

Measurement methods and equipment EMC TEST LAB IN GRASTEN and FLENSBURG

Tim Flintholm Fink, 27. February, 2018

Overview

- Short overview of typical drive application
- EMC EMISSION AND IMMUNITY STANDARDS
- EMC TEST LAB AND EQUIPMENT
- Equipment and calibration

Danfoss Drives Application examples

Marine and Offshore

Expand your efficiency horizons with powerful drive and grid systems

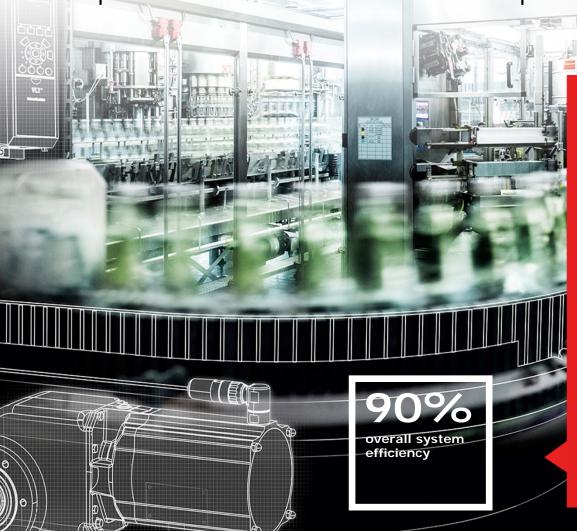
Enjoy full flexibility to create tomorrow's outstanding clean power systems, today:

- Ruggedize your drive-grid systems
- Manage heat loss intelligently
- Reduce emissions and fuel consumption, and save space
- Optimize vessel-wide applications
- Utilize power conversion and shore supply

Draw on our global network:

- Extensive lifecycle services
- Know-how that is second to none
- No matter which platform or port of call, we are there to help

Benefit from application-optimized products with global marine certifications


Top performers:

- VACON® NXP Liquid Cooled Drive
- VACON® NXP. VACON® NXP Grid Converter

Food and Beverage

Unsurpassed fit and variant reduction improve line productivity

Feeding a growing population demands innovation in hygiene, traceability and cutting-edge control

Reinvent system efficiency

- 30% energy savings is typical
- Most competitive total cost of ownership,
- Innovative motors, efficiency class > IE4

We champion your cause with intelligent product lifecycle services

Globally-compatible AC drives, optimized for food and beverage:

- Unique synchronization and positioning with Integrated Motion Controller. No servo drive required.
- Leaner warehousing thanks to variant
- European Hygienic Engineering & Design Group (EHEDG) certification

Top performers:

- VLT® AutomationDrive FC 302
- VLT® OneGearDrive
- VLT® Decentral Drive FCD 302
- VLT® Integrated Servo Drive ISD 510

Water and Wastewater

Get the ultimate in cost-efficient system optimization from the market leader

Achieve energy neutrality in your water and wastewater systems

Eliminate one of the largest drains on the municipal electricity budget

Preserve precious drinking water, and let waste be a thing of the past.

World-class expert services

Achieve more with less:

- Use the most cost- and energy-efficient application-optimized AC drives on the planet
- Enjoy uniform water-dedicated technology for compatibility, ease of training and service
- Unsurpassed fit to your system, with universal adaptability and connectivity

Top performer:

VLT® AOUA Drive FC 202

HVAC/Building automation

Maximizing comfort and building efficiency

2.5м global installed base of dedicated HVAC

drives

Achieve world-class asset protection, control and energy savings, whilst creating comfort

Look no further for high-quality, application-optimized AC-drives answers you can trust:

- Most competitive total cost of ownership, TCO
- · Seamless BMS integration including **BACnet IP**
- Draw upon expert services to reach your goals

World leader in HVAC since 1986

- Unique HVAC-dedicated features, which are integrated as standard
- Global installed base of 2.5 million dedicated HVAC drives

Top performers:

- VLT® HVAC Drive FC 102
- VLT® DriveMotor FCM 106
- VLT® DriveMotor FCP 106

Refrigeration

Accelerate system payback with best-practice speed control

Drive down total cost of ownership for reefers, cold rooms and all kinds of compressors

