction protocol estimates of the impact on splicing of the target variant.

K E YWORD S
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1 | INTRODUCTION

Germline variants disrupting the DNA protective role of BRCA1

and BRCA2 (BRCA1/2) result in an increased risk of developing

hereditary breast and ovarian cancers (HBOC; Roy, Chun, &

Powell, 2012; Venkitaraman, 2014). Identification of the carriers

of these variants is clinically relevant because it allows channeling

these individuals to surveillance, prevention programs and

targeted therapies (Paluch‐Shimon et al., 2016). As a result, these

patients increase their survival rates; however, not all of them will

benefit equally, because we lack an exact knowledge of the

functional impact of BRCA1/2 variants. In these cases, a straight-

forward decision can only be taken when the variant is overtly

deleterious (insertions, deletions, and substitutions codifying
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truncated proteins). When the variant has an uncertain effect on

protein function (e.g., missense, synonymous, intronic, and 5′‐
untranslated region [5′‐UTR] or 3′UTR variants) the best course of

action becomes unclear. Solving this problem is not easy because

experimentally measuring the impact of these variants on the

activity of BRCA1 and BRCA2 (BRCA1/2), requires complex cell‐
based assays (reviewed in Guidugli et al., 2013; Millot et al., 2012)

that are technically challenging for a systematic application

(Starita et al., 2015).

In these circumstances, in silico pathogenicity predictors of

missense substitutions—Align‐GVGD (Tavtigian et al., 2006), Poly-

Phen‐2 (Adzhubei et al., 2010), SIFT (Kumar, Henikoff, & Ng, 2009),

PON‐P2 (Niroula, Urolagin, & Vihinen, 2015) and so on—are

employed as an inexpensive, easy‐to‐use alternative. The predictions

obtained are applied for prioritizing variants for experimental

evaluation and as a contribution to decision models that integrate

different sources of evidence (Karbassi et al., 2016; Lindor et al.,

2012; Moghadasi, Eccles, Devilee, Vreeswijk, & van Asperen, 2016;

Vallée et al., 2016). However, the moderate success rate of these

tools is an obstacle for their extended use in a clinical environment

(Riera, Lois, & de la Cruz, 2014). In the specific case of BRCA1/2,

Ernst et al. (2018) suggest, after testing the performance of Align‐
GVGD, SIFT, PolyPhen‐2, and MutationTaster2 on a set of 236

BRCA1/2 variants of known effect, that in silico results cannot be

used as stand‐alone evidence for diagnosis. In terms of molecular

effect, two independent, massive functional assays of BRCA1 variants

(Findlay et al., 2018; Starita et al., 2015) show that in silico predictors

provide only a limited view of the functional impact of these variants.

In summary, we need to improve the predictive power of these tools,

if we want to increase their usage in the clinical setting and augment

their value for healthcare stakeholders.

The slow progression in performance displayed by pathogenicity

predictors along time shows that ameliorating them is a difficult task

(Riera et al., 2014). In this scenario, the use of rigorous performance

F IGURE 1 Prediction protocol. In this article, we present a protocol for the prediction of missense variants that includes assessment of the

impact of this variant on splicing and protein function. This protocol has been used to interpret the variants of the ENIGMA challenge in the
CAGI 5 community experiment. MLR and NN refer to our two protein‐specific predictors, based on a multiple linear regression model and a
neural network model, respectively. AS refers to the procedure to predict variants resulting in affected splicing (Moles‐Fernández et al., 2018).
Abbreviation: CAGI 5, fifth Critical Assessment of Genome Interpretation
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estimates becomes an important factor, since improvements are

expected to be small and hard to establish. Generally, these

estimates are obtained using a standard N‐fold cross‐validation
procedure (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000; Riera

et al., 2014; Vihinen, 2012). However, given the increasing

availability of variant data, independent testing of predictors is

emerging as a valuable option to complement cross‐validated
performance estimates. Sometimes this testing is done in specific

systems for which new variants with impact annotations become

available, either at specific/general databases or through experi-

mental testing of their function. For example, Riera et al. (2015)

cross‐validate their Fabry‐specific predictor with a set of 332

pathogenic and 48 neutral variants, and provide independent

validation, using a set of 65 pathogenic variants obtained from an

update of the Fabry‐specific database. Wei and Dunbrack (2013) test

five in silico predictors using an independent set of 204 variants (79

deleterious, 125 neutral) of the human cystathionine beta‐synthase
whose impact they establish with an in vitro assay. Large variant sets,

including data from different genes, are also frequently used to

assess and compare the performance of several predictors simulta-

neously (reviewed in Niroula & Vihinen, 2016). While relevant, the

value of these approaches to validation is limited by different factors,

such as the fact that the standard of performance evaluation may

vary between works, the manuscripts may not always be easy to find,

and so on. In this situation, Critical Assessment of Genome

Interpretation (CAGI) (Hoskins et al., 2017), a community experiment

where developers can assess the performance of their methods in

specific challenges, offers an excellent opportunity to obtain an

independent view on their work. For users, it allows having an idea

on the state of the art for a protein or disease of their interest.

In this manuscript, we present: (a) A novel family of pathogenicity

predictors for scoring BRCA1 and BRCA2 missense variants; and (b)

their performance in the recently held CAGI 5 community experi-

ment.

The four tools described in this work (two for BRCA1 and two for

BRCA2) are protein‐specific (Crockett et al., 2012; Ferrer‐Costa,
Orozco, & de la Cruz, 2004; Pons et al., 2016; Riera, Padilla, & de la

Cruz, 2016), that is, only variants for a given protein are used to train

its two predictors. These two predictors differ on their objective:

One is trained to estimate the molecular‐level impact of variants and

the other their clinical impact (neutral/pathogenic). Technically, for

the first predictor we employed a standard multiple linear regression

(MLR) approach and for the second, a neural network (NN) model

with no hidden layers.

Once obtained, these predictors were applied to the variants

constituting the BRCA1/2 (ENIGMA) challenge in CAGI 5. This was

done following a protocol that combined predictions of AS and

protein impact and was the same for both proteins (Figure 1).

Evaluating these two effects of genetic variants (on splicing and

protein function) is routine in general diagnostic procedures

(Richards et al., 2015) and there are specific tools in the case of

BRCA1/2 variants (Vallée et al., 2016; http://priors.hci.utah.edu/

PRIORS/). In our protocol, given an unknown variant, it was first

tested for its effect on the splicing pattern, using a recently

developed approach (Moles‐Fernández et al., 2018). If the variant

had no detectable effect, it was subsequently tested for its impact on

protein function, using the predictors here presented. Our results

show that all our protein‐specific predictors can discriminate (with

different degrees of success) between neutral and pathogenic

variants, both for BRCA1 and BRCA2. For this binary discrimination

problem (neutral/pathogenic) their performances are comparable

with, or better than, those of general predictors (CADD, PolyPhen‐2,
PON‐P2, PMut, and SIFT). When applied to the variants of the CAGI

challenge, where the goal is to classify them in one of the IARC 5‐tier
classes (or a reduced version with three classes) we see the same

trend. In spite of a decrease in performance, our methods are able to

predict the biased composition of the dataset, mainly our predictors

trained using data from the homology‐directed DNA repair (HDR)

assay. Most of the neutral variants are correctly identified by these

predictors and, for pathogenic variants, in silico prediction of AS

enhances the final success rate.1

2 | MATERIALS AND METHODS

In this work, we present: (a) The development of a family of

predictors for BRCA1/2 missense variants, and (b) the use of these

tools to predict the pathogenicity of the ENIGMA variants in the

CAGI challenge. We first describe the overall prediction protocol

(Figure 1), which integrates predictors of splicing and protein impact,

and then focus on the description of the specific predictors.2

2.1 | Overall prediction protocol

In this section and in Figure 1, we describe the protocol followed in

our contribution to the CAGI 5 experiment, an experiment that

presents participants with different challenges revolving around a

central theme (Hoskins et al., 2017): The prediction of variant

pathogenicity and its applications. We focused our efforts on the set

of BRCA1 and BRCA2 variants provided by the ENIGMA consortium

(Spurdle et al., 2012), and we submitted four sets of predictions per

protein (Table S1). These four sets correspond to different

combinations of our approaches for the prediction of variants

leading to affected splicing (AS; one method; Moles‐Fernández
et al., 2018) or affecting protein function/structure (two methods:

MLR and NN). They are the following:

1Note on terminology: We have italicized the gene symbols (BRCA1 and BRCA2) and not the

protein symbols (BRCA1 and BRCA2). In general, because we are presenting protein‐specific
predictors, when referring to them, to the training variants, and so on, we have utilized the

non‐italicized version. However, we are aware that at some points it is unclear which option

is preferable and our decision may be arbitrary.

