

**JANUARY 2017 | #1** 

# TransAlgae - algae for a fossil free future

This three-year project will explore the possibilities of algae cultivation in a Nordic climate with the purpose of transforming algae to biofuels. The project partners are SLU (project leader), BioFuel Region, Mid Sweden University, Nattviken Invest, University of Vaasa, Novia and NIBIO.

## **PROJECT GOAL**

The overall project goal is to successful transfer innovative solutions for the production of micro- and macro-algae biomass as source of bioenergy and high value products from research directly to companies in a continuous dialogue.

## THE PROJECT INCLUDES SIX ACTIVITIES:

- 1. Forming a network
- 2. Cultivation of algae
- 3. Harvesting of algae
- 4. Extraction of algae
- 5. Transformation of algae
- 6. System analysis



The figure is showing the process and production potential of the TransAlgae project. A larger picture is shown on the next side.

# 1. NETWORK IN BOTNIA-ATLANTICA REGION

The project partners are the first building blocks of an algae network in the Botnia-Atlantica region. A goal is to extend the network during the project and also to involve more women working with algae.

## 2. CULTIVATION

Cultivation systems with focus on adaptation to Nordic climate will be developed. Both micro- and macroalgae will be used for cultivation in fresh, waste and sea water. The different systems will be evaluated in waste water efficiency, energy and economic sustainability and biomass production.

#### 3. HARVESTING

Existing harvesting methods such as centrifugation, filtration and chemical flocculation will be used for harvesting of algae. The macro algae contain a lot of minerals from the sea water, which may need to be removed before extraction.

## 4. EXTRACTION

Extraction of lipids from freshwater micro algae has been developed in lab scale at SLU which will be tested in larger scale. For macro algae, a first step extraction of high value molecules such as sulphated polysaccharides and proteins will be performed.

# 5. TRANSFORMATION

The biogas potential for each substrate and for co-dige-sted samples will be carried out as well as pre-treatment. Hydrothermal liquefaction (HTL) experiments will be performed at lab scale. HTL has been shown to be a feasible technique to treat large amounts of biomass for production of a bio-oil that can be use further as a biofuel. The bio-oil is produced at a temperature of 250-370 °C and a pressure of 5-25 MPa with a residence time of 5-60 minutes.

## **6. SYSTEM ANALYSIS**

Both a techno-economic and an energetic balance study will be performed during the entire season. The purpose is to have a sustainable algae cultivation system at a larger scale.



# **CONTACTS:**

Francesco.Gentili@slu.se Ida.Norberg@biofuelregion.se Andreas.Willfors@novia.fi Liandong.Zhu@uwasa.fi Wennan.Zhang@miun.se Hugo@nattviken.com Michael.Roleda@nibio.no













公

NIBIO















