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Abstract
The transmission spectrum of a photonic crystal slab features sharp dips created by guided 
mode resonances. The same photonic crystal slab placed between orthogonal polarizers 
shows peaks at the resonances, but the peak wavelength differs from the guided mode 
resonance wavelength by a few nanometres. We investigate the working principle of the 
orthogonal polarizer setup and the origin of the wavelength difference for the case of a TE 
resonance. We show that the peak in the orthogonal polarizer setup is formed by light from 
the non-resonant TM polarization. The wavelength difference is caused by the phase shift 
between the resonant TE and the non-resonant TM polarization. We compare our explana-
tion to a temporal coupled-mode approach and the use of a time-domain window function 
in FDTD.
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1  Introduction

A photonic crystal slab (PCS), also known as resonant waveguide grating (RWG), is a 
planar optical waveguide with an integrated periodic nanostructure (essentially a periodic 
refractive index modulation). The nanostructure leads to the formation of quasi-guided 
(Bloch-) modes (also called leaky modes), which couple to the continuum of radiation 
modes. This coupling gives rise to characteristic narrowband features in the transmission 
and reflection spectrum when the photonic crystal slab is illuminated from top or bottom. 
(Johnson et al. 1999; Quaranta et al. 2018).

When light is incident on a photonic crystal slab, it is not only directly transmitted and 
reflected, but also coupled into the grating waveguide, which acts as an open resonator, and 
excites one or multiple quasi-guided modes. Because these modes couple to the outside, 
they create resonance effects leading (for a lossless dielectric structure) to perfect reflection 
and zero transmission for one or multiple specific wavelengths, which are called ‘guided 
mode resonance wavelengths’ ( �GMR ) (Wang and Magnusson 1993; Fan and Joannopoulos 
2002; Hermannsson et al. 2014). Figure 1 shows measured transmission spectra for a 1D 
photonic crystal slab. In the figures throughout this paper, blue indicates TE, red indicates 
TM, and green indicates the orthogonal polarizer transmission.

Because a resonance wavelength’s position can be tuned by and is sensitive to changing 
the structure’s period and the materials’ refractive indices, photonic crystal slabs are used, 
e.g., as optical filters and sensors (Pitruzzello and Krauss 2018; Kilic et al. 2008). For com-
pact optical systems and also for characterization measurements in the lab it can be advan-
tageous to place a one-dimensional photonic crystal slab between two orthogonal polar-
izers (OP), aligned at 45◦ and −45◦ to the grating lines, respectively (Nazirizadeh et  al. 
2008). This setup suppresses the background light and converts the dip in the transmission 
spectrum into a peak, enabling a simple intensity-based readout instead of a spectrometric 

(a) (b)

Fig. 1   a Unit cell of a fabricated one-dimensional photonic crystal slab. The high-index layer is formed by 
a sputtered 85 nm niobium pentoxide layer ( n ≈ 2.3 ). The grating (period � = 350 nm , duty cycle a = 0.6 , 
height = 60 nm ) is fabricated by nanoimprint lithography into an Amonil layer ( n ≈ 1.5 ). b Transmission 
measurements for TE and TM polarization and for the orthogonal polarizer setup. See Fig. 2 for the dif-
ferent measurement setups. Each polarization shows one transmission dip, which corresponds to the quasi-
guided TE and TM mode, respectively. Both transmission dips translate into transmission peaks in the 
orthogonal polarizer setup. The peak artefacts in the transmission dips are created by the superposition of 
different angular contributions of the illumination because our measurement setup does not provide a per-
fectly isolated 0◦ measurement
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one (Nazirizadeh et al. 2010; Lin et al. 2014; Jahns et al. 2015). The measurement setups 
for direct and orthogonal polarizer setup measurements are schematically shown in Fig. 2.

We found both experimentally and theoretically that the wavelength of the reso-
nance maximum with the orthogonal polarizer setup ( �OP , see Fig. 3a) does not exactly 
agree with the aforementioned �GMR (see Fig.  3b), but they differ by a few nanome-
tres (depending on the particular structure under investigation). To our knowledge, 
this effect has not yet been discussed in the literature. The wavelength difference 
�� = |�OP − �GMR| is important when the precise value of the absolute resonance wave-
length is of interest (Hermannsson et al. 2014).