2When referring to a variant regarding its impact on protein function, we will speak of

“functional”, “intermediate”, or “non‐functional” variants, as those that result in a protein

that preserves its function, has lost part of it or has lost all of it, respectively. We will

preserve the terms “neutral”, “unknown” (or “uncertain”), and “pathogenic” to refer to the

clinical phenotype of the variant.
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1. Set MLR+AS: AS impact+protein impact with MLR

2. Set NN+AS: AS impact+protein impact with NN

3. Set MLR+nAS: Predict protein impact with MLR, no AS predic-

tions used

4. Set NN+nAS: Predict protein impact with NN, no AS predictions

used

The submission format was the same for each set and was

provided by the organizers. It comprised the following information

per variant: Three fields for the identification (DNA variant; Gene;

protein variant); three fields for the prediction (predicted IARC 5‐tier
class;3 probability of the variant being pathogenic, which we call “p”;

confidence of each prediction probability, which we call “sd”); and one

field for “Comments.”

For the sets MLR+AS and NN+AS, any variant predicted as

“pathogenic” by the AS predictor was arbitrarily assigned values of

p = 1 and sd = 0, and the ENIGMA class “5”. Otherwise, the variant

was annotated using our protein impact predictors, which were

obtained as explained below. That is, the protein impact was

estimated only if the variant had no predicted effect on AS. One

can distinguish these situations by the text in the “Comments”

column: (a) “Splicing,” which means that the variant is annotated with

the AS predictor; (b) “protein,” which means that the variant is

annotated with the protein‐based predictors (MLR or NN); (c)

“arbitrary,” which is only used for variants for which we have not a

predictor (annotation is arbitrarily set to the following: ENIGMA

class = 5; p = .5; and sd = 0.5).

For the sets MLR+nAS and NN+nAS we did not use AS predictors.

All the variants are annotated using our protein impact predictors

(obtained as explained below). As before, these situations are

distinguished in the “Comments” field with the labels “protein,” if

the variant is annotated with the protein‐based predictors (MLR or

NN).

2.2 | Prediction of AS variants

To score the effect on splicing of the CAGI variants from the

ENIGMA challenge, we have used the results of our recent work

(Moles‐Fernández et al., 2018) where we identified the best

combination of in silico tools for predicting splice site alterations,

among those predictors available in the package Alamut Visual v2.10.

More precisely, we showed that the HSF+SSF‐like combination (with

Δ‐2% and Δ‐5% as thresholds, respectively) for donor sites and the

SSF‐like (Δ‐5%) for acceptor sites, exhibited an optimal performance

in a benchmark combining RNA in vitro testing and a dataset of

variants retrieved from public databases and reported in the

literature. For the CAGI challenge (Figure 1), a variant predicted to

produce splice site alterations was arbitrarily assigned Class 5, p = 1

and sd = 0; in the comments column it was identified as “splicing”.

Variants giving no signal for splice site alterations were directly

channeled to the protein predictors.

2.3 | Protein‐based predictors

We have developed two methods for predicting the impact of protein

sequence variants of BRCA1 and BRCA2. One is based on a NN and

is trained to produce a binary output reflecting the pathogenic nature

—cancer risk (high/low)—of a cancer variant. The other method is

based on an MLR and is trained to predict the values of the HDR

assay for a variant. Both methods are protein‐specific: There is a

version of MLR for BRCA1 and another for BRCA2, and the same for

NN. We describe them below; we start with the NN because it

employs more predictive features (6) than the MLR, which only uses a

subset of these (3).

2.3.1 | The NN method

We have followed our approach to produce protein‐specific
predictors (Riera et al., 2016), which comprises the three steps

described below: (a) Obtention of a variant dataset true to the

prediction goal; (b) labeling of variants with chosen features; and (c)

obtention of the NN model.

Obtention of BRCA1 and BRCA2 variants

Missense variants in this dataset were selected with clinical impact in

mind. This was done by manually reviewing several gene‐specific
databases that collect BRCA1 and BRCA2 variants along with

published literature: Leiden Open Variation Database (LOVD)

describing functional studies of specific BRCA1 and BRCA2 variants

(http://databases.lovd.nl/shared/genes/BRCA1; http://databases.

lovd.nl/shared/genes/BRCA2), LOVD‐IARC dedicated to variants

that have been clinically reclassified using an integrated evaluation

(http://hci‐exlovd.hci.utah.edu/home.php?select_db=BRCA1), BRCA

ShareTM (formerly Universal Mutation Database UMD‐BRCA muta-

tions database http://www.umd.be/BRCA1/; http://www.umd.be/

BRCA2/), CLINVAR, that provides clinical relevance of genetic

variants (https://www.ncbi.nlm.nih.gov/clinvar/), and BRCA1 CIRCOS

which compiles and displays functional data on all documented

BRCA1 variants (https://research.nhgri.nih.gov/bic/circos/). Finally,

each variant was validated by combining different sources of

evidence.

Variants for which the pathogenic role was attributable to splice

site alterations (assessed using Alamut Visual biosoftware 2.6, from

Interactive Biosoftware) were eliminated. This was done to ensure, as

far as possible, that our model was trained using variants whose

damaging/neutral nature was a consequence of their impact in

protein function/structure only.

The final datasets (Table S1) were constituted by Table 1: (a)

BRCA1: 77 “pathogenic” and 149 “neutral” variants; and (b) BRCA2:

36 “pathogenic” and 105 “neutral” variants.

3The five ENIGMA classes used correspond to the IARC 5‐tier classification system (Goldgar

et al., 2008; Plon et al., 2008; 1 = “Not pathogenic,” 2 = “Likely not pathogenic,”

3 = “Uncertain,” 4 = “Likely pathogenic,” 5 = “Pathogenic”) and were taken from CAGI’s

website for the BRCA1 and BRCA2 challenge (https://genomeinterpretation.org/content/

BRCA1_BRCA2).
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Features

We used a total of six features to label the variants for the predictor

training. We have previously used them for the development of

protein‐specific predictors (Riera et al., 2016). We describe them

below for the benefit of the reader.

Two features are based on the use of multiple sequence

alignments (MSA): Shannon’s entropy and position‐specific scoring

matrix element. Shannon’s entropy is equal to −Σipi.log(pi), where the

index i runs over all the amino acids at the variant’s MSA column.

Position‐specific scoring matrix element for the native amino acid

(pssmnat) is equal to log(fnat,i/fnat,MSA), where fnat,i is the frequency of

the native amino acid at the locus i of the variant and fnat,MSA is the

frequency of the same amino acid in the whole MSA. We used two

different MSA, psMSA, and oMSA, which resulted in two versions of

the NN predictor. psMSA were obtained using the same protocol

utilized for the protein‐specific predictors (Riera et al., 2015, 2016)

which, briefly, consists of two steps: (a) Recovery of BRCA1/2

homologs using a query search of UniRef100; (b) elimination of

remote homologs (<40% sequence identity); alignment of the

remaining sequences with muscle (Edgar, 2004). The resulting MSA

is available on demand from the authors. The oMSA, available from

the group of Sean Tavtigian (Tavtigian, Greenblatt, Lesueur, &

Byrnes, 2008), comprise only orthologs of BRCA1 and BRCA2, and

are publicly available at the web of the Huntsman Cancer Institute,

University of Utah (http://agvgd.hci.utah.edu/alignments.php). The

NN predictions submitted to CAGI were those obtained with the

method developed using the psMSA, although results for the second

predictor are mentioned below.

