Malin Moisio and Satu Huuhka,

Tampere University

11 February 2021

1	Intr	oductior	۱	3			
2	Met	hod		4			
	2.1	Carbon	footprint	4			
3	Cas	Case study: comparison of a concrete and wooden school					
	3.1	Case pr	eparation	6			
	3.2	3.2 Comparison 1: small concrete school compared to a wooden school of the					
		3.2.1	Carbon footprint	10			
	3.3	Compar	ison 2: Large concrete school and same-sized wooden school	13			
		3.3.1	Carbon footprint	14			
	3.4	Conside	erations and analyses using various insulation solutions	17			
4	Sun	nmary a	nd conclusions	19			
5	Ref	erences		20			
6	Арр	endices	\$	21			
	6.1	Append	ix 1. Structural types	21			

1 Introduction

This report presents calculation results on carbon footprint impacts in comparable school buildings with wooden or concrete structures. The publication was prepared as part of Tampere University's CE Wood (Kiertotalous – Uusia mahdollisuuksia puurakennusteollisuudelle) research project. The aim of the CE Wood research project is to improve the competitiveness of regional wood construction companies on international markets. Within the framework of the project, Tampere University's area of responsibility is to increase know-how related to technical solutions and methods among relevant companies. The project was funded under the Botnia Atlantica programme's operations focusing on economic life.

The efforts are a continuation of the "Purkaa vai korjata" (Purkuko) research project, which was commissioned by the Ministry of the Environment and carried out by Tampere University and VTT Technical Research Centre of Finland (Huuhka, S. et al., 2021). The objective of the Purkuko research project has been to collect and produce information on the carbon footprint effects of renovation in comparison to demolition and new construction. The cases and calculations selected and prepared for the Purkuko project serve as the initial data for this case study, which focuses exclusively on comparing newly-constructed buildings.

2 Method

2.1 Carbon footprint

A comparative case study examining school buildings was conducted within the scope of the CE Wood research project. For the purposes of the case study, the carbon footprint calculation was based on the Ministry of the Environment's method for assessing the carbon emissions of buildings (hereinafter "MoE method") (Ministry of the Environment, 2019). The carbon footprint calculation covers all life cycle phases: product stage, construction process stage, use stage and end of life stage (Figure 1).

The product phase material volumes were calculated using building information models (BIMs) created in ArchiCAD, and the emissions were estimated with the One Click LCA software. Correspondingly, in-service energy consumption for all compared cases was simulated based on a building information model with the IDA ICE 4.8 software, using a dynamic calculation method. The calculations for each case include the E-value kWh_E/m²a and consumption of delivered energy kWh/a, under which district heating, district cooling and electricity consumption were specified. Energy efficiency was calculated based on standardised use in accordance with the purpose of use category 6 in Ministry of the Environment Decree 1010/2017 (Education and training buildings and daycare centres). The energy efficiency of new buildings meets the E-value limit laid down in Decree 1010/2017 (education and training buildings 100 kWh_E/m²a; the requirement is 10% higher for solid wood buildings) and the requirements of the heat loss compliance calculation.

The actual carbon footprint calculation was conducted in the One Click LCA software using an analysis period of 50 years. The calculation takes into account in-service energy consumption as well as the carbon footprint (kgCO₂e) of materials used throughout the analysis period. The material emissions were selected from emission databases to correspond as well as possible with solutions commonly used in Finland.

In accordance with the MoE method, a life cycle carbon handprint was also calculated for the cases. Instead of deducting it from the carbon footprint, the carbon handprint has been presented alongside the footprint. The assessment of the carbon handprint entails the net benefits of climate impacts that would not be generated without the construction project. These can include the building's carbon stores and carbon sinks, extra renewable energy produced over the building's life span, and benefits created by virtue of reusing or recycling construction products (Ministry of the Environment, 2019, p. 30).

The method involves assumptions about the emission factors of electricity and district heating, which are expected to reduce their carbon emissions by 94% and 83%, respectively, by the year 2070. The reduction of carbon emissions was considered in ten-year periods (Ministry of the Environment, 2019, p. 46).

Tabulated values compliant with the MoE method were used in the emission calculations for phases A4 (transport to worksite), A5 (operations at a new building's construction site), B3-4 (energy consumption of

repairs), C1 (operations at a deconstruction site), C2 (transport to further processing) and C3–4 (waste processing and disposal) (Ministry of the Environment, 2019, Appendix 3). Refurbishments (B5) were taken into account based on the technical life spans of various building components and Building Information File 18-10922 (Rakennustieto, 2008).

Some delineations deviating from the MoE method were used in the calculation (cf. Ministry of the Environment, 2019, p. 18). Since the aim was to focus the calculation on the building, site development measures (ground structures, supports and reinforcements, paving and area structures) were excluded from the calculation. As regards supplementary structures, surface structures and typical fixtures were left out of the calculation. These were assumed to be mostly identical in both schools since the buildings are of the same size. This means that the results are only mutually comparable.