(a) (b)

Fig. 2   Simplified schematics of the polarizer setups under investigation. For the experimental characteri-
zation the setup is embedded into a microscope setup that is connected to a spectrometer. a Transmission 
measurement for TE polarized light. The TM transmission setup is identical, only the polarizer is rotated by 
90◦ . b Orthogonal polarizer setup. The polarizers are perpendicular to each other and oriented at ±45◦ to the 
grating

(a) (b)

Fig. 3   Simulated transmission spectra for the photonic crystal slab shown in Fig.  1a. a TE and TM, b 
orthogonal polarizer setup. The different resonance wavelengths’ positions are indicated for the TE and TM 
resonance: �GMR(TM) = 535.7 nm , �GMR(TE) = 600.1 nm , �OP (TM) = 536.5 nm , �OP(TE) = 608.4 nm
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In this paper, we present a consistent and easy-understandable explanation for the 
wavelength difference based on the amplitudes and phases of the transmitted TE and 
TM polarized waves. The effect is also explainable by directly using the concept of Fano 
resonances, but we experienced that a more concrete explanation is easier to understand 
especially for students who are newly introduced to the topic of photonic crystal slabs.

Because our aim is to keep the explanations easy to understand, we start with a short 
introduction to photonic crystal slab fundamentals, where we also introduce the concept 
of Jones vectors and Jones matrices for a consistent description of polarization states 
and polarizing systems, and continue with a rather detailed analysis of the orthogonal 
polarizer setup. After that we deduce the origin of the discrepancy between the observed 
resonance wavelength for the different polarizer setups. Finally, we compare our expla-
nation to other approaches from the literature.

For the theoretical analysis, we use the finite-difference time-domain method [FDTD, 
Lumerical FDTD Solutions (Lumerical Inc. 2019)] to calculate transmission spectra and 
the finite element method [FEM, Comsol Multiphysics, Waveoptics module  COMSOL 
Multiphysics (2019)] to calculate eigenmodes of the photonic crystal slab. For all the simu-
lations, we used the same 1D photonic crystal slab, which is shown in Fig. 1a, with the 
non-dispersive material properties nsubstrate = 1.5 and nhigh index = 2.3.

2 � Photonic crystal slab and Jones calculus fundamentals

As already stated, a photonic crystal slab is a high refractive index slab with a periodic 
refractive index modulation (Joannopoulos et al. 2008). In general, one- and two-dimen-
sional modulations are possible. Here, we restrict our analysis to the 1D case. In that case, 
the geometry is uniform in y direction (see Figs. 1 or 2 for the definition of the coordi-
nate system used in this work) and therefore all y derivatives vanish. It is easy to see that 
the source-free, non-magnetic Maxwell’s equations in phasor domain for a harmonic time 
dependence exp(i�t)

decouple into two independent sets of equations, one for the field components (Ey,Hx,Hz) , 
called transverse electric (TE) fields, because the electric field is transverse to the plane 
of interest, and one for the field components (Hy,Ex,Ez) called transverse magnetic (TM) 
fields. The TE and TM solutions are independent (van Bladel 2007).

It is instructive to view the modulated waveguide as a periodically perturbed slab wave-
guide. For the corresponding unperturbed slab waveguide, the TE and TM modes and their 
dispersion diagrams can be calculated using e.g. a transfer-matrix method (Kwon 2009). 
For weak perturbations, the modes of the modulated waveguide have dispersion relations 
similar to those of the slab waveguide modes. But due to the periodic perturbation, the 
modes are no longer perfectly guided and orthogonal to incoming light waves. Instead, 
quasi-guided modes (QGM) are formed, which couple to in- and outgoing waves if the 
periodic structure’s grating vector K⃗ = 2π∕𝛬 e⃗x compensates for the wave vector mismatch 
between the waves: ±K + kinc,x − kQGM = 0 (Rosenblatt et al. 1997).

Whenever this happens, a resonant interaction of the incoming light with the quasi-
guided mode emerges, which drastically changes the transmission and reflection 

curl H⃗ = i𝜔𝜀(r⃗)E⃗ div 𝜀E⃗ = 0

curl E⃗ = −i𝜔𝜇0H⃗ div𝜇0H⃗ = 0
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characteristics of the photonic crystal slab compared to its corresponding unstructured slab 
waveguide: at the resonance, typically an asymmetric transmission dip ( T = 0% ) and a 
transmission peak ( T → max ) are created on the smooth Fabry-Perot background transmis-
sion spectrum (Fan and Joannopoulos 2002).