Three features, each measuring the difference between native

and mutant amino acids for a single physicochemical property: van

der Waals volume (Bondi, 1964), hydrophobicity scale (estimated

from water/octanol transfer free energy measurements) (Fauchere &

Pliska, 1983), and the element of the Blosum62 matrix (Henikoff &

Henikoff, 1992) corresponding to the amino acid replacement.

Finally, a sixth feature, that is, binary (1/0) and summarizes the

information available on the functional/structural role of the native

residue at the UniProt database. It is set to “1” when the native

residue has a functional annotation on that database, and “0” if this is

not the case.

NN predictor

The NN predictor was built using WEKA (v3.6.8; Hall et al., 2009).

After our experience in the development of protein‐specific
predictors with small datasets (Riera et al., 2016), we employed the

simplest NN model: a single‐layer perceptron. Sample imbalances in

the training set were corrected with SMOTE (Chawla, Bowyer, Hall,

& Kegelmeyer, 2002).

The NN model gives two outputs: (a) a binary prediction for the

variant, either pathogenic or neutral; (b) a continuous score,

comprised between 0 and 1, that reflects the probability of

pathogenicity.

A Leave‐one‐out cross‐validation (LOOCV) of the model was

done also using the WEKA (v3.6.8; Hall et al., 2009) package.

CAGI output

As mentioned above, the CAGI submission requires three pieces of

information for each variant prediction: The predicted IARC 5‐tier
class, p (probability of pathogenicity), and sd (reliability). We took as

“p” the output from the NN: It varies between 0 (minimal probability

of pathogenicity) and 1 (maximal probability of pathogenicity). For

the sd value, we used the following formula (Ferrer‐Costa et al.,

2004): sd = 0.5−|0.5−p|. It goes from 0 (maximal reliability) to 0.5

(minimal reliability). Finally, the predicted IARC 5‐tier class was

obtained from the p, using the ENIGMA conversion table at the CAGI

site (Class 5: p > .99; Class 4: .95 < p < .99; Class 3: .05 < p < .949;

Class 2: .001 < p < .049; Class 1: p < .001).

2.3.2 | The MLR method

This method aims to predict the values of the HDR assay for a given

variant, which is a measure of the impact of this variant on BRCA1/2

molecular function. Because the output of the HDR assay is a

continuous value, we opted for using an MLR as a modeling tool, as

implemented in the python package Scikit‐learn (Pedregosa et al.,

2011). The LOOCV of the model was done with the same package.

For a given variant, the output of our model is HDRpred, the predicted

value of the HDR assay.4

To develop our method we used experimental HDR results

available from the literature: 44 variants for BRCA1 (Starita et al.,

2015) and 185 variants for BRCA2 (Guidugli et al., 2013, 2018)

proteins. However, to reinforce the strength of the signal, relative to

experimental noise, we did not employ the full datasets. The BRCA1

training dataset was constituted by those variants used to build the

NN predictor (see the previous section) for which HDR values were

available; for BRCA2 we followed the same approach. The final

number of HDR values was 28 for BRCA1. For BRCA2, we worked

with 92 HDR values that corresponded to 56 variants (some had

been tested twice; Guidugli et al., 2013, 2018).

Given the small size of these variant datasets, to try to minimize

overfitting problems, we used only three of the previous features

(see Section 3.1.2, Shannon’s entropy, pssmnat, and Blosum62

element) as independent variables in the regression model. Like for

NN methods, the MSA‐based features were computed with the

psMSA and the oMSA, thus leading to two versions of the MLR. Only

the predictions for the oMSA‐based MLR were submitted to CAGI;

however, the results for the second predictor are also provided in

this manuscript.

CAGI output

To adapt the MLR predictions to the CAGI format, we used the

following steps:

4When obtaining the HDR predicted values using this method, in a few cases the result was

a slightly negative number. In these cases, the predicted value was set to 0, because the

output of the HDR experiment is always a positive number.

PADILLA ET AL. | 5

http://agvgd.hci.utah.edu/alignments.php


1. Obtain HDRpred, the MLR predictions for the variants in the

BRCA1 and BRCA2 training datasets.

2. Separately for BRCA1 and BRCA2, compute the mean and

standard deviations of the HDR values of the known “pathogenic”

and “neutral” variants. At this point, we have four values for each

protein: mP, sdP, mN, sdN.

3. After the “pathogenicity” assignment, we computed CAGI’s “p” as

follows: N(x; mP, sdP)/(N[x; mP, sdP] + N[x; mN, sdN]), where N(x; m,

sd) represents a normal probability distribution of mean m and

standard deviation sd. The resulting value is comprised between 0

(“neutral”) and 1 (“pathogenicity”) and reflects the probability of a

variant being “pathogenic”, according to our model.

4. The sd value was obtained, as for the NN methods, using the

following formula (Ferrer‐Costa et al., 2004): sd = 0.5−|0.5−p|.

2.4 | Performance assessment

As mentioned before, during the development process predictor

performance was estimated using a standard LOOCV procedure for

each predictor (Riera et al., 2016), regardless of whether it was MLR

or NN.

The parameters used to measure the success rate of the

predictors vary depending on the number of classes predicted.

During the development process, the NN method predicted only two

classes: Pathogenic and neutral; in subsequent validations, including

that of the CAGI submissions, three and five classes were considered.

We describe below the performance parameters employed in each

case.

2.4.1 | Binary performance assessment

Here success rate was measured with four commonly employed

parameters for binary predictions (Baldi et al., 2000; Vihinen, 2013):

sensitivity, specificity, accuracy, and Matthews correlation coefficient

(MCC). They are computed as follows:

.‐Sensitivity:

TP

TP FN+

.‐Specificity:

TN

TN FP+

.‐Accuracy:

TP TN

TP FP TN FN

+

+ + +

.‐MCC:

TP TN FP FN

TP FN TN FP TP FP TN FN

· − ·

( + )·( + )·( + )·( + )

where TP and FN are the numbers of correctly and incorrectly

predicted pathological variants; TN and FP are the numbers of

correctly and incorrectly predicted neutral variants, respectively.

2.4.2 | Multiclass performance assessment

In our case, we need to evaluate the performance of our methods

when their score is transformed into a five or three class prediction;

for example, this happens when assessing the CAGI submission (we

predict five classes) and the application of our MLR to the recently

published exhaustive, functional assay of BRCA1 variants (Findlay

et al., 2018), where we predict three classes. For multiclass problems,

the number of options available is smaller than for binary problems

(Baldi et al., 2000; Vihinen, 2013). Here we have utilized the

following: The confusion matrices, the accuracies per class, the

overall accuracy, and the multiclass MCC (Gorodkin, 2004; Jurman,

Riccadonna, & Furlanello, 2012).

For a multiclass problem with M classes the confusion matrix,

C = (cij), is an (M ×M) matrix where cij is the number of times a class i

input is predicted as class j. The sum of the cij corresponds to the

sample size N, which in our case is the total number of variants

predicted. This matrix provides the simplest description of the

performance of a predictor; its diagonal and off‐diagonal elements

correspond to the predictor’s successes and failures, respectively. If

we normalize each diagonal element by its row total (cii/ Σjcij, where

j = 1, M) we obtain the accuracy of the predictor for class i. If we add

all the diagonal elements and divide the result by N (Σicii/N, where

i = 1, M), we obtain the overall accuracy.