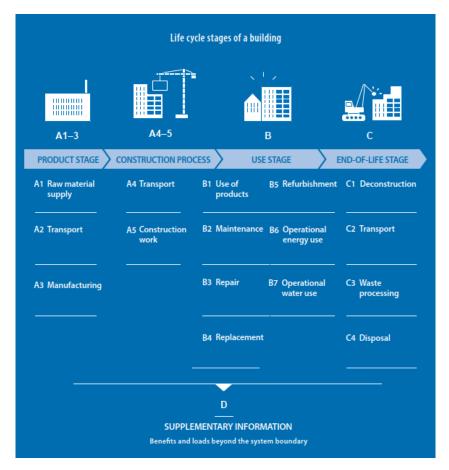


Figure 1. Building's life cycle phases (Ministry of the Environment, 2019, p.14).

3 Case study: comparison of a concrete and wooden school

3.1 Case preparation

The model for the school buildings included in the case study was the new building constructed for Tesoma School in Tampere (completed in 2018, Figure 2). For the purposes of the calculation, two separate school buildings were formed based on Tesoma School's geometry: a large version and a smaller version for calculation. The building modelling and surface area calculation were simplified when preparing the calculation cases. For example, the ventilation machine rooms on the roofs and underground shafts were excluded from the building geometry. For building systems, the square-metre-based tabulated values of the MoE method were used with the net heated area (Ministry of the Environment, 2019, Appendix 2).

Figure 2. Tesoma School in Tampere. Photo Antti Lakka.

The structural types of both cases were adjusted to match typical and commonly-used structures. The concrete school structures are from the existing Tesoma School building. The wooden school structures were selected from among the CLT structure types of projects completed by Hoisko CLT (CLT Finland Oy), in cooperation with Hoisko CLT's specialists. For the wooden school, the structural types were changed to wooden structures only to the extent that

this was justified and possible without modifying the original plan. The load-bearing structures, such as the exterior walls, columns, beams, intermediate floors and roof structures, were implemented as wooden, CLT or glulam structures in accordance with Table 1. As regards partition walls, plasterboard partition walls were replaced with CLT walls. Other partition walls, such as concrete load-bearing stairwells, sand lime masoned wet room walls and load-bearing walls of exterior platforms, were kept intact. This also applies to stairs, balconies and civil defence shelter structures. For example, the steel grille cladding of exit route stairs and the steel-framed glass walls in lobby areas can be regarded as essential parts of the architectural design, which is why the materials were not replaced in the wooden school. The structures, floor spans, and beam and column lines for the concrete school were taken from the existing school. In the concrete building, the wing width of the building mass varies between 15 and 20 m. Each wing has been divided into two parts with a beam and column line. In the wooden school, the span of the wooden floors has been assumed to be shorter at roughly 6–8 m, which is why load-bearing

beam and column lines have been added to the building. The column size was adjusted to make it more realistic, even though an actual structural dimensioning was not conducted. In other words, the added columns and their foundations were taken into account in material calculations but not in spatial design. The spaces of the buildings were not modified, but the quantities of the construction materials used in the calculation were impacted by the structural thicknesses of the respective cases. For example, the wooden building's thinner intermediate floor results in a increased partition wall area when the floor height is maintained, and the thinner exterior walls result in a decreased outer wall area when the net heated area is maintained. More specific structural type lists are presented in Appendix 1.

Building section	Concrete school	Wooden school
Frame	Precast concrete panel structure, some concrete beams and columns	CLT structure, some glulam beams and columns
Facades	Brick-tiled and painted concrete panels, some glass and steel grilles	Wood-cladded solid CLT elements, some glass and steel grilles
Roof	Wooden load-bearing structures, rubberised bitumen membrane coating	Wooden load-bearing structures, rubberised bitumen membrane coating
Ceiling	Hollow-core slabs, mineral wool insulation	Glulam beams, wood fibre insulation
Intermediate floors	Hollow-core slabs	CLT floor slabs
Walls in contact with soil	Concrete panels, exterior water insulation	Concrete panels, exterior water insulation
Base floor	In-situ cast concrete slab in soil contact and with heat insulation under it	In-situ cast concrete slab in soil contact and with heat insulation under it
Partition walls	Steel-framed, masoned and concrete partition walls	CLT partition walls, masoned and concrete partition walls
Building systems	Typical building systems, no sprinklers	Typical building systems, sprinklers

Table 1. Structures used in the cases.