The phenomena we will describe are based on the polarizing properties of photonic crystal 
slabs. The polarization of a light wave and its interaction with a polarizing system is conveni-
ently described using Jones vectors and Jones matrices (Hecht 2002, Chap. 8; Saleh and Teich 
2019, Chap. 6). For completeness, we give a short definition of the relevant terms: A z-propa-
gating plane wave has the general form

where E
x
= |E

x
| exp(i�x) and E

y
= |E

y
| exp(i�y) are complex phasors. The Jones vec-

tor J⃗ for this plane wave is defined as J⃗ = (E
x
,E

y
)� = (J1, J2)

� ∈ ℂ
2 . It characterizes the 

polarisation of the plane wave completely. For example, �x = �y describes linearly polar-
ized waves and |E

x
| = |E

y
| , �y = �x ± π∕2 circularly polarized waves. In the following, we 

will normalize the Jones vector of the light wave incident to the photonic crystal slab to 
|J⃗in|2 = 1 and Jin1 ∈ ℝ at the beginning of a calculation. According to the coordinate sys-
tem defined in Fig. 2, TE polarized light is described by J⃗TE = (0, 1)� , TM polarized light 
by J⃗TM = (1, 0)� and the normalized equal superposition of both by J⃗TETM = 1∕

√
2 (1, 1)�.

The change in polarization through a polarizing system is described by a Jones matrix 
T ∈ ℂ

2×2 : J⃗out = T ⋅ J⃗in . A sequence of systems is described by matrix multiplication: 
J⃗out = Tn ⋅… ⋅ T2 ⋅ T1 ⋅ J⃗in . A linear polarizer, oriented at an angle � to the x axis, has the 
Jones matrix (Saleh and Teich 2019)

3 � Explaining the orthogonal polarizer setup’s transmission spectrum

In this paper, we discuss the setup where a 1D photonic crystal slab is placed between two 
orthogonal polarizers, polarized at 45◦ and −45◦ to the grating lines, respectively. In this setup, 
transmission dips of a photonic crystal slab are converted into transmission peaks (Naziriza-
deh et al. 2008, 2010). This fact is loosely explained by saying that the orthogonal polariz-
ers suppress all background light, while only the resonant light that interacts with the grating 
experiences a polarization rotation and can pass the second polarizer.

However, when looking at the resonant case and the electromagnetic fields in detail, one 
finds that it is actually the non-resonant polarization that passes the second polarizer. There-
fore, we will rigorously and quantitatively correctly explain from first principles how the 
transmission peak is created.

The two polarizers, which are oriented at ± 45◦ to the x axis, and the photonic crystal slab 
are described by (Kilic et al. 2008)

E⃗(z, t) =

⎛⎜⎜⎝

Ex(t)

Ey(t)

0

⎞⎟⎟⎠
= Re

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

�E
x
� exp(i𝜑x)

�E
y
� exp(i𝜑y)

0

⎞⎟⎟⎠
exp (i(kz − 𝜔t))

⎫
⎪⎬⎪⎭
=∶ Re

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

J1
J2
0

⎞⎟⎟⎠
exp (i(kz − 𝜔t))

⎫
⎪⎬⎪⎭
,

T� =

(
cos2 � cos � sin �

sin � cos � sin2 �

)
.
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where tTM and tTE describe the wavelength-depended transmission characteristics of 
the photonic crystal slab. The first polarizer polarizes the incoming unpolarized light to 
J⃗in = J⃗TETM = 1∕

√
2 (1, 1)� , which is the starting point for the following analysis. Relative 

to the grating, which is aligned to the y axis of the coordinate system, the light is linearly 
polarized at 45◦ . This polarization state is a superposition of both TE ( Ey and Hx fields) and 
TM ( Hy and Ex fields) light of equal intensities.

The Jones vectors J⃗in , J⃗PCS , and J⃗out describe the polarization after the first polarizer, 
the photonic crystal slab, and the second polarizer, respectively. The reference points for 
these vectors and the three Jones matrices are given in Fig. 4a.