The multiclass MCC (Gorodkin, 2004; Jurman et al., 2012) was

obtained using the implementation in the python package Scikit‐learn
(Pedregosa et al., 2011).

3 | RESULTS

In this article, we describe the obtention of a novel family of

pathogenicity predictors specific for BRCA1/2 proteins (MLR and

NN) and their application to the variants in the CAGI challenge,

within a protocol that also includes AS predictions (Figure 1).

Sections 3.2–3.5 correspond to the first part, and Section 3.6

corresponds to the second part.

As we have seen in Section 2, we have considered the use of

different MSA (psMSA and oMSA) to develop our predictors.

However, we center our descriptions on the versions employed for

the CAGI challenge: MLR based on oMSA and NN based on psMSA.

For completeness, we also provide the performance of our methods

when developed using psMSA (for MLR) and oMSA (for NN).

3.1 | The variant datasets

In Table 1a we give the size of the datasets employed in this work. In

Table 1b, we report the overlap between the CAGI and the remaining
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datasets. Note that the CAGI class information on each variant was

made public only after the challenge was closed.

3.1.1 | Training datasets for NN and MLR

The number of missense variants in the NN training sets (BRCA1,

226; BRCA2, 141) is comparable with that used for developing

protein‐specific predictors with the same NN model and variant

features (Riera et al., 2016). The situation is different for the MLR

training sets, which were small (BRCA1, 28; BRCA2, 56), thus

imposing a severe limitation in the number of features that can be

used in the model (see Section 2).

3.1.2 | Validation dataset for BRCA1 MLR

This set is obtained from the results of a recently published

(Findlay et al., 2018) experiment for BRCA1. The authors

functionally score a large number of single‐nucleotide variants;

we retrieved the 1,837 cases corresponding to missense variants.

We refer to this dataset as SGE (from “saturation genome

editing”). We used SGE to further test the performance of our

BRCA1 MLR because Findlay et al. (2018) find that there is a

correspondence between their functional score and the score of

the HDR assay.

3.1.3 | CAGI datasets

Their size (BRCA1, 144; BRCA2, 174) is of the same magnitude as

that of the NN training datasets. In Table 2 we provide two

partitions of these datasets, corresponding to: (a) the original,

5‐class ENIGMA partition; and (b) a reduced, 3‐class partition.

For the latter, the “Pathogenic” and “Likely pathogenic” classes

have been unified into a single “Pathogenic class” and the “Likely

not pathogenic” and “Not pathogenic” classes have been unified

into a single “Neutral class”. The “Uncertain class” (or “Unknown”)

has been left untouched. It must be noted the high compositional

imbalance of the CAGI dataset, with the total of classes 1 and 2

being 10 and 25 times higher than that of the remaining classes,

for BRCA1 and BRCA2, respectively. In particular, the absolute

numbers of variants for classes 3, 4, and 5 are so low that they

can hardly lead to reliable estimates for class‐dependent
parameters. For example, there are only two variants of class 3

for both BRCA1 and BRCA2; two and three variants for classes 4

and 5, respectively, in BRCA2; and four and seven variants for

classes 4 and 5, respectively, in BRCA1.

3.2 | Predicting the functional impact of BRCA1/2
variants: The MLR predictor

We have developed two MLR methods, one per protein. The goal

of these methods is to predict the impact of a given variant on

protein function, as measured by the HDR experiment. To this

end, they were trained with a set of variants with known

experimental values for the HDR assay and the features chosen

TABLE 1a Size of the datasets used in this work (CAGI: missense
+AS)

NN MLR CAGI SGENaN

BRCA1 226 (P = 77/N = 149) 28 144 1,837

BRCA2 141 (P = 36/N = 105) 56 174 –

Abbreviations: AS, affected splicing; CAGI, Critical Assessment of

Genome Interpretation; MLR, multiple linear regression; N, neutral; NN,

neural network; P, pathogenic; SGE, saturation genome editing.
aDataset extracted from Findlay et al. (2018)

TABLE 1b Overlap between datasets (CAGI: missense+AS)

NN‐CAGI MLR‐CAGI MLR‐SGENaN

BRCA1 18 (P = 7/N = 11) 2 28

BRCA2 5 (P = 2/N = 3) 4 –

Abbreviations: AS, affected splicing; CAGI, Critical Assessment of

Genome Interpretation; MLR, multiple linear regression; N, neutral; NN,

neural network; P, pathogenic; SGE: saturation genome editing.
aDataset extracted from Findlay et al. (2018)

TABLE 2 Composition of the ENIGMA dataset in the CAGI 5 challenge

(A) BRCA1

IARC 5‐tier class 1 (<0.001) 2 (0.001–0.049) 3 (0.05–0.949) 4 (0.95–0.99) 5 (>0.99)

CAGI 31 100 2 4 7

Three Classa Neutral Unknown Pathogenic

CAGI 131 2 11

(B) BRCA2

IARC 5‐tier class 1 (<0.001) 2 (0.001–0.049) 3 (0.05–0.949) 4 (0.95–0.99) 5 (>0.99)

CAGI 31 136 2 2 3

Three Classa Neutral Unknown Pathogenic

CAGI 167 2 5

Abbreviations: CAGI, Critical Assessment of Genome Interpretation; IARC, International Agency for Research on Cancer.
aThis classification is a simplified version of the IARC 5‐tier scheme (see manuscript) where the Neutral class corresponds to IARC classes 1 and 2, the

Pathogenic class corresponds to IARC classes 4 and 5, and Unknown corresponds to IARC class 3.
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are related to the effect variants can have on protein structure,

protein–protein interactions, and so on. (Ferrer‐Costa, Orozco, &

de la Cruz, 2002; Riera et al., 2014). In Figure 2, we see that there

is a statistically significant correlation between observed versus

predicted (LOOCV) HDR values (BRCA1, 0.72; p = 1.5 × 10−5;

BRCA2, 0.73; p = 3.3 × 10–17). Visual inspection reveals that the

variants tend to group into two clusters, showing that MLR

predictions approximately reproduce the bimodal pattern of HDR

assays (Guidugli et al., 2013; Starita et al., 2015). We also show

(gray color), the predictions for the variants which were left

outside the training set, after applying the pathogenicity condi-

tion (see Section 2); they are more scattered than those forming

the training set, illustrating how the filtering worked.

We explored how good this level of accuracy is for a standard

two‐class (pathogenic/neutral) prediction of the variant’s patho-

genicity. To this end we discretized the predictions applying a

decision boundary: A variant was called pathogenic or neutral

when its predicted HDR score was below or above a given

threshold, respectively. These thresholds, taken from the experi-

mental papers, where: 0.53 for BRCA1 (Starita et al., 2015) and

2.25 for BRCA2 (Guidugli et al., 2013). In Table 3 we give the

parameters measuring the success rate of the discretized MLR

methods. Their accuracies, 0.75 for BRCA1 and 0.86 for BRCA2,

fall within the 0.79–0.99 accuracy range for protein‐specific
predictors (Riera et al., 2016); the same happens for the MCC,

0.50 for BRCA1 and 0.71 for BRCA2. We detect that specificity

(0.85) and sensitivity (0.86) are closer for BRCA2 than for BRCA1

(spec, 0.87; sens, 0.62). Actually, for BRCA1 sensitivity tends to

be small when compared with that of protein‐specific predictors

(Riera et al., 2016). Overall, these results indicate that the

continuous HDR predictions of our MLR model can be trans-

formed into binary predictions preserving a non‐random

prediction power, comparable with that of predictors trained

with binary encodings (pathogenic/neutral) of the variant impact.