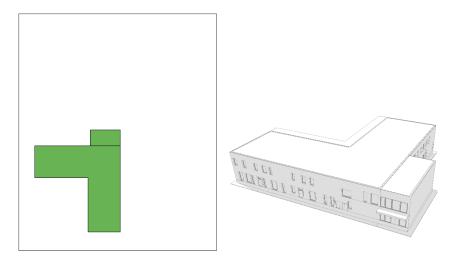
Both versions use the reference values specified in Decree 1010/2017 and the standardised use of the relevant category. In heat loss equalisation, compliance was achieved thanks to an air tightness that is

higher than the reference value (2 for both versions). The cold bridges were found to be identical in both buildings. Table 2 presents the most essential initial data used in energy calculation. The extents of the building versions are listed in Tables 3 and 6.

Two separate comparisons were prepared from the results. The first comparison examines the emissions of a small concrete school compared to a wooden school of the same size. The second comparison features a school that is four times the size of the building in the first comparison. More detailed initial data for the cases is provided in Chapters 3.2. and 3.3.

Table 2. Initial data for energy calculation.

Initial data for energy calculation					
Name and description	Unit	Concrete school	Wooden school		
Structure properties					
Air tightnessq50)		2	2		
U-values of structures					
Exterior wall	W/(m²K)	0.19	0.39		
Exterior wall, basement	W/(m²K)	0.17	0.17		
Ceiling	W/(m²K)	0.09	0.097		
Base floor	W/(m²K)	0.16	0.16		
Doors	W/(m²K)	1.00	1.00		
Windows	W/(m²K)	1.00	1.00		
Window properties					
U-value of glass	W/(m²K)	0.90	0.90		
U-value of frame	W/(m²K)	2.00	2.00		
Frame area fraction		0.10	0.10		
g-value of windows		0.54	0.54		
Equipment, ventilation					
Annual efficiency of air supply unit's heat recovery	%	55	55		
Supply air temperature set point	°C	18	18		
Specific fan power/SFP	kW/m³/s	1.8	1.8		
Minimum temperature of exhaust air	°C	3	3		
Standard air flow, education building	dm ³ /(s m ²)	3	3		
Type of heating		District heating	District heating		



3.2 Comparison 1: small concrete school compared to a wooden school of the same size

The first pair for comparison includes a small concrete-framed school building and wooden-framed school building of the same size (Figure 3). For the first pair, a smaller version of Tesoma School's geometry was prepared using a single L-shaped wing. In accordance with the MoE method, the net heated area (2,412 m²) was used as the reference area.

Figure 3. Illustrations of the buildings being compared: building footprint and perspective drawing.

2,597

10,655

As per

2

drawings

Table 3. Extent details for comparison 1.						
Extent details						
Name and description	Unit	Concrete school, small	Wooden school, small			
Net heated area	m²	2,412	2,412			

m²

m3

pcs

.

Floor area

Geometry

Volume

Floors

2,550

10,483

As per

2

drawings

3.2.1 Carbon footprint

The results of the carbon footprint calculation are formed by the itemised results of the energy calculation and the results of the life cycle carbon footprint calculation. The results also separate the carbon handprint, which in this comparison is formed by the reuse of materials and the organic carbon bound to construction materials. In wood-based products, concentration of organic carbon has been estimated to be 50% of the dry weight, in accordance with the MoE method.

The results of the energy calculation (Table 4) serve as inputs for the calculation of the life cycle carbon footprint.

Table 4 and Figure 4 indicate that the energy efficiency (E-value) of the small wooden school is lower than that of the small concrete school. The wooden school's E-value and consumption of delivered energy are 5% and 8% higher, respectively, than for the concrete school. This is primarily due to the lower U-values of the wooden building's exterior walls.

In-service energy			
Name and description	Unit	Concrete school, small	Wooden school, small
E-value	kWh _E /(m²a)	98	103
E-value, concrete vs. wood	%	100%	105%
District heating, heating and domestic hot water	kWh/a	203,327	229,456
District cooling	kWh/a	21,857	22,942
District heating total	kWh/a	225,184	252,398
Electricity	kWh/a	106,024	105,996
Delivered energy total	kWh/a	331,208	358,394
Delivered energy / m² /a	kWh/m²/a	137	149
Electricity's share of delivered energy	%	32%	30%
Delivered energy, concrete vs. wood	%	100%	108%

Table 4. Energy calculation results for comparison pair 1.

The results of the carbon footprint calculation are presented in Table 5 and Figure 4. Despite the better energy efficiency, the total carbon footprint of the small concrete school over a 50-year analysis period is about 10% higher than of the wooden school.