Now we distinguish two cases:

•	 For wavelengths far away from any resonance wavelength, both polarizations pass the 
photonic crystal slab in a nearly identical way, such that they reach the second polar-
izer. Because the second polarizer is orthogonally oriented to the first, it blocks the 
light and the overall transmission is (nearly) zero: 

TPol 1 =
1

2

(
1 1

1 1

)
, TPol 2 =

1

2

(
+1 −1

−1 +1

)
, and TPCS(�) =

(
tTM(�) 0

0 tTE(�)

)
,

TPCS ≈

(
1 0

0 1

)
⇒ J⃗out = TPol 2 ⋅ TPCS ⋅ J⃗in ≈

(
0 0

0 0

)
⋅ J⃗in =

(
0

0

)
.

(a) (b)

Fig. 4   a Illustration of the presented explanation for the transmission maximum with orthogonal polariz-
ers. The situation at the TE resonance is depicted. The incident light is linearly polarized by the top polar-
izer (TE and TM polarization). At �GMR , the TE component is fully reflected (reflected wave not shown). 
Therefore, only the non-resonant TM light is transmitted and reaches the bottom polarizer, which it can 
partly pass. The figure also shows the reference points for the three Jones vectors and Jones matrices used 
in the text. b Detailed view of the transmission spectra at TE resonance from Fig.  3. At the �GMR(TE) , 
the orthogonal polarizer transmission is exactly 1/4 of the TM transmission. The wavelength difference 
�� = |�OP − �GMR| is 8.3 nm
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•	 At a guided mode resonance, here for example at the TE resonance �GMR (TE) , the TE 
polarized fraction of the light experiences 100% reflection at the photonic crystal slab, 
while the TM polarized light is not resonant at this wavelength and passes the slab basi-
cally unchanged. This situation is shown in Fig.  4a. Now, only the TM light (which 
is non-resonant) reaches the second polarizer, which is oriented 45◦ to the TM light. 
Therefore, half of the TM light passes the second polarizer and creates a peak in the 
transmission spectrum: 

The absolute values of the transmitted intensities provide a way to verify this explanation 
numerically: In Fig. 4b we see that the transmission at �GMR (TE) is only 1/4 of the trans-
mission for the TM case, where just the top polarizer is used to create TM polarized light. 
This is in agreement with the above calculation, because the reduction of the Jones vector 
modulus by 1/2 corresponds to an intensity reduction to 1∕22 = 1∕4 : The photonic crystal 
slab reduces the intensity by 1/2, because it transmits only TM light at the TE resonance, 
and the second polarizer reduces the intensity again by 1/2, because it is at 45◦ to the TM 
polarization. The observed factor of 1/4 is only possible if the light arriving at the bottom 
polarizer is indeed purely TM polarized. This proves that at �GMR (TE) only the non-reso-
nant TM polarization passes the second polarizer.

In this model, one expects the maximum of this peak to be aligned with the guided 
mode resonance wavelength. Slightly off the resonance wavelength, the nearly-resonant 
polarization is partly transmitted (e.g. tTM ≈ 1 and tTE ≈ 0.1 slightly off the TE resonance) 
and together with the transmitted non-resonant polarization, the overall polarization state 
of the light after the photonic crystal slab should rotate back to the polarization of the 
first polarizer. Therefore the overall transmission after the second polarizer should decrease 
compared to the fully resonant case: for example

4 � Phase and polarization analysis

However, we observed in experiment and simulation that the guided mode resonance wave-
length �GMR does not coincide with the corresponding transmission maximum wavelength 
�OP in the orthogonal polarizer setup (which can equally be called a resonance wavelength), 
but differs by a few nanometres. Figure 4b shows that the difference is �� = 8.3 nm for the 
investigated structure.

In the explanation presented above, we disregarded the phases of the TE and TM polar-
ized light waves and considered tTM and tTE in TPCS to be real numbers. But the phase spec-
tra of the TE and TM light in Fig.  5 show that during the TE resonance the TE phase 
changes rapidly, while the TM phase changes very slowly and smoothly. These phases will 
play the crucial part in deriving the origin of the deviating resonance wavelengths for the 
two different measurement setups.