3.3 | Validation of the BRCA1 MLR predictor with
functional data

The recent publication (Findlay et al., 2018) of a massive functional

assay of BRCA1 variants has given us the opportunity to check the

performance of our MLR model on a set of 1,837 variants. The output

of this experiment is a continuous value measuring the impact of

sequence variants on BRCA1 function. When we represent these

values against our HDR predictions (Figure 3a) we observe two

clusters of points (below and above SGE = −1) that reflect the

bimodal behavior of both assays, with a statistically significant rank

correlation (Spearman’s ρ = 0.47; p ~ 0). This overall coincidence is

F IGURE 2 Observed versus predicted HDR values for (a) BRCA1 and (b) BRCA2. In blue, we show the variants used for the training/testing

of our MLR method (the version trained with oMSA, used to generate CAGI predictions). The HDR predicted values are cross‐validated
(LOOCV, see Section 2). For completeness, we show in gray the points from the original HDR experiments that were excluded from the training
process after applying our filtering procedure (see Section 2). CAGI, Critical Assessment of Genome Interpretation; HDR, homology‐directed
DNA repair; LOOCV, leave‐one‐out cross‐validation; MLR, multiple linear regression; MSA, multiple sequence alignment

TABLE 3 Two‐class (binary) performance of our predictors

Protein Method SN SP ACC MCC

BRCA1 MLR (psMSA) 0.692 0.933 0.821 0.651

MLR‐CAGI (oMSA) 0.615 0.867 0.75 0.502

NN (oMSA) 0.922 0.852 0.876 0.746

NN‐CAGI (psMSA) 0.857 0.718 0.765 0.546

BRCA2 MLR (psMSA) 0.828 0.741 0.786 0.571

MLR‐CAGI (oMSA) 0.862 0.852 0.857 0.714

NN (oMSA) 0.75 0.867 0.837 0.592

NN‐CAGI (psMSA) 0.75 0.771 0.766 0.473

Note: “CAGI” identifies the predictors used for this challenge.

Abbreviations: ACC, accuracy; CAGI, Critical Assessment of Genome

Interpretation; MCC, Matthews correlation coefficient; MLR, multiple

linear regression; MSA, multiple sequence alignment; NN, neural network;

SN, sensitivity; SP, specificity.
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limited by a substantial scatter. Part of it may be due to technical/

biological (intraexon normalization procedures, the impact of RNA

levels, etc.) differences between the SGE and HDR experiments that

introduce some dispersion in the comparison between both experi-

ments (see Figure 9m from Extended Data Section in Findlay et al.,

2018). Another part of the scatter is due to limitations of our model.

To better understand these, we divided the SGE‐HDR plane into nine

regions, corresponding to the 3 × 3 combinations of SGE (“func-

tional,” “intermediate,” and “non‐functional”; Findlay et al., 2018) and

HDR (“High,” “Int,” and “Low”; Starita et al., 2015) equivalent,

functional classes. The main blocks of outliers correspond to the two

top‐left and the two bottom‐right regions. We separately used the

variants inside each block for a principal component analysis (PCA),

using as variables the three features in our model (Shannon’s

F IGURE 3 Prediction of the “saturation genome editing” (SGE) experiment in BRCA1. We use our impact prediction to check the
correspondence between our HDR predictions and the results of the SGE experiment (Findlay et al., 2018). (a) Scatterplot representing SGE

values versus HDR predictions for the 1,837 missense variants from (Findlay et al., 2018; Spearman’s ρ = 0.47; p ~ 0). (b) Violin plot showing the
distribution of variants for the different combinations of SGE and HDR functional categories: “functional” (FUNC), “intermediate” (INT), and
“non‐functional”(NOF). Points in the off‐diagonal quadrants correspond to outliers: Points whose SGE (observed) and HDR (predicted)
functional classes do not coincide. (c) Principal component analysis of three variant populations (HDR‐SGE classes): FUNC‐FUNC (dark blue),

NOF‐NOF (red) and the outliers NOF‐FUNC plus INT‐FUNC (light blue). (d) Principal component analysis of three variant populations (HDR‐
SGE classes): FUNC‐FUNC (dark blue), NOF‐NOF (red) and the outliers INT‐NOF plus FUNC‐NOF (yellow). PC1 and PC2 refer to the first two
principal components (those which accumulate the highest variance). HDR, homology‐directed DNA repair
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entropy, pssmnat, and Blosum62 element). As a reference, for each

PCA we also included the variants from the upper (“functional”) and

lower (“non‐functional”) diagonal regions. In the plane of the first two

principal components (PC1 and PC2 in Figure 3c,d) the chosen

variants adopt a three‐layered disposition, where we successively

find the “functional,” the outliers and the “non‐functional” ones. This
disposition reflects the contrast between the bimodal nature of the

SGE experiment and the smoother nature of our model.

In fact, in Figure S1 we can see that those outlier variants indeed

tend to have intermediate values (comprised between those of the

“functional” and “non‐functional” populations’) for the features in our

model. This suggests that for these variants we need to improve our

representation of protein impact with new properties, to reproduce

more accurately the results of the SGE experiment. However, it may

also indicate the need to consider the effect of variants on other

aspects of gene function, like RNA levels (Findlay et al., 2018).

3.4 | Predicting the clinical impact of BRCA1/2
variants: The NN predictors

We have developed two NN methods, one per protein. These

methods were trained with the idea of predicting the clinical impact

of a given variant. To this end, during the training process, each

variant was labeled with a binary version of this clinical impact:

Pathogenic/neutral. Here, the larger amount of data (Table 1aa)

allowed us to work with three additional features, fully adhering to

our protocol for the obtention of protein‐specific predictors (Riera

et al., 2016). As for the MLR predictors, the results obtained (Table 3)

are comparable to those of other protein‐specific predictors. Their

accuracies, 0.77 for both BRCA1 and BRCA2, are almost within the

0.79–0.99 accuracy range for protein‐specific predictors; the same

happens for the MCC, 0.55 for BRCA1 and 0.47 for BRCA2. The

sensitivities and specificities are more balanced for both BRCA1

(spec, 0.72; sens, 0.86) and BRCA2 (spec, 0.77; sens, 0.75) when

compared with what happened for the MLR predictors.

Overall, as in the case of MLR, the results indicate that the more

clinically flavored NN predictors have a prediction power comparable

to that of other protein‐specific predictors (Riera et al., 2016).

3.5 | Comparison with general pathogenicity
predictors

To put in context the results of our protein‐specific predictors, we

give the performance, on our training datasets, of a representative

set of general predictors: CADD (Kircher et al., 2014), PolyPhen‐2
(Adzhubei et al., 2010), SIFT (Kumar et al., 2009), PON‐P2 (Niroula

et al., 2015), and PMut (López‐Ferrando, Gazzo, De La Cruz, Orozco,

& Gelpí, 2017). Care must be exercised when considering the results

of this comparison, because the variants in our datasets can be found

in databases, like UniProt (Bateman et al., 2017), commonly used to

develop pathogenicity predictors (Riera et al., 2014). Therefore, it is

likely that some of these variants have been used in the training of

the general methods, thus leading to optimistic estimates of their

performance. An additional limitation of the comparison is the small

sample size involved, for example, training of BRCA1 MLR was done

using only 28 variants.

In general, we observe (Figure 4) that our specific methods have

success rates comparable with those of general methods. For MCC,

our methods are only surpassed by PMut. For BRCA2, our NN is

slightly surpassed by PON‐P2 (MCC of 0.47 vs. 0.49), but our MLR

surpasses PON‐P2 (MCC of 0.71 vs. 0). The sensitivities and

specificities of our methods are generally smaller and larger,

respectively than those of other methods. However, our methods

have an equilibrated performance for pathogenic and neutral

variants (Figure 4e,f), because they display the smallest differences

between sensitivity and specificity, 0.14 (BRCA1) and 0.021 (BRCA2)

for NN, respectively, and 0.25 (BRCA1) and 0.01 (BRCA2) for MLR.

Only PMut has closer values for the MLR training set of BRCA1, 0.06.

