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1. Applications/Challenges of Passive Filters

A Voltage-Source converter (VSC) is the enabling technology of efficient 
power-electronics [1] in:

• Drives

• UPS and power conditioning

• Battery storage

• EV stations

• Air craft & marine power systems

• Railway electrification

• HVDC power system

[1] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power Electronics as Efficient Interface in Dispersed Power Generation Systems,” IEEE Trans. Power 
Electron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.
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1. Applications/Challenges of Passive Filters

• High-order passive filtering is needed on the AC-side of the filter for 
size/cost considerations

• The LCL filter is widely adopted by industry [2]

4

Converter current Grid current

[2] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and Control of an LCLFilter-Based Three-Phase Active Rectifier,” IEEE Trans. Ind. Appl., vol. 
41, no. 5, pp. 1281–1291, Sep. 2005.
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1. Applications/Challenges of Passive Filters

Main challenges for passive filter design:

• Design of inductive components [3]

• Minimize resonance interaction between filter, control and grid 

[3] R. Beres, H. Matsumori, T. Shimizu, X. Wang, F. Blaabjerg and C. L. Bak, “Evaluation of Core Loss in Magnetic Materials Employed in Utility
Grid AC Filters,” in Proc. of the 31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016, pp. 3051-3057.
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2. Characterization of Passive Filters 

Filter admittance characterization:

• Filter input admittance (20 dB/dec): Filter output admittance (20 dB/dec):

• Filter transfer admittance (20 dB/dec at LF and 40~60 dB/dec at HF):

High-order Passive Filter
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2. Characterization of Passive Filters 

Harmonic standards and attenuation requirements

Individual current harmonic limits:

• 0.3 % HF limit specified by IEEE 1547

• 0.05 % HF limit specified by BDEW

Total harmonic distortion of the current:

• Less than ~5 %
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2. Characterization of Passive Filters 

Influence of the PWM method and filter topology

Virtual harmonic filter admittance:

Selecting Y21 ≤ Yvhf suffices performance criteria of passive filters!
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2. Characterization of Passive Filters 

Alternative to LCL filter

LCL filter (3rd order low-pass) LLCL filter (LCL + trap filter) 

Filter transfer admittances (i2/vVSC):

Selecting Y21 ≤ Yvhf suffices performance criteria of passive filters!
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2. Characterization of Passive Filters 

Attenuation characteristics

Filter transfer admittances (i2/vVSC):

Selecting Y21 ≤ Yvhf suffices performance criteria of passive filters!
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2. Characterization of Passive Filters 

Attenuation characteristics

Filter transfer admittances (i2/vVSC):

Selecting Y21 ≤ Yvhf suffices performance criteria of passive filters!
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3. Damping Methods and Loss Optimization

Conventional passive damping method 

Experimental waveforms – conservative design, fsw=5 kHz [4]
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[4] R. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A Review of Passive Power Filters for Three Phase Grid Connected Voltage-Source Converters,”
IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, 2016, pp. 54–69.
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3. Damping Methods and Loss Optimization

Conventional passive damping method 

Experimental waveforms – optimal design, fsw=5 kHz [4]
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[4] R. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A Review of Passive Power Filters for Three Phase Grid Connected Voltage-Source Converters,”
IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, 2016, pp. 54–69.

L1 = 2 mH (4 %), L2 = 1.5 mH (3 %)
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Pd = 0.4 %,
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IEEE1547

BDEW

Filter size/cost is 
reduced with 30 %!

Damping losses 
increases by a factor of 

13!



3. Damping Methods and Loss Optimization

Passive damping methods 

Shunt dampers:
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3. Damping Methods and Loss Optimization

Shunt passive damped filters for LCL filter

Filter transfer admittance:
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3. Damping Methods and Loss Optimization

Shunt passive damped filters for Trap filter

Filter transfer admittance:
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3. Damping Methods and Loss Optimization

Shunt passive damped filters – optimal design concept  [5]

Optimal frequency:

Optimal quality factor:
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Trans. Power Electron., vol. 31, no. 3, 2016, pp. 2083–2098.



3. Damping Methods and Loss Optimization

Optimal selection of filter parameters
• Control loop also has to be included for ωopt< ωNq

• Optimal selection results as a trade-off between filter resonance, damping 
losses and filter attenuation
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4. Characterization of Inductive Components

Filter components [3]

• Converter side inductor

• Shunt capacitor in series with switching frequency inductor

• Line inductor
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Grid AC Filters,” in Proc. of the 31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016, pp. 3051-3057.