Win full traceability, seamless system integration and full motor compatibility

We champion your cause in optimizing refrigeration applications

- Experts at your service
- Specialized range of refrigeration - optimized AC drives

Top performer:

VLT® Refrigeration Drive FC 103

Chemical

Enhanced reliability in a harsh environment

Mining and Minerals

Save on CAPEX and OPEX with robust, reliable drives

Boost productivity and extend equipment lifetime

Win high asset availability:

- Heavy-duty, application-optimized AC drives
- Rugged high performance in the harshest of conditions
- Intelligent heat management

Reap surprising savings in both **CAPEX and OPEX:**

- World-class AC drive dedicated engineering
- Expert lifecycle support services
- On-site support to back you up

Top performers:

- VACON® 100 INDUSTRIAL
- VACON® NXP
- VACON® NXC

Cranes and Hoists

Elevators and Escalators

World-class buildings demand cutting-edge convenience

Enjoy the ultimate in travel comfort, with no compromises

Full range of market-leading AC drives with integrated elevator control:

- Tailored solutions for large OEMs
- Extensive lifecycle services
- Versatile, seamless system integration

Second life for hydraulic elevators via modernization with an AC drive:

- Fast retrofit
- More rides per day
- High availability

Top performer:

VACON® NXP Air Cooled

Heavy industry

Supreme process availability and performance when it counts

Ensure best-practice process control and optimal efficiency to meet your performance targets, no matter how demanding the task is.

We offer heavy-duty expertise in both single-drive and system-drive applications encompassing the entire power range.

Win competitive edge using tomorrow's technology today:

- **Expert services**
- Broad range of air- and liquid-cooled AC drives
- Seamless system integration
- Rapid connectivity

Top Performers:

- VACON® 100
- VACON® NXP Liquid Cooled
- VACON® NXC
- VACON® NXP System Drive

Oil and gas

Save energy and drive down operating costs

Gain even more competitiveness via variable speed control

- Improve the productivity of your existing systems
- Save energy and drive down operating costs, thanks to extended product lifetime

Combine the newest intelligent functionalities and high durability to win more sustainability

 Innovate better equipment with application-optimized AC drives

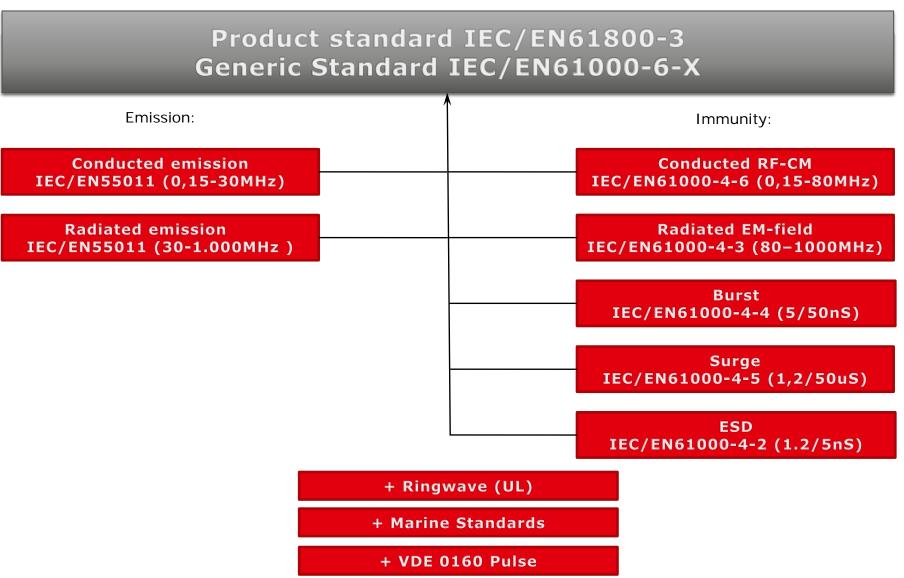
Get fast response from the global service network:

- World-class AC-drive-dedicated engineering
- Extensive lifecycle services

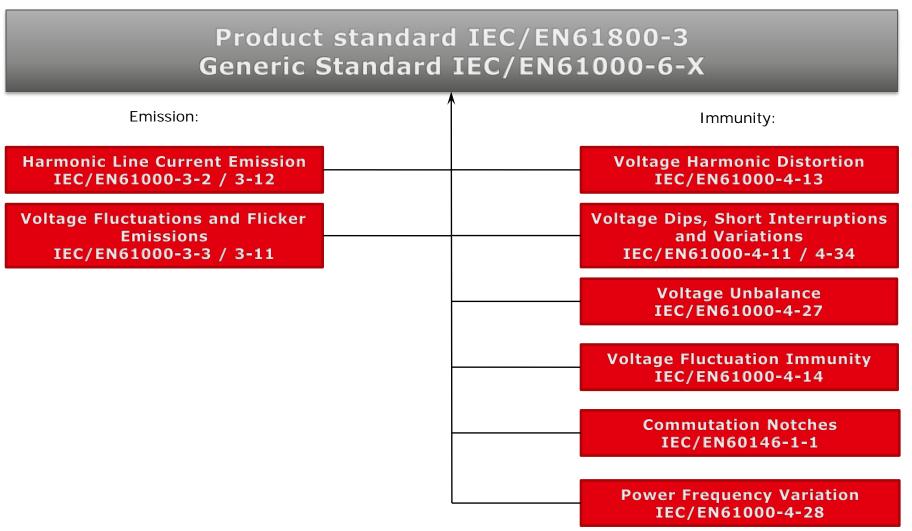
Top Performers:

- VACON® NXC
- VACON® NXP Liquid Cooled
- VACON® NXP System Drive
- VACON® 100

EMC test of drives


Application impact

- · User profile how is the drive used
 - Inertia
 - Start/Stop effects
 - · Grid influence
 - Interference on communication cables
 - Cable length
- Test purpose
 - Drives testing and application simulation
 - · Capture worst case scenario
 - Design margin towards requirements


EMC Emission and Immunity Standards

The High Frequency (RF) standards we are capable of testing according to are:

EMC Emission and Immunity Standards

The Low Frequency (LF) standards we are capable of testing according to are:

+ Marine, Ger.Lloyd, etc.

Test Benches:

EMC Chamber 1

EMC Chamber 2

Test Lab

Conducted Emission 1

- Messtec 3ø+N 150kHz-30MHz LISN
- Max 140µV level input
- EUT Supply: 3ø+N 400VAC/200A
- Connections to shielded motor cable matrix:
 - 2x up to 35mm2
 - 1x up to 2,5mm2

Conducted Emission 2

- Messtec 3ø+N 9kHz-30MHz LISN
- Max 140µV level input
- EUT Supply:
 - 3ø+N 400VAC/200A
 - 3ø+N 550VAC Variable transformer
 - 3ø+N 690VAC
- Connections to shielded motor cable matrix:
 - 2x up to 35mm2
 - 1x up to 2,5mm2
- Schwarzbeck DC LISN 150kHz-30MHz

Conducted Emission 3

- Rohde & Schwarz 3ø+N 150kHz-30MHz LISN
- Max 140µV level input
- EUT Supply:
 - 3ø+N 400VAC/63A
- Connections to shielded motor cable matrix:
 - +17m (10mm2 shielded motor cable)
 - +17m (2,5mm2 shielded motor cable)

Test Benches:

Mobile on trolley

EMC Chamber 2

Test Lab

Generators, etc.

Conducted RF-CM

EM Test CDNs and FCC Clamps

Voltage levels up to 30V RMS

Teseq NSG 4017C

Burst

- FM Test 3ø+N Generator
- Test Voltages up to 4,4kV Burst

EMC & Inductive Solutions

- EUT Supply up to 690VAC

~5m tables with copper surfaces for immunity testing in both chambers

Test Benches:

EMC Chamber 1

EMC Chamber 2

Test Lab

Burst/Surge/Ringwave

- EM Test Generator + Control SW
- Test Voltages up to 7kV Burst/Surge + Ringwave
- EUT Supply up to 690VAC (3ø+N) / 1.000 VDC – 32A (+/-)

Burst/Surge

- EM Test 1ø+N Burst/Surge Generator
- Test Voltages up to 4,4kV
- EUT Supply: 230VAC

ESD

- 2 x EM Test Generators
- Test Voltages up to 16,5kV Air and 10kV Contact Discharge

Generators, etc.