Carbon footprint			
Name and description	Unit	Concrete school, small	Wooden school, small
Carbon footprint kg CO2e /m2 /a	kg CO ₂ e /m²/a	16.96	15.30
Carbon handprint kg CO ₂ e /m² /a	kg CO ₂ e /m²/a	-3.90	-12.42
Carbon footprint kg CO ₂ e /m ² for the analysis period	kg CO ₂ e /m²	848	765
Carbon handprint kg CO ₂ e for the analysis period	kg CO ₂ e	2,046,000	1,845,000
Carbon footprint kg CO ₂ e concrete vs. wood	%	100%	90%

Table 5. Carbon footprint calculation results for comparison pair 1.

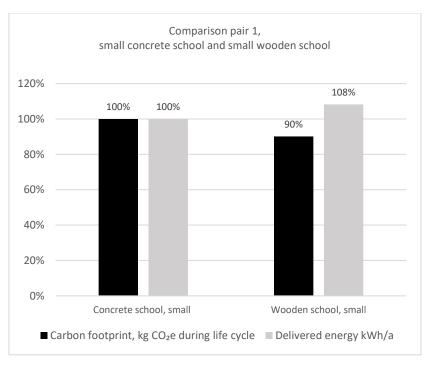
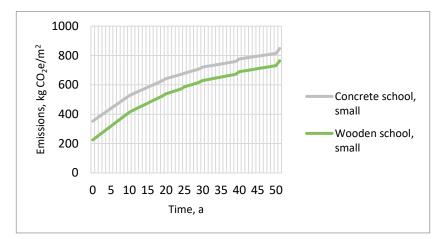
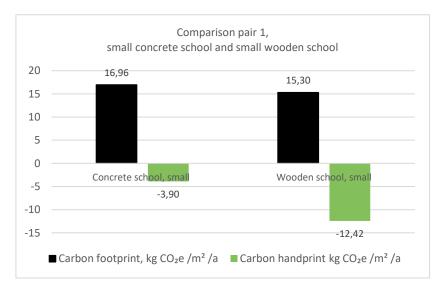


Figure 4. Results for comparison pair 1.

When examining emissions across the analysis period as a function of time, it is found that the emission levels of the concrete school and wooden school are furthest apart at the start of the analysis period, and that the gap decreases towards the end of the period (Figure 5). The difference between the product and construction phases (A1–A5) of the small wooden school and small concrete school is about 36%. Despite the better energy efficiency of the concrete school, the graphs do not intersect during the analysis period



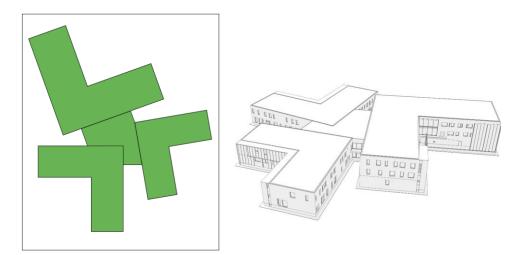


(50 years), meaning that the wooden school remains at lower carbon levels through the entire analysis period. Of the small wooden school's emissions, only about 30% are generated by the product and construction process stages, 66% by the use stage and 4% by the end of life stage.

Of the small concrete school's carbon footprint, 41% is formed by the product and construction process stage, 55% by the use stage and 4% by the end of life stage. The small wooden school's carbon handprint is substantially larger than that of the small concrete school. The carbon handprint is presented with a minus symbol in Table 5 and Figure 7.

Figure 5. Carbon footprint as a function of time: small concrete school and small wooden school.

Figure 6. Carbon footprint and carbon handprint, comparison pair 1.



3.3 Comparison 2: Large concrete school and same-sized wooden school

The second comparison pair focuses on a building four times the size of those included in the first pair, with a net heated area of 9,648 m2. The comparison pair was formed based on the same example building as the first comparison pair, and the structures are also the same as those of the first pair (Tables 1 and 2). The extent details are provided in Table 6.

Figure 7. Illustrations of the buildings being compared: building footprint and perspective drawing. Comparison pair 2.

Extent details			
		Concrete school, large	Wooden school,
Name and description	Unit	School, large	large
Net heated area	m²	9,648	9,648
Floor area	m²	10,284	10,117
Volume	m3	41,746	41,137
Geometry		As per drawings	As per drawings
Floors	pcs	3	3

Table 6. Extent details for comparison pair 2.

3.3.1 Carbon footprint

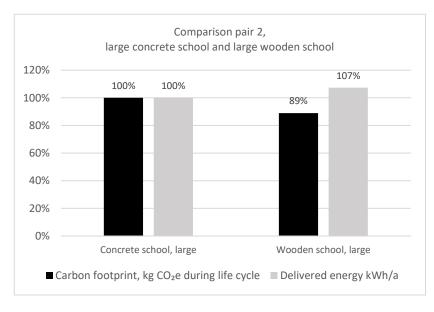
The results of the carbon footprint calculation are derived from the results of the energy calculation and the carbon footprint calculation for the entire analysis period, as is the case with comparison pair 1. The energy calculation results are presented in table 7. The E-value difference of the compared buildings is similar to that of comparison pair 1. The E-value of the large wooden school is 4% higher than that of the large concrete school, and the consumption of delivered energy is 7% higher for the wooden school than for the concrete school. Compared to the first pair, it appears to be easier to achieve a better E-value with a larger building.

