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Abstract  

Engineered Wood Products (EWPs) are increasingly being used as construction and building 

materials. However, the predominant use of petroleum-based adhesives in EWPs contributes to the 

release of toxic gases (e.g. Volatile Organic Compounds (VOCs) and formaldehyde) which are 

harmful to the environment. Also, the use of adhesives in EWPs affects their end-of-life disposal, 

reusability and recyclability. This paper focusses on dowel laminated timber members and densified 

wood materials, which are adhesive free and sustainable alternatives to commonly used EWPs (e.g. 

glulam and CLT). The improved mechanical properties and tight fitting due to spring-back of 

densified wood support their use as sustainable alternatives to hardwood fasteners to overcome 

their disadvantages such as loss of stiffness over time and dimensional instability. This approach 

would also contribute to the uptake of dowel laminated timber members and densified wood 

materials for more diverse and advanced structural applications and subsequently yield both 

environmental and economic benefits. 

Keywords: Engineered Wood Products; Dowel Laminated Timber; Densified Wood; Sustainability.  
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1. Introduction 

Historically, timber has been and remains a widely used structural and environmentally 

friendly material (Dinwoodie, 2000; Kollmann and Côté, 1984; Bodig and Jayne, 1982). In 

2016, about 122 million m3 and 128 million m3 of sawn wood were produced in Europe and 

North America, respectively (UNECE, 2017). Furthermore, wood has high specific stiffness 
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and strength and is an economical alternative to other commonly used building materials 

(Da Silva and Kyriakides, 2007). However, their mechanical properties vary widely due to 

their natural origin. The variations are partly as a result of various growth conditions (e.g. 

soil type, availability of water and nutrients) and natural characteristics (e.g. presence and 

size of knots, the slope of grain) of a tree (Kretschmann, 2010; Porteous and Kermani, 2007) 

(NOTE: The words ‘wood’ and ‘timber’ are used interchangeably in this review article). As a 

result of some of these challenges, engineered wood products (EWPs) are increasingly being 

developed and optimised for structural applications leading to their significant consumption 

globally.  

These EWPs are typically fabricated from the adhesive bonding of wood chips, flakes, 

veneer or sawn timber sections, and/or the mechanical fastening of timber sections to form 

larger sections, beams, panels or other structural elements (Woodard and Milner, 2016). 

The advantages of EWPs include enhanced dimensional stability, the formation of larger and 

more complex structural sections, reduced effect of natural defects (e.g. knots), greater 

durability and more homogenous mechanical properties (Ramage et al., 2017; Asif, 2009). 

EWPs with large section sizes comprising timber lamellas are also referred to as mass timber 

products (e.g. Cross laminated timber (CLT), glulam and dowel laminated timber) (Harte, 

2017). These EWPs are used in construction and many building components (e.g. beams, 

columns, walls, floors, roofs), and are also viable alternatives to steel and concrete due to 

their technical capabilities, cost-competitiveness and environmental impact (Harte, 2017). 

For example, the global warming potential of the multi-storey Forté apartment building in 

Melbourne made from CLT panels was 22 % lower than a similar building constructed with 

reinforced concrete (Durlinger, Crossin and Wong, 2013). 

However, there are concerns with the use of adhesives and metal fasteners which affect 

their sustainability, recyclability and broader environmental impact. More specifically, the 

predominant use of adhesives (e.g. Urea-formaldehyde (UF)) in EWPs is harmful to the 

environment due to the emission of toxic gases (e.g. formaldehyde and Volatile Organic 

Compounds (VOCs)) (Stark, Cai and Carll, 2010; Hemmilä et al., 2017; Adhikari and Ozarska, 

2018). The inhalation of formaldehyde gas is carcinogenic, which shows the toxicity and 

hazardous of these adhesives (International Agency for Research on Cancer, 2004). Although 

cured adhesives are generally safe, formaldehyde gas is emitted from EWPs (with UF 
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adhesives) during use, under high-temperature conditions and changes in relative humidity 

(Frihart and Hunt, 2010; Mantanis et al., 2018). In addition, hardeners (e.g. amine and 

formaldehyde) used in adhesives are irritants and skin sensitizers and therefore, constant 

exposure could lead to allergic reactions (Frihart and Hunt, 2010).  

As a result of the points mentioned above, regulatory standards (World Health Organization, 

2010; BS EN 13986, 2015; California Air Resources Board, 2009) have the incentive to limit 

the use of toxic adhesives in order to decrease emissions of formaldehyde and VOCs during 

production and in finished EWPs (Frihart and Hunt, 2010; Hill, Norton and Kutnar, 2015). 