4. Characterization of Inductive Components

Design of the converter side inductor

Inductance rating:

Current rating:
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4. Characterization of Inductive Components

High frequency loss component [3]

Rectangular voltage excitation, Pcv (f, H0=0, ΔB)
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[3] R. Beres, H. Matsumori, T. Shimizu, X. Wang, F. Blaabjerg and C. L. Bak, “Evaluation of Core Loss in Magnetic Materials Employed in Utility
Grid AC Filters,” in Proc. of the 31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016, pp. 3051-3057.
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4. Characterization of Inductive Components

High frequency loss component

Rectangular voltage excitation, Loss map of Pcv (f, H0, ΔB = ct. = 0.09 T) [6]
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[6] R. N. Beres “Optimal design of passive power filters for grid-connected voltage-source converters” PhD thesis, Aalborg University, 2016.

0

5

10

15

20

Mega Flux 60μ

P
c 

(W
)

200
150

100
50

0
5

10
15

20

1f (kHz) H0 (kA/m)

0.01

0.1

1

10

10 100
L

o
ss

 m
u

lt
ip

li
ca

ti
o

n
 f

a
ct

o
r

Magnetic induction ΔB (mT)

Mega Flux:

10 kHz

30 kHz

50 kHz

100 kHz

Total high frequency loss = Σ Pc (f, H0, ΔB)!



4. Characterization of Inductive Components

Core loss vs. current ripple [6]

Single phase inverter results for 5 %, 10 % and 20 % current ripple @ 5 Apk
& @ 10 kHz, unipolar modulation with ma=0.9
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[6] R. N. Beres “Optimal design of passive power filters for grid-connected voltage-source converters” PhD thesis, Aalborg University, 2016.
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4. Characterization of Inductive Components

Actual operating waveforms and total core loss

Single phase inverter results with Mega Flux µ60 converter side inductor 
with  L=2.25 mH @ 10 Apk, 5 kHz unipolar modulation and ma=0.5: 
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[6] R. N. Beres “Optimal design of passive power filters for grid-connected voltage-source converters” PhD thesis, Aalborg University, 2016.
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5. Design Examples

Design example and loss evaluation of 10 kW - 10 kHz LCL filter [5]
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[5] R. Beres, X. Wang, F. Blaabjerg, M. Liserre, and C. L. Bak, “Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications,” IEEE
Trans. Power Electron., vol. 31, no. 3, 2016, pp. 2083–2098.

Description LCL+RC Trap+RC 2 traps+RC

Total Losses (%) 1 1 0.95

Damping Losses (%) 0.075 0.071 0.053

THDvPCC (%) 0.45 0.45 0.39

THDiPCC (%) 1.27 1.12 2.67

i2(mf-2) (%) 0.083 0.0083 0.0328

Volume (dm3) 0.76 0.67 0.37

Magnetic materials Fe-Si + Sendust Fe-Si + Sendust + Ferrite Sendust + Ferrite
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5. Design Examples

Current waveforms in 10 kW - 10 kHz LCL+2 traps filter [5]
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[5] R. Beres, X. Wang, F. Blaabjerg, M. Liserre, and C. L. Bak, “Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications,” IEEE
Trans. Power Electron., vol. 31, no. 3, 2016, pp. 2083–2098.
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5. Design Examples

Current waveforms in 10 kW - 10 kHz LCL+2 traps filter [5]
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5. Design Examples

Current waveforms in 10 kW - 10 kHz LCL+2 traps filter [5]
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5. Design Examples

Damping loss evaluation in 10 kW - 10 kHz filter with different damping
methods [4]
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[4] R. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A Review of Passive Power Filters for Three Phase Grid Connected Voltage-Source Converters,”
IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, 2016, pp. 54–69.
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5. Design Examples

Filter size for different switching frequency and damping methods
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6. Conclusions
• The chosen magnetic material and current ripple level in the converter

side inductance of the filter dictates on the cost, size and efficiency of the
passive filter

• The harmonic current flow in the filter increases with decreasing the
inductance and accurate damping is needed

• Accurate core loss for rectangular voltage excitation under dc-bias is also
needed for accurate filter design and loss characterization

• Pass ive damped f i l ters with RLC circu its in different
conf igurat ions can be tuned to obtain very low damping
losses over a wide range of operat ing condit ions

• With tuned traps, the f i l ter s ize can be reduced by up to 3
t imes depending on the switching frequency (at a pr ice of
increased component count and complexity )
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7. Questions

?
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