TPCS ≈

�
1 0

0 0

�
⇒ J⃗out = TPol 2 ⋅ TPCS ⋅ J⃗in ≈

1

2

1√
2

�
+1

−1

�
.

TPCS ≈

�
1 0

0 0.1

�
⇒ J⃗out = TPol 2 ⋅ TPCS ⋅ J⃗in ≈

1

2

1√
2

�
+1

−0.9

�
⇒ �J⃗out�2 ≈ 0.95

4
<

1

4
.
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Near the resonance, the large phase difference between TE and TM waves leads to ellip-
tically polarized light behind the photonic crystal slab instead of linearly polarized light and 
the polarization ellipse rotates during the transition of the resonance, as shown in Fig. 6, 
where the polarization ellipse is depicted for different wavelengths around the TE reso-
nance. To complement the qualitative discussion, numerical values for the Jones vectors 
J⃗PCS and J⃗out are given in Fig. 6 for all six ellipses. For example, the values for case (1) are 
calculated as follows: from Fig. 5 we see that TTE = |tTE|2 = 0.193 , TTM = |tTM|2 = 0.884 , 
and the phase difference is �� = −46◦ . From that, we calculate

Because only the phase difference between TE and TM is important, all calculated Jones 
vectors are normalized such that the first component is real. J⃗out = TPol 2 ⋅ J⃗PCS is presented 
such that the numerator is equal to the vector’s modulus.

We partition this change of the ellipse’s orientation into the following stages (the num-
bers in parentheses refer to Fig. 6):

•	 Relatively far from resonance, the major axis is oriented towards the first polarizer and 
only little light can pass the second polarizer (1).

•	 Approaching �GMR (2), the TE component vanishes and the ellipse reduces to a line (3), 
oriented at 45◦ to both polarizers, such that half of the TM light can pass the second 
polarizer. Without considering the phases, we would expect the transmission maximum 
for the orthogonal polarizer setup here .

TPCS =

(
tTM 0

0 tTE

)
=

(
0.940 0

0 0.440 e−i46
◦

)
and J⃗PCS = TPCS ⋅ J⃗in =

(
0.664

0.311 e−i46
◦

)
.

Fig. 5   FDTD results for the phase behaviour of the TE and TM fields at the TE resonance in detail. At 
�GMR , the electric field’s sign changes while passing the zero and the phase jumps by 180◦ . At �OP , the TE 
and TM fields are out of phase by 90◦ . This leads to maximum transmission for the orthogonal polarizer 
setup, as shown with the polarization ellipses in Fig. 6. The numbers (1)–(6) refer to the six subplots in 
Fig. 6
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Fig. 6   Polarization ellipses for J⃗PCS , i.e. the light directly after the photonic crystal slab, for the different 
stages of the TE resonance. The ellipses have been calculated from the FDTD results. The numerical values 
for J⃗PCS and J⃗out = TPol 2 ⋅ J⃗PCS are shown at the bottom of each figure (the phases are always normalized 
such that J1 ∈ ℝ ). The numbers (1)–(6) refer to the wavelengths indicated in Fig.  5 and to the descrip-
tion in Sect.  4. The orientation of the first and second polarizer are indicated with the dashed and solid 
diagonal lines. Only that part of the elliptically polarized light that is aligned to the second polarizer can 
pass it. Therefore, the projection of the ellipse onto the second polarizer is shown with dotted lines and the 
green arrows. These green arrows are the visual representation of J⃗out = TPol 2 ⋅ TPCS ⋅ J⃗in . The maximum 
projected field strength, reached at �OP , is indicated with a tick on the second polarizer in all figures. Note 
that the green arrows only reach this tick for � = 608.4 nm , which corresponds to |J⃗out| = 0.494 ≈ 1∕2 , and 
are shorter for every other wavelength, which can be seen in the magnification
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•	 At �GMR , where Ey = 0 , the TE fields experience 180◦ phase jump. Because of this sign 
change after �GMR , the ellipse starts to tilt towards the second polarizer’s orientation 
(4). The transmitted light after the second polarizer increases.

•	 When the phase difference between TE and TM decreases to 90◦ , the ellipses’ major 
axis is again oriented at 45◦ to both polarizers, but this time the ellipses is wide open 
due to the non-vanishing TE component (5). Here we have maximum transmission. We 
call this wavelength ‘orthogonal polarizer resonance wavelength’ �OP.