In-service energy			
Name and description	Unit	Concrete school, large	Wooden school, large
E-value	kWh _E /(m²a)	95	99
E-value, concrete vs. wood	%	100%	104%
District heating, heating and domestic hot water	kWh/a	777,866	865,116
District cooling	kWh/a	43,200	46,504
District heating total	kWh/a	821,066	911,620
Electricity	kWh/a	423,142	911,620
Delivered energy total	kWh/a	1,244,208	1,334,642
Delivered energy / m² /a	kWh/m²/a	129	138
Electricity's share of delivered energy	%	34%	32%
Delivered energy, concrete vs. wood	%	100%	107%

Table 7. Energy calculation results for comparison pair 2.

The results of the carbon footprint calculation are presented in Table 8 and Figure 8. The large wooden school's total carbon footprint for the 50-year analysis period is about 10% lower than that of the large concrete school.

In this comparison, 37% of the concrete school's life cycle emissions come from materials. In the concrete school's product stage, over 60% of the material emissions come from the concrete frame and about 4% from the mineral wool insulation, with other materials remaining below 3%, respectively. For the large wooden school, materials account for about 23% of the whole, with the largest 30% share being attributable to concrete, 12% to CLT and 5% to sand lime bricks in wet room partition walls.



Carbon footprint					
Name and description	Unit	Concrete school, large	Wooden school, large		
Carbon footprint kg CO2e /m² /a	kg CO₂e /m²/a	15.74	14.00		
Carbon handprint kg CO ₂ e /m² /a	kg CO₂e /m²/a	-2.98	-11.46		
Carbon footprint kg CO ₂ e /m ² for the analysis period	kg CO ₂ e /m²	787	700		
Carbon handprint kg CO ₂ e for the analysis period	kg CO ₂ e	7,593,000	6,753,000		
Carbon footprint kg CO ₂ e concrete vs. wood	%	100%	89%		

Table 8. Carbon footprint calculation results for comparison pair 2.

Figure 8. Carbon footprint and delivered energy for comparison pair 2, large concrete school and large wooden school.

As was the case with comparison 1, emission levels of the concrete school and wooden school are furthest apart at the start of the analysis period, and that the gap decreases towards the end of the period (Figure 9). The gap between the product and construction process stages of the large wooden school and large concrete school is 39%. Of the large wooden school's emissions, only about 28% are generated by the product and construction process stages and 5% by the end of life stage. Of the large concrete school's carbon footprint, 41% is formed by the product and construction process stages, 55% by the use stage and 4% by the end of life stage. The large wooden school's carbon handprint

is substantially larger than that of the large concrete school. The carbon handprint is presented with a minus symbol in Table 8 and Figure 10.

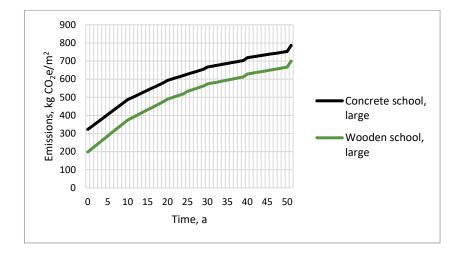


Figure 9. Carbon footprint as a function of time: large concrete school and large wooden school

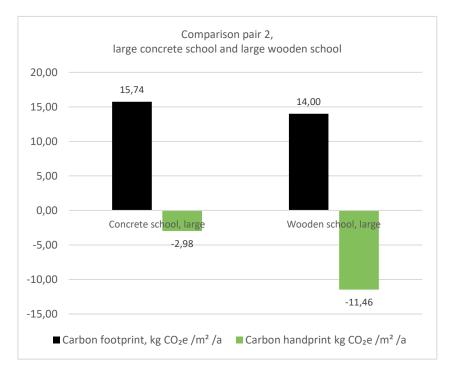


Figure 10. Carbon footprint and carbon handprint, comparison pair 2.

3.4 Considerations and analyses using various insulation solutions

Energy efficiency is extremely important for the formation of the carbon footprint, despite the fact that the MoE calculation method assumes the emissions from electricity and district heating to decrease gradually over the course of the analysis period. Three separate additional analyses were carried out on the cases. These involved adding heat insulation in the ceiling, exterior walls, and exterior walls and ceiling. The relevant calculation results are presented in Figure 11.

