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Why should be use Model Predictive Control? And why should we select the states 
directly?

• Drives systems are non-linear and time variant

• MPC enables to optimize the trajectories during transients

• MPC enables to take constraints into account in the controller design

• MPC enables controller design in the time domain

Introduction to MPC
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Classification of predictive control in power electronics

classification of MPC by 
the kind of output the 
control system is creating

Introduction to MPC
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Control Structure of FCS-MPC

Cost Function of FCS-MPC (example):

-> minimize error in current

Introduction to MPC

Additional constraints can
be considered in the cost

function
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Application of MPC in high-speed 
electric drives

Energy efficient, reliable, and compact high speed drive

 PMSM Control Strategies
 Converter topologies
 Capacitor technologies 

for the DC-Link
 Influence of LC filter
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Advantages of a high-speed PMSM
 No gear system is needed, 

Direct coupling to the PM machine
 High efficiency over wide speed 

range (10 – 25 % better efficiency compared to 
traditional technology) 

 Use of Air or Magnetic bearings– no maintenance 
 Compact system

Application of MPC in high-speed 
electric drives
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Develop state-of-the-art control scheme 
for high-speed PMSM

 Cascaded PI Control
 Predictive Control
 Deadbeat control
 Model predictive control

 Trajectory-based, hysteresis-based, …

Application of MPC in high-speed 
electric drives
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Effects of inverter topologies on 
high-speed electrical machines
 2-Level converter
 3-Level converter (NPC, T-Type, …)

Influence of DC-Link Capacitor technology
 Electrolytic capacitor
 Film capacitor

Application of MPC in high-speed 
electric drives
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PI Current Control for electric drives:

Using Tustin Transformation for discretization:

Carrier ratio: Ratio of swiching frequency to electrical frequency (fsw/fel)
- Discretizing PI Control  Instable
- Direct design of PI Control in discrete time domain:

Pole-Zero Cancellation (Used for comparison)
- Problem occurs for high-speed machines, high power machines, or 

other slow switching converter

 Deadbeat Control: Using motor equations (predictive) + pole zero
cancellation to increase bandwidth and dynamic performance
 Use of PWM
 Motor parameters have to be known

Fig: Pole-Zero map of Discretized PI Control for fel/fS = [0.00, 0.05, … , 0.30].

Fig: Pole-Zero map of Deadbeat Control 
for fel/fS = [0.00, 0.05, … , 0.30].

Fig: Pole-Zero map of Discrete-Time PI 
Control for fel/fS = [0.00, 0.05, … , 0.30].

Application of MPC in high-speed 
electric drives
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MPC without Modulator: FCS vs. hyst. based MPC in case of low carrier ratios
 Basic simulation results for high-speed PMSM

 High Speed PMSM
nrated = 30000 rpm
frated = 500 Hz
Imax,rms = 280 A
Ls,dq = 110.3 uH
RS = 0.01 Ohm

 2-Level VSI
fcontrol = 100 kHz
UDC = 565 V
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Application of MPC in high-speed 
electric drives
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Hys. based MPC

Hysteresis based MPC / MPC with Bounds / Direct Current Control

 Maximize time inside hysteresis bounds
Problem: Low number of switching instances per fundamental (el.) period
 Increase number of predictions

Main features:
 Short switching horizon but long prediction horizon
 Bound width proportional to THD

1-step hys. based MPC:
 Prediction based on motor equations
 Trajectory estimation, e.g. done by Bologniani:

 Correction term (same result) Cost function:
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Experimental results

Emulation of high speed with PMSM:
 Same carrier ratio (fS/fel ratio)
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Schematic of the proposed thermal-based FCS-MPC procedure

MPC with Tj consideration
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Online junction temperature estimation model for FCS-MPC

MPC with Tj consideration
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Bayerer lifetime model

MPC with Tj consideration
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Experiment 1:
Thermal cycling reduction

term in cost function:

-> minimize damage 
caused by cycles

left: conventional
right: active thermal control

MPC with Tj consideration
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Simulation:
Accumulated 
damage

conventional active thermal control

MPC with Tj consideration
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Simulation:
lifetime vs. ripple current

MPC with Tj consideration
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Experiment 2:
Equalizing thermal stress in the module

At t=15s an additional term in the cost 
function is activated: 

-> minimize variance of all Tj in the module

MPC with Tj consideration
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• MPC enables to optimize converter control with addition (non-linear boundaries)

• MPC was shown to be superior to PWM-based methods for high electrical output
frequencies and low switching frequencies

• Different MPC-methods were implemented and compared (THDI vs. switching
frequency)

• MPC was used to manipulate the junction temperature for reducing the
accumulated damage of electric drives and thereby increase the lifetime of the
drive

Summary & conclusions
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Thank you for your attention
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