3.6 | Results of the predictors in the CAGI
experiment

In this section, we present the results of applying our prediction

protocol (Figure 1) to the CAGI variants. For each protein, we

submitted to the CAGI challenge the results of four versions of this

protocol (Figure 1): MLR+AS, NN+AS, MLR, and NN. For simplicity,

we will restrict our analysis to the complete protocols (MLR+AS, NN

+AS), mentioning protein predictions (MLR, NN) only for discussing

the contribution of the AS predictors. The performance was assessed

using the class assignments provided by the CAGI organizers after

the challenge was closed. More precisely, we computed the ability of

our protocols to correctly assign a variant to its class in two different

classification schemes. One is the IARC 5‐tier classification system

(Goldgar et al., 2008; Plon et al., 2008), which was the one requested

by the organizers; the other is a 3‐class version of this system (see

Section 2).

The fact that we must consider the performance for more than

two classes makes the evaluation problem more difficult: In multi-

class problems confusion matrices retain their explanatory power,

but summary measures are not easy to generalize, nor to interpret

(Baldi et al., 2000; Vihinen, 2012). In our case, the severity of this

problem is augmented by the compositional imbalance in the CAGI

dataset (Table 2). For these reasons, we focus our analysis mainly on

the confusion matrices (represented as heatmaps) because they

provide the basal information in any prediction process and allow a

direct interpretation. More concretely, we consider: (a) The diagonal

elements to see how good our predictions are; and (b) the off‐
diagonal elements to see how incorrect predictions distribute among

classes. We treat separately BRCA1 and BRCA2 cases because the

performance of specific and general pathogenicity predictors is gene‐
dependent (Riera et al., 2016).

3.6.1 | BRCA1 variants

Looking at the diagonals of their confusion matrices (Figure 5), we

observe that MLR+AS and NN+AS can recognize, with varying
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F IGURE 4 Binary, cross‐validated performance of the predictors. We represent the performance of our MLR and NN methods, as well as

that of general predictors (CADD, PolyPhen‐2, PMut, PON‐P2, and SIFT), using four parameters: accuracy and MCC (radar plots [a], [b], [c], and
[d]) and sensitivity and specificity (scatterplots, [e] and [f]). The methods labeled MLR‐CAGI and NN‐CAGI are those used to generate our CAGI
predictions; for completeness, we give the performance of the other versions: MLR‐psMSA (entropy and pssmnat values were obtained from

psMSA‐based parameters) and NN‐oMSA (entropy and pssmnat values were obtained from oMSA‐based parameters). In (e) and (f) points are
colored according to the set in which sensitivity and specificity were estimated: blue and orange for the MLR and NN sets, respectively. CAGI,
Critical Assessment of Genome Interpretation; MCC, Matthews correlation coefficient; MLR, multiple linear regression; MSA, multiple sequence

alignment; NN, neural network
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accuracies, members from three (1,2,5) and two classes (2,5),

respectively. This overall trend is reflected in the class accuracies,

which are higher for MLR‐based protocols than for NN‐based ones

(Table 4). If AS predictions are not included, the two methods also fail

to recognize class 5 variants (Table 4). In fact, for MLR+AS and NN

+AS protocols AS predictions are responsible for the accuracy of

class 5, which is 0.43 (3 out of 7 correctly predicted variants) in both

cases; AS predictions lead to a single failure, for a class 2 variant.

To understand the distribution of incorrect predictions among

classes, we consider the off‐diagonal elements of the confusion

matrices (Figure 5). For MLR+AS, incorrect predictions mostly group

at positions adjacent to the diagonal, with only 9 out of 144 variants

breaking this trend. For NN+AS this number grows to 31 and

predictions (both correct and incorrect) seem to cluster around the

class 3 column.

If we analyze the predictions within the unified 3‐class frame-

work, we find that the class accuracies increase for MLR+AS: 0.82

and 0.56 for “Neutral” and “Pathogenic,” respectively. For NN+AS,

this is not the case, due to the previously mentioned clustering of

predictions around class 3. Accuracy for the “Unknown” class is the

same as that for IARC 5‐tier class 3 because the classes are the same.

Finally, we compare the performance of our predictors with that

for the general predictors for which the output directly corresponded

to a probability of pathogenicity (we only excluded CADD, because

the score has another scale; Figure 5). For the chosen predictors

(PMut, PolyPhen‐2, PON‐P2, and SIFT) their score is a probability of

pathogenicity that can be transformed into an equivalent of the IARC

5‐tier classes, using the ENIGMA conversion table (see Section 2).

Focusing on the most frequent CAGI variants (31 from class 1; 100

from class 2), we see that MLR+AS performs better than general

methods; for class 5, all general methods, except SIFT, identify fewer

correct variants. The case of SIFT is of interest since some of the

class 5 variants appear to be splicing variants according to our AS

predictions: At this point, and without further evidence, it is unclear

which is the correct view, the amino acid view provided by SIFT or

the nucleotide view provided by AS predictions. For classes 3 and 4,

the size of the sample, two and four variants, respectively, limits the

value of the results, which are: For the two variants of class 3, MLR

+AS performs worse than general methods; for the four variants of

class 4, only PolyPhen‐2 correctly identifies two of them. A

remarkable feature of MLR+AS, relative to general methods, is that

its predictions form a band around the diagonal, while general

methods either scatter their predictions (PolyPhen‐2, SIFT) or cluster
them around class 3 (PON‐P2 and PMut). Comparison of NN+AS

with general methods (Figure 5) shows similarities with PON‐P2 and

PMut, and a failure to identify members of class 1 that is shared with

F IGURE 5 Heatmap of the predictor performances on the CAGI datasets. Each heatmap represents the confusion matrix of a predictor. We

provide six heatmaps per protein, two for our predictors (MLR+AS and NN+AS) and four for the general predictors (PolyPhen‐2, PON‐P2, PMut,
and SIFT). In all the plots, the vertical and horizontal axes correspond to the observed (provided by CAGI organizers) and predicted IARC 5‐tier
classes, respectively. Diagonal and off‐diagonal elements correspond to successful and failed predictions, respectively. NOTE: given the range

differences in the predictions, each plot has its color scale. AS, affected splicing; CAGI, Critical Assessment of Genome Interpretation; IARC,

International Agency for Research on Cancer; MLR, multiple linear regression; NN, neural network
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all general methods, except PolyPhen‐2; again, AS predictions favor

our method for class 5, except in the case of SIFT.

The comparison within the three‐class framework (Figure S2)

confirms the previous trends, with MLR+AS having the largest class

accuracy for “Neutral,” 0.82, well over that of general methods (0.33

for PolyPhen‐2; 0.04 for SIFT; 0.02 for PMut; and 0 for PON‐P2).
MLR+AS displays the second best accuracy for “Pathogenic,”

together with PolyPhen‐2 and behind SIFT. NN+AS again shows a

performance below that of these two general methods, but above

that of PON‐P2 and PMut.

TABLE 4 Class accuracies for the CAGI variants (IARC 5‐tier and 3‐class unified classes)

(A) BRCA1

IARC 5-tier 1
(<0.001)

2
(0.001-0.049)

3
(0.05-0.949)

4
(0.95-0.99)

5
(>0.99)

MLR 0.323 0.37 0 0 0

MLR +AS 0.323 0.37 0 0 0.429

NN 0 0.29 0 0 0

NN + AS 0 0.29 0 0 0.429

Three Class Neutral Unknown Pathogenic

MLR 0.817 0 0.273

MLR +AS 0.817 0 0.545

NN 0.275 0 0

NN + AS 0.275 0 0.273

(B) BRCA2

IARC 5-tier 1
(<0.001)

2
(0.001-0.049)

3
(0.05-0.949)

4
(0.95-0.99)

5
(>0.99)

MLR 0.871 0.007 0 0 0

MLR +AS 0.871 0.007 0 0 0.333

NN 0.194 0.382 0.5 0.5 0

NN + AS 0.194 0.382 0.5 0.5 0.333

Three Class Neutral Unknown Pathogenic

MLR 0.97 0 0

MLR +AS 0.964 0 0.2

NN 0.701 0.5 0.4

NN + AS 0.701 0.5 0.6

Note: The color shading reflects the correspondence between the two class systems.