For the wooden school's exterior walls, a solid-wood structure was selected, which has a U-value that is significantly lower than that of the concrete building (0.39 W/m²K). The ceiling's U-value was also slightly weaker (0.097 W/m²K) than for the concrete-structured school. In order to get the U-value of the wooden school's ceiling to match that of the concrete building (0.09 W/m²K), 20 mm of wood fibre insulation was added to the ceiling in additional analysis 1. On an annual level, this would only reduce the consumption of delivered energy by 0.1%. The added material would increase the carbon footprint slightly during the analysis period. Even if the annual decrease in energy consumption were to be taken into account for the entire 50-year period, this would only reduce the large wooden building's carbon footprint by 0.1%. This would not change the carbon footprint gap between the large wooden school and large concrete school (11%).

The second additional analysis was conducted by adding 50 mm of windproofing mineral wool in the wooden school's exterior walls, which brought the structure's U-value to 0.27 W/m²K. This would reduce the wooden school's calculated consumption of delivered energy by over 3% a year. Adding material, in turn, would increase the building's carbon footprint by 0.6% for the analysis period. Taking the annual decrease in energy consumption into account for the entire 50-year period, this would only reduce the large wooden building's carbon footprint by about 2%. This would increase the carbon footprint gap between the large wooden school and large concrete school to 13%.

The third additional comparison was conducted by adding 20 mm of wood fibre insulation in the ceiling, in the same way as in additional analysis 1, and a 25 mm windproofing board and 100 mm of wood fibre insulation in the exterior walls. These structures achieved roughly the same U-values as the concrete school: 0.19 W/m²K for the exterior walls and 0.09 W/m²K for the ceiling. This would reduce the wooden school's calculated consumption of delivered energy by about 8% a year. When the addition of material and annual energy consumption are considered for the entire analysis period, the large wooden school's carbon footprint would decrease by 3.5%. This would increase the carbon footprint gap between the large wooden school and large concrete school to 14% in favour of the wooden school.

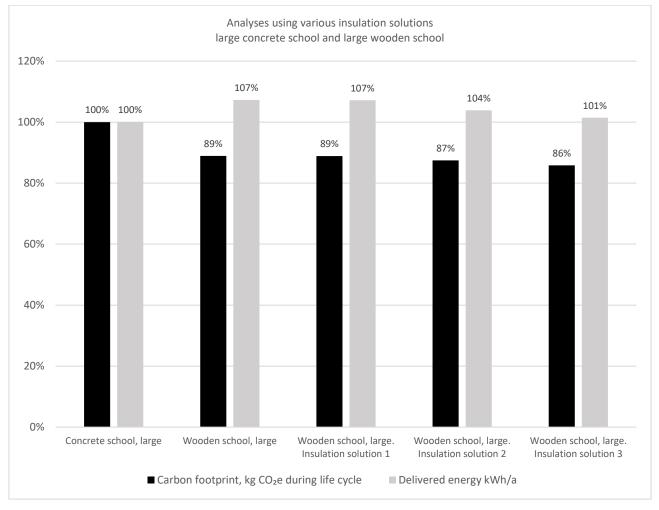


Figure 11, Analyses with various insulation solutions 1–3, large concrete school and large wooden school

There are hundreds of individual factors affecting the energy efficiency of a building. When considering impacts of the building geometry and alignment, it is safe to say that the number of variables is virtually endless. Small details, such as cold bridges between building sections or the annual efficiency of the air supply unit's heat recovery, gain significance in the carbon footprint analysis when the annual energy consumption has 50 years of time to impact the carbon footprint. Material selections can also be used to influence the results. In this comparison, components such as the concrete outdoor platforms and steel grilles could have been made from wood, which would have further reduced the carbon footprint. Similarly, materials with lower emissions and solutions that improve energy efficiency could be used in the concrete school.

4 Summary and conclusions

As regards the concrete school, energy consumption during the analysis period (50 years) constitutes slightly more than half of the carbon footprint, and materials and construction slightly less than half, while demolition accounts for the remainder. For the wooden school, energy consumption during the analysis period accounts for roughly two-thirds of the carbon footprint (usage 66% for the large school), materials and construction for one-third (29% before use), and demolition for the remainder (after use 5%).

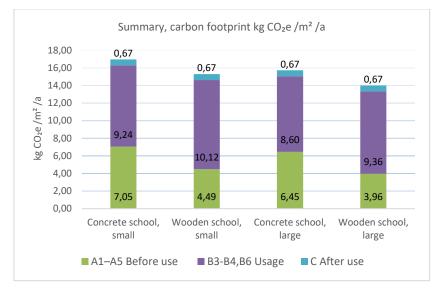


Figure 12. Carbon footprint division between life cycle phases

For the concrete school, concrete, which accounts for over 60% of the total, is the construction material that has the biggest impact on the carbon footprint. Mineral wool insulation is second in terms of carbon footprint impact (4%). Other materials are all below 3%, respectively. For the wooden school, too, concrete is the construction material with the most substantial impact on the carbon footprint at about 30% of the total. The second highest source of emissions is CLT (12%) and the third highest is sand lime bricks (5%). Based on the two comparable cases examined in this study, it can be concluded that the wooden school is a better option than the concrete school from the perspective of carbon footprint. The wooden school's carbon footprint is about 10% smaller than that of the concrete school, and its carbon handprint is significantly larger. The per-square-metre carbon emissions of the small and large wooden school are lower than those of the concrete school, even though the concrete school is more energy-efficient. However, energy efficiency has a significant impact on the results. In terms of the carbon footprint per square metre, the larger building is better than the small one, if the construction materials and other variables are kept the same.