The European Commission (2011) also has a specific objective of improving air quality, 

which can be achieved by reducing the use of harmful adhesives. Although there are 

ongoing developments of environmentally friendly bio-based adhesives, there are still 

challenges to their wider uptake due to the lower cost and better properties of synthetic 

petroleum-based adhesives (Hemmilä et al., 2017; Norström et al., 2015).   

Therefore, this paper focusses on dowel laminated timber members and densified wood 

materials, which are more sustainable and adhesive free EWPs. This review of the current 

literature offers insights into different assembly processes (e.g. dowel welding) and the 

structural properties of dowel laminated timber (also referred to as “Dowellam”, 

“Brettstapel”, “DLT”). Although the concept of dowel laminated timber members has been 

around for a few decades (Henderson, Foster and Bridgestock, 2012), research articles on 

their development and properties are limited. The review article also discusses the 

processing conditions and mechanical properties of densified wood alongside its moisture-

dependent swelling effect. The manufacturing process typically involves the use of 

conditioned dowels (with moisture content of 6 – 8 %) to fasten timber lamellas (with 

moisture content of 12 – 15 %); subsequently, tight-fitting of the dowels occurs during in-

service moisture equilibrium (Ramage et al., 2017; Buck et al., 2015). Also, some 

manufacturers compress the hardwood dowels hydraulically into holes of relatively smaller 

diameters to create a tight fit (Thoma, 2012). Additional benefits include the removal of 

toxic adhesives and metal fasteners in EWPs, and in so doing give better reusability and 

recyclability, availability and faster processing of softwood compared to hardwood.  
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2. Dowel Laminated Timber 

This section focusses on dowel laminated timber members, which are EWPs (or mass timber 

products) fabricated with timber lamellas and assembled with hardwood dowels or metal 

fasteners (Ramage et al., 2017; Structure Craft, 2018). The modern design of this technology 

was developed in the 1970s and involved the use of nail fasteners (Henderson, Foster and 

Bridgestock, 2012). However, in two decades later, metal fasteners were replaced with the 

use of hardwood dowels. These timber-only EWPs (fabricated without the use of metal 

fasteners or adhesives) are more sustainable and environmentally friendly (Chang and 

Nearchou, 2015; O’Loinsigh et al., 2012b).  Through an EU-funded project (entitled Adhesive 

Free Timber Buildings (AFTB) (2016)), traditional construction techniques of dowel 

laminated timber was combined with advanced research on highly densified wood 

materials, to manufacture adhesive free EWPs. This concept takes advantage of the 

improved physical and mechanical properties (e.g. density, modulus of elasticity and 

strength) and the moisture-dependent swelling effect of highly densified wood, which can 

be used as alternatives to hardwood fasteners in dowel laminated timber members and 

connections, as shown in Figure 1. 

 

Figure 1: Images of dowel connected structural members: (a) Adhesive free laminated 

timber beam (b) Adhesive free cross laminated timber panel (c) Timber-to-timber 

connection 

Eurocode 5 (2004) provides guidance on timber connections with steel dowel fasteners. 

However, there is a lack of statutory structural design standard for dowel laminated timber 

members assembled with wooden dowels. Furthermore, there is a limited number of 

studies that have dealt with the development and characterisation of dowel laminated 

AFLT Beam 

AFCLT 
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timber members. It is however expected that their mechanical properties are dependent on 

different factors (such as lamella/dowel species and size, dowel arrangement, loading 

orientation). More recently, an European technical assessment (2018) was acquired and 

reported for a dowel laminated timber product under the trade name of THOMA Holz 100. 

This product comprises timber lamellas in the longitudinal, transverse and diagonal 

directions fastened with beech dowels, as illustrated in Figure 2, and are currently used as 

building components (e.g. walls).  

 

Figure 2: Diagrams of the THOMA Holz 100 (Deutsches Institut für Bautechnik, 2018) 

Furthermore, Rombach Nur Holz (2018) developed a design for dowel laminated timber 

panels that utilised threaded beech dowels to fasten the lamellas, as shown in Figure 3. The 

development of dowel laminated timber is also on the rise in North America with notable 

projects, including their use in the expansion of Smithers Airport in Canada (Structure Craft, 

2018). About 300 buildings with Nur Holz dowel laminated timber members have been built 

worldwide (Habitat Naturel, 2009; Rombach, 2018; Thoma, 2012). Specific applications of 

dowel laminated timber include shear walls and floor diaphragms in buildings as alternatives 

to traditional materials (e.g. reinforced concrete) (Rombach, 2018).   
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Figure 3: Nur Holz dowel laminated timber panels (Habitat Naturel, 2009) 

Dauksta (2014) and Henderson et al. (2012) stated that the benefits of dowel laminated 

timber construction include better indoor air quality (compared to the use of adhesives), on-

site fabrication and lower embodied carbon. However, these claims are based on qualitative 

research with the need for supplementary data on the life cycle impact assessment to 

understand and quantify their environmental impact.  