Abbreviations: AS, affected splicing; CAGI, Critical Assessment of Genome Interpretation; IARC, International Agency for Research on Cancer; MLR,

multiple linear regression; NN, neural network.
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3.6.2 | BRCA2 variants

For BRCA2, the situation is somewhat different. The diagonal

elements of the confusion matrix (Figure 5) show that NN+AS can

recognize variants from the five classes, with varying accuracies

(Table 4), while MLR+AS recognizes only variants from classes 1, 2,

and 5. In addition, for the most frequent classes (1, 2) NN+AS is more

balanced than MLR+AS (Figure 5; Table 4): 0.19 (1) and 0.38 (2) vs.

0.87 (1) and 0.01 (2), respectively. Inspection of the off‐diagonal
elements shows that wrong predictions are more spread for NN+AS

than for MLR+AR. For example, for MLR+AS, essentially all (97%) the

incorrect predictions of Class 2 go to Class 1, while this figure drops

to 55% for NN+AS. As before, the tiny number of variants in the

remaining classes reveals no clear trends. The AS predictions result in

one correctly identified member of Class 5 for the two versions of

our protocol; AS predictions lead to a single failure, for a Class 2

variant.

As for BRCA1, reduction of the five IARC 5‐tier classes to a 3‐
class system reveals a reversion in the previous trend, with a high‐
class accuracy for “Neutral,” higher for MLR+AS (0.96) than for NN

+AS (0.70). Accuracy for the “Unknown” class is the same as that for

IARC 5‐tier Class 3 because the classes are the same. For the

“Pathogenic” class, NN+AS still performs better than MLR+AS (Figure

5; Table 4).

Finally, we compare the performance of our predictors with that

for the general predictors for which the output directly corresponded

to a probability of pathogenicity (we only excluded CADD, because

the score has another scale; Figure 5). Focusing on the most frequent

CAGI variants (31 from Class 1; 136 from class 2), we see that NN

+AS performs better than general methods; MLR+AS is only better

for Class 1; for Class 2 its accuracy is low, the same as SIFT, and

below that of PolyPhen‐2 and PMut. For Classes 3, 4, and 5, the

sample size is smaller than that of BRCA1 (2, 4, 7 vs. 2, 2, 3 variants

for BRCA1 and BRCA2, respectively); for this reason, we believe that

for these variants it is preferable to wait for next rounds of the CAGI

challenge to assess the performance of the different in silico tools,

including ours.

The comparison within the three‐class framework (Figure S2)

confirms the previous trends, showing that for the “Neutral” class

(167 out of 174 CAGI variants) both MLR+AS and NN+AS surpass

general methods (Figure S2). For the “Pathogenic” class (5 variants),

PolyPhen‐2, and SIFT have the best performances, while our methods

rank third (MLR+AS) and fourth (MLR+AS).

4 | DISCUSSION

Obtaining good estimates of the functional impact and cancer risk of

BRCA1 and BRCA2 sequence variants plays a vital role in the

diagnosis and management of inherited breast and ovarian cancers

(Eccles et al., 2015; Findlay et al., 2018; Guidugli et al., 2018; Moreno

et al., 2016; Paluch‐Shimon et al., 2016). A priori, in silico tools, can

be used to obtain these estimates; however, their moderate success

rate restricts their applicability (Ernst et al., 2018). In this work, we

have addressed this issue focusing on the problem of predicting the

pathogenicity of BRCA1/2 missense variants using protein‐specific
information (Riera et al., 2014). This approach has been validated in

different proteins (Crockett et al., 2012; Riera et al., 2016); recent

results (Hart et al., 2019) show that it can improve the identification

BRCA1/2 pathogenic variants. Here, we present a new family of

BRCA1‐ and BRCA2‐specific tools that we validate in two different

ways: (a) In isolation, using manually curated sets of functionally and

clinically annotated variants; and (b) in combination with predictors

of splicing impact (Figure 1), to interpret the variants from the

ENIGMA challenge of the CAGI 5 experiment.

4.1 | The performance of BRCA1‐ and BRCA2‐
specific predictors in isolation

When tested in isolation, we find that our two methods (MLR and

NN) are competitive when compared with general methods (Section

3.5; Table 3; Figure 4), for both BRCA1 and BRCA2. In particular,

their specificities are among the best, a property desirable from the

point of view of HBOC diagnosis requirements (Ernst et al., 2018);

they also have the best balances between specificity and sensitivity,

with the only exception of PMut in BRCA1, which has slightly better

figures for the MLR training set. General methods also show good

success rates in our training sets (Figure 4), in contrast with the

usually lower performance estimates cited in the literature. For

example, the last version of PMut displays an MCC of 0.31 for both

BRCA1 (63 variants) and BRCA2 (104 variants; López‐Ferrando et al.,

2017). In the same work, we find MCC values for other tools,

computed on the same dataset: For BRCA1 they vary between 0.17

(PROVEAN) and 0.38 (LRT); for BRCA2 they vary between 0.01

(PROVEAN) and 0.19 (Mutation Assessor). In a previous study, using

a small dataset of BRCA2 variants, Karchin, Agarwal, Sali, Couch, and

Beattie (2008) find that general tools display good sensitivities but

low specificities. A similar trend has been recently reported by Ernst

et al. (2018), after testing PolyPhen‐2, SIFT, Align‐GVGD, and

MutationTaster2 in a set of 236 BRCA1/2 variants. These authors

express concern about the moderate performance observed, parti-

cularly about the low specificities observed relative to HBOC

diagnosis requirements (e.g., PolyPhen‐2: 0.67 and 0.72 for BRCA1

and BRCA2, respectively). We believe that our higher estimates for

general predictors (Table 3; Figure 4), relative to those in the

literature, may partly result from the overlap between their training

sets and our manually curated dataset.

Presently, stand‐alone use of in silico methods for HBOC

diagnosis is discouraged (Ernst et al., 2018). Nonetheless, it is

considered that these methods can be fruitfully combined with the

results of functional assays, to provide an alternative to multifactorial

models in the absence of family information (Guidugli et al., 2018).

The tools presented in this work are amenable to this type of

approach because of their extreme simplicity and interpretability.

This is a consequence of the small number of features utilized (3 and

6 for MLR and NN, respectively) and of the low complexity of our
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models (Riera et al., 2014). In addition, our MLR models allow a direct

interpretation of a variant’s impact at the molecular level, because

they produce estimates of the HDR assay for the target variant. In

this sense, the MLR approach resembles that of Starita et al. (2015)

who estimate HDR values using the results of other functional assays

(E3 ligase scores and BARD1‐binding scores). In our case, we use

instead of a few sequence‐based features, with two conservation

measures (Shannon’s entropy and psssmnat) standing among them

given their recognized predictive power (Ferrer‐Costa et al., 2004).

Conceptually, this makes MLR methods an implementation of the

idea of addressing pathogenicity prediction problems focusing on

endophenotypes, rather than on clinical phenotypes. Endopheno-

types are quantitative measures of intermediate phenotypes with

clinical relevance (Masica & Karchin, 2016); they are closer to the

genotype and, for this reason, may result in predictors with high

success rates, given the small contribution of genetic background and

environmental effects to the outcome of the variant. In general, this

is the case when looking at the clinical performance (Table 3; Figure

4). However, for BRCA1, the sensitivity (0.62) is low compared with

specificity (0.87); while this may be a consequence of the discretiza-

tion of the HDR prediction, it may also be a consequence of the

extreme simplicity of our model. When testing the MLR model with

SGE data we observe a significant correlation (Spearman’s ρ = 0.47;

p ~ 0), comparable with that of Align‐GVGD (ρ = 0.46) and better than

that of CADD (ρ = 0.40), PhyloP (ρ = 0.36), SIFT (ρ = 0.36), and

PolyPhen‐2 (ρ = 0.28; values obtained from Figure 9 in Extended

Data Section in Findlay et al., 2018). However, visual inspection

shows the presence of substantial deviations from a monotonic

relationship (Figure 3a,b). If we analyze the population of outliers

using PCA and value distributions of the features in our model

(Figure S1) we see that, generally, they have an intermediate

behavior between “functional” and “non‐functional” variants for all

features. This points to an aspect of the variant’s impact that is

poorly represented by our present set of features, like the effect of

the mutation in RNA levels.