- 3ø+N Schaffner Surge generator
 MAX EUT Voltage: 440VAC
- R&S RF Signal Generator
- Rolf Heine Antenna (possible to do inhouse radiated emission/immunity troubleshooting)
- 25W RF Amplifier
- R&S RF Power Meter
- EMC (Detectus) Scanner
- R&S and Agilent Spectrum Analyzers
- R&S RF-current probes
- Tektronix Oscilloscopes
- HP Current Clamps, Amplifiers
- Ferrites, Components, etc.

Test Lab

Spitzenberger & Spies PAS

- LOW FREQUENCY EMISSION
- LOW FREQUENCY IMMUNITY

- 3ø+N Power Amplifier System
- EUT Voltage: up to 690VAC
- EUT Power: 45kW (Higher loads possible for shorter periods of time)
- 3ø rack with reactors for eg. Harmonic Emission
- Software option for Product Standard EN61800-3

California Instr. RS90 PAS

- LOW FREQUENCY EMISSION
- LOW FREQUENCY IMMUNITY

- 3ø+N Power Amplifier System
- EUT Voltage: up to 690VAC
- EUT Power: 90kVA
- Harmonic & Flicker measurment unit

10m SaC - the Facility on high level

- SAC (Semi Anechoic Chamber) with up to 10 meter measurement distance
- Chamber, load room and control room with total external dimensions of 25m length, 12m width and 9m height.
- Radiated Immunity from 80Mhz to 6GHz
- Radiated emissions from 9kHz to 18GHz (receiver up to 44GHz)
- Prepared for liquid cooled products
- Turntable for test objects has a diameter of 5m and capacity up to 10 tons.
- Door to the chamber is 4x4 meter and in level with surroundings.
- Motor load setup with maximum power of 90 kW

EMC equipment procedures

Calibration

- All instruments calibrated with traceability
- · Calibration reports must be reviewed and drift must be evaluated
- Based on this, next calibration period can be determined
- If issues are found, all affected tests must be re-analyzed

Calibration example – EMC analyzer

• 2016

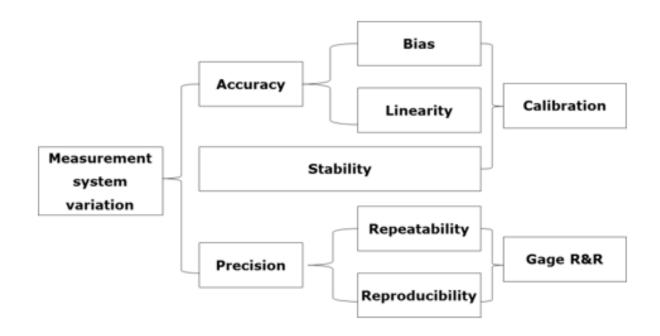
• 2017

• 2018

EMI Detector.										
Note:	Res.BW:			Input:		Display	Display:		Uncert.:	Spec.:
	200	Hz	Peak	-25.0	dBm	-24.99	dBm	0.01dBm	$\pm 0.1 \mathrm{dB}$	2dB
	200	Hz	Q-Peak	-25.0	dBm	-24.95	dBm	0.05dBm	$\pm 0.1 \mathrm{dB}$	2dB
	200	Hz	AVG	-25.0	dBm	-24.96	\mathtt{dBm}	0.04dBm	$\pm 0.1 dB$	2dB
	9 k	Ήz	Peak	-25.0	dBm	-25.47	dBm	-0.47dBm	$\pm 0.1 \mathrm{dB}$	2dB
	9 k	Ήz	Q-Peak	-25.0	dBm	-25.38	dBm	-0.38dBm	$\pm 0.1 \mathrm{dB}$	2dB
	9 k	Ήz	AVG	-25.0	dBm	-25.38	dBm	-0.38dBm	$\pm exttt{0.1dB}$	2dB
	120 k 120 k		Peak Q-Peak	-25.0 -25.0		-25.10 -24.91		-0.10dBm 0.09dBm	$\pm 0.1 \mathrm{dB}$ $\pm 0.1 \mathrm{dB}$	2dB 2dB
	120 k		AVG	-25.0		-24.95		0.05dBm	±0.1dB	2dB