5 References

European Committee for Standardization. (2012). Sustainability of construction works. Assessment of buildings. Part 2: Framework for the assessment of environmental performance (EN 15643-2).

Huuhka, S., Vainio, T., Moisio, M., Lampinen, E., Knuutinen, M., Bashmakov, S., Köliö, A., Lahdensivu, J., Ala-Kotila, P. & Lahdenperä, P. (2021). *Purkaa vai korjata? Hiilijalanjälkivaikutukset, elinkaarikustannukset ja ohjauskeinot* (Ympäristöministeriön julkaisuja 2021:9) [To demolish or to repair? Carbon footprint impacts, life cycle costs and steering instruments (Publications of the Ministry of the Environment 2021:9). Helsinki: Ympäristöministeriö. <u>http://urn.fi/URN:ISBN:978-952-361-221-1</u>

Kuittinen, M. (Ed.). (2019). Method for the whole life carbon assessment of buildings (Publications of the Ministry of the Environment 2019:23). Helsinki: Ministry of the Environment. <u>http://urn.fi/URN:ISBN:978-952-361-030-9</u>

Rakennustieto. (2008). *Kiinteistön tekniset käyttöiät ja kunnossapitojaksot* (RT 18-10922) [Technical lifespans and maintenance periods of buildings (RT 18-109822)]. Helsinki: Rakennustietosäätiö RTS.

Decree of the Ministry of the Environment 1010/2017 on the Energy Performance of New Buildings. https://www.ym.fi/download/noname/%7BE12CDE2C-9C2B-4B84-8C81-851349E2880B%7D/140297

6 Appendices

6.1 Appendix 1. Structural types

school			Wooden school	
US1	U-value 0.19 W/(m ² K)		US1	U-value 0.39 W/(m ² K)
35 mm	Brick tile		28 mm	Wood cladding
65 mm	Concrete		22 mm	Ventilation gap
220 mm	Mineral wool		22 mm	Cross furring
180 mm	Load-bearing structure, concret	e	280 mm	Load-bearing structure, CLT
500 mm			352 mm	
			US1_insulation	
			solution 2	U-value 0.27 W/(m ² K)
			28 mm	Wood cladding
			22 mm	Ventilation gap
			22 mm	Cross furring
			50 mm	Windproofing mineral wool
			280 mm	Load-bearing structure, CLT
			402 mm	
			US1_insulation	
			solution 3	U-value 0.19 W/(m ² K)
			28 mm	Wood cladding
			22 mm	Ventilation gap
			22 mm	Cross furring
			25 mm	Windproofing board
			100 mm	Wood fibre insulation
			280 mm	Load-bearing structure, CLT
			477 mm	
US2 (glass wall)	U-value 0.17 W/(m ² K)		US2 (glass wall)	U-value 0.17 W/(m ² K)
20 mm	Aluminium panel		as with the concrete	e building
110 mm	Steel column, EPS insulation			
20 mm	Fibre cement board			
150 mm				
US3	U-value 0.19 W/(m ² K)		US3	U-value 0.39 W/(m ² K)
	Paint		as wooden school's	US1
80 mm	Concrete			
220 mm	Mineral wool			
180 mm	Concrete			
480 mm				
	SeAMK		UMEA.	🔬 📉 Ini

Concrete			
school		Wooden schoo	bl
US4 (plinth)	U-value 0.17 W/(m ² K)	US4 (plinth)	U-value 0.17 W/(m ² K)
	Bitumen membrane	as with the concre	ete building
80 mm	Concrete		
220 mm	EPS insulation		
220 mm	Concrete		
521 mm			
US5 (civil			
defence)		US5 (civil defence)	
	Paint	as with the concre	ete building
80 mm	Concrete		
220 mm	Mineral wool		
300 mm	Concrete		
600 mm			
YP1	U-value 0.09 W/(m²K)	YP1	U-value 0.097 W/(m ² K)
IFI		IFI	Waterproofing rubberised bitumen
7 mm	Waterproofing rubberised bitumen membrane	7 mm	membrane
23 mm	Tongue and groove boards 23 mm	23 mm	Tongue and groove boards 23 mm
150 mm	Roof trusses k900	50 mm	Battens
200 mm	Ventilated air space	110 mm	Ventilated air space
450 mm	Mineral wool	40 mm	Windproofing mineral wool
			Glulam beams k900 and wood fibre
0.5 mm	Vapour barrier bitumen membrane	480 mm	insulation
320 mm	Hollow-core slab	0.2 mm	Vapour barrier plastic
1,155 mm		44 mm	Cross furring
		13 mm	Plasterboard
		719 mm	
		VD1 insulation	
		YP1_ insulation	