Finally, it is worth mentioning that our MLR predictors have been

trained with small sets of variants that are concentrated in a reduced

region of BRCA1 and BRCA2 (Figure 6). This is in contrast with the

broader range of positions covered by the NN and the CAGI datasets.

The fact that, in spite of this situation, the MLR tools are competitive

suggests that they capture some general effect of variants on protein

function/structure, like impact on stability (Yue, Li, & Moult, 2005).

4.2 | The performance of BRCA1‐ and BRCA2‐
specific predictors in the CAGI 5 experiment

The ENIGMA challenge within the CAGI experiment provides a good

opportunity to independently validate the performance of patho-

genicity predictors for BRCA1/2. Two aspects are specific to the

ENIGMA challenge. First, if some of the target variants are

pathogenic, the participants do not know what molecular effect

originates their pathogenicity: It can be the impact on protein

function, but it can also be the impact on splicing (Eccles et al., 2015).

For this reason, we decided to combine predictions for these two

effects in our protocol (Figure 1). A second, distinctive aspect of the

challenge is that the submissions had to provide the predicted IARC

5‐tier class for each variant (see Section 2.1). This is relevant since

this classification is strongly related to the clinical actions associated

to each class (Goldgar et al., 2008; Moghadasi et al., 2016; Plon et al.,

2008) which are in turn related to factors such as the impact on the

counselee or cost to the healthcare system. Collective consideration

of these factors crystallizes into five decision regions (Plon et al.,

2008) that are applied to the posterior probability of pathogenicity, a

probability obtained after integrating different sources of clinical/

F IGURE 6 Distribution of the variants along the BRCA1 and BRCA2 sequences. Each variant dataset used in this work is represented with a

set of pins (indicating the location of each variant) and a colored surface that provides a general, smoothed view of the distribution. The
different functional domains in each structure are represented with boxes; for representation purposes, BRCA1 (1863 aa) and BRCA2 (3418 aa)
are displayed with the same length. The color codes for the different sets are: CAGI (lilac), SGE (green), MLR training (blue), and NN training

(orange). CAGI, Critical Assessment of Genome Interpretation; MLR, multiple linear regression; NN, neural network; SGE, saturation genome
editing
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biomedical evidence. In our case, this probability was estimated using

only molecular information; nonetheless, to adapt our output to the

CAGI requirements we directly applied the ENIGMA boundaries

(Sections 2.3.1 and 2.3.2, “CAGI output”). We computed our

performances on the basis of this assignment; however, we also

obtained the performances for a simplified version of the ENIGMA

classification, separately collapsing its neutral and pathogenic classes

(Table 2).

Assessment of the results obtained (Figure 5; Figure S2; Tables 4

and 5) shows some clear trends. For the 5‐class problem, all the

methods (both ours and the general methods) have poor per class

performances; however, our methods are more successful at

reproducing the compositional bias of the sample and outperform

general methods for the most abundant classes (1 and 2) in BRCA1/2,

with only one exception, for Class 2 in BRCA2, both PolyPhen‐2 and

PMut surpass MLR+AS; our methods also have a better distribution

of wrong predictions among classes, because they tend to cluster

nearby the correct class. These trends are reinforced when reducing

the number of classes from five to three. Overall, the results for the

CAGI challenge show that our methods can identify low‐risk variants

with an accuracy higher than that of general methods, a desirable

property for HBOC diagnosis (Ernst et al., 2018). Part of this

improved performance could be attributed to an unequal effect of

applying the ENIGMA decision boundaries to the posterior prob-

ability generated by general methods. We believe that this mapping

procedure may play a role, but not a determining one since

comparison of the original, binary predictions of the general methods

with those of the binary versions of our tools (MLR scores binarized

as explained in Section 3.2) gives a similar result (Table 6) again. MLR

+AS has the top specificities for BRCA1/2 and high sensitivities; NN

+AS has the same sensitivities but lower specificities, nonetheless

these are only surpassed by PMut.

In summary, we have applied the protein‐specific approach to

building a pathogenicity predictor for BRCA1/2 variants, using either

clinical phenotypes or endophenotypes. The results obtained from

our methods indicate that this approach can contribute to improving

our ability to discriminate between high‐ and low‐risk variants for

BRCA1/2. Of particular interest is the MLR+AS tool, because it gives

an estimate of the molecular impact of a sequence replacement that

is easy to interpret because it corresponds to an in the silico version

TABLE 6 Binary performances (sensitivities and specificities) for our predictors and the general predictors (PMut, PolyPhen‐2, PON‐P2, SIFT)

(A) BRCA1

MLR+AS NN+AS CADD PMut PolyPhen‐2 PON‐P2 SIFT

Sensitivity (P = 11) 0.909 0.909 1 0.818 0.727 1 1

Specificity (N = 131) 0.977 0.718 0.456 0.817 0.557 0.188 0.435

(B) BRCA2

MLR+AS NN+AS CADD PMut PolyPhen‐2 PON‐P2 SIFT

Sensitivity (P = 5) 0.8 0.8 1 0.6 1 1 0.8

Specificity (N = 167) 0.97 0.886 0.533 0.958 0.653 0.625 0.731

Abbreviations: AS, affected splicing; MLR, multiple linear regression; N, neutral; NN, neural network; P, pathogenic.

TABLE 5 Overall accuracies (ACC) and MCC for our two methods (MLR and NN, with and without splicing) and the general methods (PMut,
PolyPhen‐2, PON‐P2, and SIFT) in the CAGI dataset

(A) BRCA1

IARC 5‐tier MLR MLR+AS NN NN+AS PMut PolyPhen‐2 PON‐P2 SIFT

ACC 0.326 0.347 0.201 0.222 0.028 0.208 0.014 0.049

MCC −0.041 0.006 0.015 0.056 −0.002 0.031 0 0.021

Three Class MLR MLR+AS NN NN+AS PMut PolyPhen‐2 PON‐P2 SIFT

ACC 0.764 0.785 0.25 0.271 0.035 0.354 0.014 0.118

MCC −0.237 0.354 −0.012 0.055 0.026 0.136 0 0.123

(B) BRCA2

IARC 5‐tier MLR MLR+AS NN NN+AS PMut PolyPhen‐2 PON‐P2 SIFT

ACC 0.161 0.167 0.345 0.351 0.144 0.305 0.011 0.034

MCC −0.109 −0.068 −0.017 −0.006 −0.029 0.078 0 0.017

Three Class MLR MLR+AS NN NN+AS PMut PolyPhen‐2 PON‐P2 SIFT

ACC 0.931 0.931 0.69 0.695 0.184 0.431 0.011 0.086

MCC 0.18 0.277 0.185 0.213 −0.013 0.125 0 0.022

Abbreviations: ACC, accuracy; AS, affected splicing; IARC, International Agency for Research on Cancer; MCC, Matthews correlation coefficient; MLR,

multiple linear regression; NN, neural network.
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of the HDR assay. Participation in the CAGI experiment has allowed

us to obtain independent estimates of the performance of our

predictors, to compare them with other predictors and to help us

clarify the classification level at which in silico tools could be useful

for HBOC diagnosis. This participation has also underlined the role

that splicing predictions can play in the correct annotation of BRCA1/

2 variants, particularly when integrated into protocols that combine

different views of a variant’s impact.
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