EMI Detector.											
Note:	Res.BW:			Input:		Display	Display:		Uncert.:	Spec.:	
	200	Hz	Peak	-25.0	dBm	-24.85	dBm	0.15dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	200	Hz	Q-Peak	-25.0	dBm	-24.86	dBm	0.14dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	200	Hz	AVG	-25.0	dBm	-24.86	dBm	0.14dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	9	kHz	Peak	-25.0	dBm	-24.90	dBm	0.10dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	9	kHz	Q-Peak	-25.0	dBm	-24.92	dBm	0.08dBm	$\pm \texttt{0.1dB}$	2dB	
	9	kHz	AVG	-25.0	dBm	-24.85	\mathtt{dBm}	0.15dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	120	kHz	Peak	-25.0	dBm	-25.10	dBm	-0.10dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	120	kHz	Q-Peak	-25.0	dBm	-25.12	dBm	-0.12dBm	$\pm 0.1 \mathrm{dB}$	2dB	
	120	kHz	AVG	-25.0	dBm	-25.05	dBm	-0.05dBm	$\pm 0.1 \mathrm{dB}$	2dB	

EMI Detector.											
Note:	Res.BW:		Input:	Display:	Error:	Uncert.:	Spec.:				
	200 Hz	Peak	-25.0 dBm	-25.01 dBm	-0.01dBm	$\pm \texttt{0.1dB}$	2dB				
	200 Hz	Q-Peak	-25.0 dBm	-25.00 dBm	O.OOdBm	± 0.1 dB	2dB				
	200 Hz	AVG	-25.0 dBm	-25.03 dBm	-0.03dBm	$\pm exttt{0.1dB}$	2dB				
	9 kHz	Peak	-25.0 dBm	-25.03 dBm	-0.03dBm	$\pm 0.1 dB$	2dB				
	9 kHz	Q-Peak	-25.0 dBm	-25.03 dBm	-0.03dBm	$\pm 0.1 dB$	2dB				
	9 kHz	AVG	-25.0 dBm	-25.04 dBm	-0.04dBm	$\pm exttt{0.1dB}$	2dB				
	120 kHz	Peak	-25.0 dBm	-24.84 dBm	0.16dBm	$\pm 0.1 exttt{dB}$	2dB				
	120 kHz	Q-Peak	-25.0 dBm	-24.93 dBm	0.07dBm	$\pm 0.1 \mathrm{dB}$	2dB				
	120 kHz	AVG	-25.0 dBm	-24.84 dBm	0.16dBm	$\pm exttt{0.1dB}$	2dB				

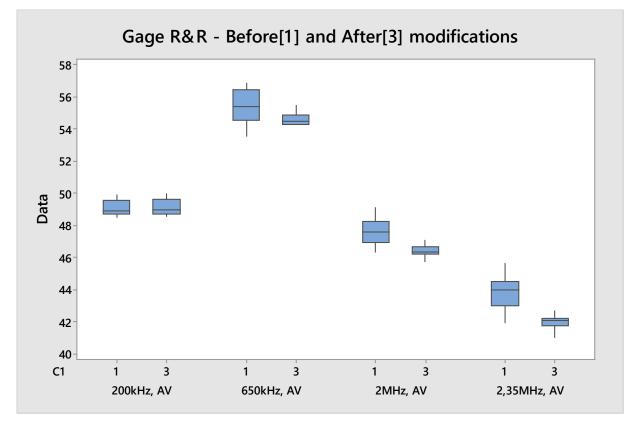

What is MSA?

- MSA is a Six Sigma tool and stands for: "Measurement System" Analysis"
- The purpose of MSA is to find and reduce/eliminate variation, producing a repeatable, precise and accurate measurement system.
- It is value adding to incorporate correct passing criteria's which incorporates products variations and measurement uncertainty.
- The consequence of not knowing the uncertainty's can have a critical impact on projects.

What to considered during MSA

 It is important that a MSA study is reflecting a real test/test situation in order to cover all the uncertainties coming from the measurement system.

Gage R&R study for Cond. Emission


- Measurement variations have been reduced by implementing a fixture to the LISN.
- Improvement of repeatability and reproducibility
- Measurement variation: Before 3,7dB Now 1,6dB

Before:

Now:

ENGINEERING TOMORROW