•	 Further apart from the resonance, the phase difference between TE and TM approaches 
0◦ and the ellipses rotates back towards the first polarize’s orientation (6): the transmis-
sion through the second decreases again.

Now one question arises: Which resonance wavelength is the ‘correct’ one? The ‘guided 
mode resonance wavelength’ �GMR , where the transmission is zero, or ‘orthogonal polar-
izer resonance wavelength’ �OP , where the transmission maximum with the orthogonal 
polarizer setup occurs? To answer this question, we performed a Bloch eigenmode analysis 
of the investigated structure for the Bloch wavevector kB = 0 , corresponding to perpendic-
ularly incident light. The results are shown in Fig. 7. The calculated quasi-guided mode’s 
eigenfrequency corresponds closely to �OP ( �QGM = 608.7 nm versus �OP = 608.4 nm ). 
Therefore, the orthogonal polarizer setup has to be used to determine the quasi-guided 
mode’s properties exactly.

5 � Comparison to other explanations of the resonance shape

The explanation presented above is descriptive, because it is directly based on the behav-
iour of the calculated fields and is therefore well suited for explaining the origin of the res-
onance shapes. But it does not provide a method to predict the resonance shapes, because it 
relies on the beforehand calculated full fields. For that, temporal coupled-mode theory can 

(a) (b)

EE
Fig. 7   Eigenmode analysis of the photonic crystal using the finite element method (COMSOL Multiphysics 
2019). For the Bloch vector kB , two eigenmodes with eigenfrequencies �1 = 3.0943 + 0.125 29i) × 1015 s−1 
and �2 = 3.1466 × 1015 s−1 exist, corresponding to �1 = 608.7 nm and �2 = 598.6 nm . The first eigenmode 
[field profile shown in (a)] is a quasi-guided Bloch mode that couples to the outside. The second eigenmode 
[field profile shown in (b)] is a true guided Bloch mode that is not visible in the simulated transmission 
spectra
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be used, which provides an abstract way of explaining and also predicting the resonance 
shape based on just a few input parameters.

5.1 � Temporal coupled‑mode theory

It is known that the resonances in transmission and reflection spectra are Fano resonances, 
created by the interplay of non-resonant background light with the light leaking from the 
resonator (Wood 1902; Fano 1941).

Temporal coupled-mode theory is able to accurately model Fano resonances of photonic 
crystal slabs (Fan et al. 2003; Suh et al. 2004). We will briefly discuss how the formation 
of the resonance peak in the orthogonal polarizer setup is explained in this framework. We 
follow the work of Fan et al. (2003) with slightly adapted notation.

The coupled-mode equations for one resonator with multiple ports are

where a is the amplitude of the resonant mode, �0 is the resonance’s frequency, � its life-
time, 𝜓⃗in and 𝜓⃗out the vectors of the in- and outgoing waves’ amplitudes at all the ports, 𝜅⃗ 
the coupling vector for the in- and outcoupling and C is the matrix describing the direct 
pathways between the ports.

For external excitation, the scattering matrix S for the whole system is

In our case, the ports and waves are defined as shown in Fig. 8a. Because the TE and TM 
mode are orthogonal, their scattering processes are independent and we can write down the 
corresponding matrices STE and STM individually with �TE , �TE

0
 , �TE and �TM , �TM

0
 , �TM , 

respectively. The matrix C is identical for both polarizations because it describes the scat-
tering of the equivalent unstructured planar layer stack and is therefore identical for TE and 
TM at normal light incidence.

da

dt
=
(
i𝜔0 − 1∕𝜏

)
a + 𝜅⃗�

⋅ 𝜓⃗in

𝜓⃗out = C ⋅ 𝜓⃗in + a 𝜅⃗,

𝜓⃗out = S ⋅ 𝜓⃗in =

(
C +

𝜅⃗ ⋅ 𝜅⃗�

i(𝜔 − 𝜔0) + 1∕𝜏

)
⋅ 𝜓⃗in.