On the other hand, there are shortcomings associated with traditional dowel laminated 

timber constructions, which include dimensional changes of hardwood dowels due to in-

service moisture and temperature variations, leading to loose and imperfect connections 

between the dowels and the lamellas (Henderson, Foster and Bridgestock, 2012). Also, 

hardwood fasteners undergo stress relaxation, which causes loosening of the joint over 

time, necessitating regular tightening (Guan et al., 2010). In light of the foregoing 

comments, this makes hardwood fasteners unfavourable and uneconomical from the point 

of strength and stiffness of the joint and maintenance required. 

2.1. Development and Characterisation of Dowel Laminated 

Timber Beams   

This section examines and reviews the manufacturing processes and properties on dowel 

laminated timber members. Table 1 gives the mechanical properties of some dowel 

laminated timber beams from literature. Plowas et al. (2015) fabricated and tested five 
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dowel laminated timber beams which comprised UK larch lamellas and beech dowels (20 

mm in diameter) spaced at 300 mm centres. A row of the beech dowels was inserted 

(perpendicular to the loading direction) to fasten the lamellas. Based on the test setup 

shown in Figure 4, the dowels were inserted near the neutral axis, therefore, they do not 

contribute to the bending properties of the beam. Four-point bending tests were carried out 

on the beams and the average modulus of elasticity and bending strength were 

approximately 10 GPa and 34 MPa, respectively (see Table 1). These average values 

reported are similar to those of standard timber sections, with the beams being failed in 

tension.   

Belleville (2012) manufactured laminated timber beams fastened with hardwood dowels via 

high-speed rotational welding, as shown in Figure 5a. The rotational welding involved the 

generation of friction between the dowel and lamellas through the high-speed rotation of 

the dowel causing an increase in temperature, thereby softening the lignin and forming a 

bond between the dowel and the timber lamellas (Michel Leban et al., 2005; Belleville, 

2012). The dimensions of the laminated beams were 225 mm (width) x 30 mm (depth) x 300 

mm (length), and the dowels were inserted perpendicular to the loading direction as shown 

in Figure 5b. The 10 mm dowels were inserted into two adjacent timber lamellas (50 mm 

depth). The laminated beams comprised 12 timber lamellas with dimensions of 225 mm x 

30 mm x 25 mm, and were fastened with 44 welded dowels.  

Two different species (sugar maple (Acer saccharum) and yellow birch (Betula 

alleghaniensis) were used as the timber lamellas. The dowel species in the beams also 

corresponded to those used for the lamellas. For comparison, glued-laminated beams 

(polyvinyl acetate (PVAc) was the adhesive) with similar configuration and dimensions were 

also manufactured and tested in three-point bending.  Five samples of each type of beam 

were tested.  
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Table 1: Mechanical properties of dowel laminated timber beams from literature 

Reference Lamella 

species 

Dowel 

species 

Beam type Modulus of 

elasticity 

[GPa] 

Bending 

strength 

[MPa] 

Test 

Method 

Plowas et 
al. (2015) 

UK larch Beech 
Dowel laminated beam 

(single row) 
10 34 

Four-
point 

bending 

Belleville 
(2012) 

Sugar 
maple 

Sugar 
maple 

Welded dowel laminated beam 

Bending 

stiffness 

[kN/mm] 

Failure 

load 

[kN] 

Three-
point 

bending 

0.37 ± 0.04 
1.70 ± 
0.14 

N/A Glued-laminated beam 1.52 ± 0.05 
5.75 ± 
0.76 

Yellow 
birch 

Yellow 
birch 

Welded dowel laminated beam 0.34 ± 0.01 
1.79 ± 
0.04 

N/A Glued-laminated beam 0.98 ± 0.04 
5.21 ± 
0.52 

Dourado et 
al. (2019) 

Maritime 
pine 

N/A Glued-laminated beam 3 14.9 

Three-
point 

bending 
Beech 

 

Bonded dowel laminated beam 
(dowel insertion angle of 30°) 

1.5 8.9 

Bonded dowel laminated beam 
(dowel insertion angle of 45°) 

1.6 12.1 

Bonded dowel laminated beam 
(dowel insertion angle of 60°) 

1.3 11.7 

Bonded dowel laminated beam 
(dowel insertion angle of 90°) 

1.5 9.8 

Bocquet et 
al. (2007) 

Spruce 
 

N/A 
Nailed laminated beam 

(double row) 
0.04 3.20 

Four-
point 

bending 

Beech 
Bonded dowel laminated beam 

(single row) 
0.06 3.21 

Beech 
Welded dowel laminated beam 

(single row) 
0.08 3.25 

Beech 

N/A 
Nailed laminated beam 

(double row) 
0.08 7.00 

Beech 
Bonded dowel laminated beam 

(single row) 
0.12 7.06 

Beech 
Welded dowel laminated beam 

(single row) 
0.15 7.20 

O’Loinsigh 
et al. 