TP1_Insulation	
solution 1 and 3	U-value 0.09 W/(m ² K)
	Waterproofing rubberised bitumen
7 mm	membrane
23 mm	Tongue and groove boards 23 mm
50 mm	Battens
110 mm	Ventilated air space
40 mm	Windproofing mineral wool
	Glulam beams k900 and wood fibre
500 mm	insulation
0.2 mm	Vapour barrier plastic
44 mm	Cross furring
13 mm	Plasterboard

7,399 mm

AP1	U-value 0.16 W/(m ² K)		AP1	U-value 0.16 W/(m ² K)
15 mm	Putty		as with the concre	
80 mm	Concrete slab			
150 mm	EPS insulation			
	Filter fabric			
300 mm	Sand			
300 mm	Gravel			
Concrete				
school			Wooden schoo	I
AP2 (civil				
defence)	-		AP2 (civil defence)	
15 mm	Putty		as with the concre	te building
70 mm	Concrete slab			
200 mm	Concrete slab			
150 mm	EPS insulation			
	Filter fabric			
300 mm	Sand			
300 mm	Gravel			
VP1			VP1	
5 mm	Vinyl flooring		5 mm	Vinyl flooring
15 mm	Putty		15 mm	Putty
70 mm	Concrete slab		260 mm	CLT floor slab
370 mm	Hollow-core slab		200 11111	
370 mm	Hollow-core slab			
VP2, civil defence			VP2, civil defence	
5 mm	Vinyl flooring		as with the concret	e huilding
15 mm	Putty		as with the concret	
80 mm	Concrete floor slab			
50 mm	EPS insulation			
1,550 mm	Crushed stone			
400 mm	Concrete			
400 mm	Concrete			
VP3, wet rooms			VP3, wet rooms	
	Tiling		as with the concre	te building
	Waterproofing			
40 mm	Putty and sloped cast			
	Like VP1			
VS1			VS1	
13 mm	Plasterboard		131	
95 mm	Steel frame, mineral wool		120 mm	CLT partition wall
13 mm	Plasterboard		120 11111	
13 mm	וומסוכושטמוש			
VS2, wet rooms			VS2, wet rooms	
	Putty		as with the concret	te building
	SOAMK		UMEA	ini 📩 🔬
ere University	JEAMIN	NUVIA	5 222 5	Botn
are University	SEINÄJOEN AMMATTIKORKEAKOULU SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES	LINE PRITY OF ADDRESS STREETS		

130 mm	Sand lime brick Putty	
VS3, load-		
bearing		VS3, load-bearing
200 mm	Concrete	as with the concrete building
VS4, civil defence		VS4, civil defence
300 mm	Concrete	as with the concrete building
Concrete		
school		Wooden school
Column 1		Column 1
500x500 mm	Concrete columns	190x360 mm Glulam columns
380x380 mm	Concrete columns	
Column 2 and 3		Column 2 and 3
	Steel columns	as with the concrete building
Beam 1		Beam 1
200x500 mm	Concrete beam	190x495 mm Glulam beam
Window 1	U-value 1.0 W/(m ² K)	Window 1
	Triple-glazed MSE window	as with the concrete building
Window 2	U-value 1.0 W/(m ² K)	Window 2
	Triple-glazed MEK glass wall	as with the concrete building
Interior window		
1	Two-glazed interior window	Interior window 1 as with the concrete building
Exterior door 1	U-value 1.0 W/(m ² K)	Exterior door 1
	Heat-insulated wooden door	as with the concrete building
Interior door 1		Interior door 1
	Wooden door	as with the concrete building
Balcony slabs and outdoor platforms		Balcony slabs and outdoor platforms
15 mm	Putty	as with the concrete building
50 mm	Concrete slab	
6.9 mm	Bitumen membrane	
200 mm	Load-bearing concrete slab	
20 mm	Plastering	
Heating		Heating
	Heat distribution network and centre	as with the concrete building

Water and		
sewerage		Water and sewerage
	Water piping system	as with the concrete building
Ventilation		Ventilation
	Ventilation system	as with the concrete building
Electricity		Electricity
	Electrical installations and cabling	as with the concrete building
Sprinklers		Sprinklers
	No sprinklers	Sprinklers in wooden school