(a) (b)

Fig. 8   a Definition of the ports and the waves in the temporal coupled-mode theory. The connection 
with the Jones vectors is J⃗in = (𝜓TM

in,1
,𝜓TE

in,1
)� and J⃗PCS = (𝜓TM

out,2
,𝜓TE

out,2
)� . b Comparison of the transmis-

sion spectrum calculated from temporal coupled-mode theory with the FDTD-simulated spectrum from 
Fig.  3. The t-CMT result has been calculated according to (Fan et  al. 2003) with the following param-
eters: �TE

0
= 3.0943 × 1015 s−1 , �TE = 7.9815 × 1015 s (compare Fig.  7a), �TM

0
= 3.5165 × 1015 s−1 , 

�TM = 5.4052 × 10−14 s
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The transmission through the photonic crystals slab is described by the S21 parameters. 
Therefore, its Jones matrix, written in the coupled-mode-theory framework, is

The resulting polarisation state of the transmitted light is J⃗out = TPol 2 ⋅ TPCS ⋅ J⃗in , from 
which we calculate the transmission:

Here we clearly see that for each polarization a Lorentzian with center frequency �0 
remains after the second polarizer because the two direct pathways C cancel out. The two 
Lorentzians are also clearly visible in the graph of the above equation shown in Fig. 8b. 
This confirms that the ‘orthogonal polarizer resonance wavelength’ �OP is the correct 
wavelength that characterizes the resonantly interacting quasi-guided mode.

Another way of separating the resonant light from the background light can be per-
formed in the time-domain. This is described in the next section.

5.2 � Time‑domain apodization

It has been demonstrated that in a time-domain simulation, for example with the FDTD 
method, the excitation of a photonic crystal slab with a broadband pulse leads to the fol-
lowing effect: The directly transmitted part of the light reaches the detector below the struc-
ture quickly, while another part excites the resonator and leaks slowly into the free space. 
This is shown in Fig. 9a. When the discrete Fourier transform (DFT) of the time-domain 
signal at the bottom detector is calculated, both parts of the light interfere and create the 
dip in the transmission spectrum at �GMR . However, when the directly transmitted light is 
removed from the time-domain signal with a window function, which is also called apodi-
zation function, the interference vanishes and the light leaking from the resonator creates 
a Lorentzian-like peak in the spectrum (Fan and Joannopoulos 2002; Nazirizadeh 2010).

The example in Fig. 9b shows that the resonance peak obtained by time-domain apodi-
zation is not equal to the resonance peak from the orthogonal polarizer setup. Especially 
the intensities differ. The peak positions differ slightly ( �� = 0.7 nm ), despite manual fine-
tuning of the apodization time (both peak position and intensity depend strongly on the 
settings for the apodization function). Nevertheless, the time-domain analysis provides an 
intuitive understanding of the resonance phenomenon.

6 � Summary

We showed that the ‘resonance wavelength’ obtained with an orthogonal polarizer setup 
differs from the ‘guided mode resonance wavelength’ by a few nanometres. This has to 
be taken into account when determining parameters of the quasi-guided mode from a 

TPCS =

�
STM
21

0

0 STE
21

�
=

⎛⎜⎜⎝
C21 +

(𝜅⃗⋅𝜅⃗�)TM
21

i(𝜔−𝜔TM
0

)+1∕𝜏TM
0

0 C21 +
(𝜅⃗⋅𝜅⃗�)TE

21

i(𝜔−𝜔TE
0
)+1∕𝜏TE

⎞
⎟⎟⎠
.
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=
1

4

|||||
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transmission measurement or simulation. We presented a descriptive explanation of the 
orthogonal polarizer setup’s working principle and for the observed effect of the wave-
length difference. The explanation is directly based on the observed fields and approaches 
the phenomenon from another viewing angle compared to the more abstract temporal cou-
pled-mode based derivation.

Both approaches explain the resonance shape for the orthogonal polarizer setup and the 
wavelength difference �� . Interestingly, the temporal coupled-mode theory explanation 
expresses that the TE and TM light from the direct pathways cancel and the light cou-
pled into the resonator creates the observed resonance peak, thereby predicting the Lor-
entzian shape and quantitatively the peak intensity, while our explanation declares that the 
observed resonance peak is formed by the non-resonant polarization, because in resonance 
the direct and the resonant part of the light cancel. Yet, in the end both approaches describe 
the same result and are therefore equally valid.
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