(2012a) 
Irish spruce 

N/A 
Unfastened beam with no 

dowels/adhesive 
(i.e. stacked lamellas) 

0.18 21 

Four-
point 

bending 

Beech 
Dowel laminated beam 

(20 dowels) 
0.4 22 

Beech 
Dowel laminated beam 

(32 dowels) 
0.465 22.75 

Beech 
Dowel laminated beam 

(44 dowels) 
0.565 24 
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Figure 4: Four-point bending test setup on a dowel laminated timber beam by Plowas et 

al. (2015)  

 

Figure 5: (a) Image showing hardwood dowels connecting timber lamellas via high-speed 

rotational welding and (b) Three-point bending test setup on the dowel laminated 

timber beam by Belleville (2012) 

Similar trends were observed for both timber species. Table 1 also gives the average 

bending stiffnesses, failure loads and standard deviations for the welded dowel and glued-

laminated timber beams. This work could be improved by further analyses of the bending 

modulus and strengths (presented in N/mm2) of the beams, which would be useful for 

comparison with other EWPs. Nevertheless, the results show that the initial stiffnesses and 

maximum loads of the glued timber beams were about three to four times greater than 

those of the welded dowel laminated beams. However, the dowel laminated beams showed 

a more ductile response than the glued-laminated beam. Belleville (2012) reported that the 
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failure mode of the dowel laminated beams was the fracture of the dowels in tension. Also, 

there was visible edge separation between the timber lamellas during a humidity cycle 

experiment, which is a major issue to be considered in the design and use of dowel 

laminated timber beams and structures.  

Nevertheless, Belleville (2012) stated that the wood-dowel welding process reduces the use 

of petrochemicals, gives better recyclability, increases productivity and lowers production 

costs compared to the use of adhesives in laminated timber structures. However, this 

statement necessitates further research to understand and quantify the economic and 

environmental benefits of the wood-dowel welding assembly process.  

Dourado et al. (2019) manufactured and tested laminated timber beams fastened and 

bonded with hardwood dowels. The assembly technique incorporated the use of an epoxy 

adhesive to join the dowels to the lamellas. However, the authors stated that the volume 

utilised (although not quantified) was substantially smaller when compared with glued-

laminated beams. The beams comprised two maritime pine lamellas and four beech dowels 

(15 mm in diameter), and the overall dimensions of the beams were 75 mm (width) by 40 

mm (depth) by 380 mm (length). For a like-to-like comparison, glued-laminated beams with 

similar dimensions were tested. The study also investigated the effect of dowel insertion 

angles (30°, 45°, 60° and 90°), with five samples of each configuration being tested. The 

average bending stiffnesses and failure loads of the beams tested are given in Table 1, with 

all the beams being failed in tension. The results showed that the bending stiffnesses and 

failure loads of the bonded dowel laminated beams were ranged from 1.3 – 1.6 kN/mm and 

8.9 – 12.1 kN. The configuration with the highest properties (i.e. bending stiffness of 1.6 

kN/mm and failure load of 12.1 kN) was the beam with dowels inserted at a 45-degree 

angle. Nevertheless, these aforementioned properties were 53 % (bending stiffness) and 81 

% (failure load) of a similar glued-laminated beam. The study also showed that the dowel 

insertion angle did not have a substantial influence on the bending stiffness (Dourado et al., 

2019).  

Bocquet et al. (2007) fabricated laminated timber beams via high-speed rotational welding 

of beech dowels, which was a similar procedure to that of Belleville (2012). However, 

Bocquet et al. (2007) inserted the dowels at an angle of 30 degrees with respect to the 
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longitudinal face of the lamellas, which was intended for enhancing structural properties. 

The beams were 2 m long, with 56 beech dowels (10 mm in diameter) being used to fasten 

two lamellas. Figure 6a shows the schematic diagram of the single-row welded dowel 

laminated timber beam, with the central 300 mm region of the beam left without dowels. 

Further work was carried out in this study (Bocquet et al., 2007), by fabricating and testing 

double-row nailed laminated beams, as shown in Figure 6b, and single-row bonded dowel 

laminated beams (Figure 6a, which were compared with the welded dowel laminated 

beams. The laminated beams fastened with bonded wooden dowels also had the dowels 

inserted at a 30-degree angle for comparison. In addition, two different species (spruce and 

beech) were used as the lamellas for comparison.  

 

Figure 6: Schematic diagrams of laminated timber beam manufactured by Bocquet et al. 

(2007): (a) Single-row welded with dowels and (b) Double-row nailed  

Table 1 also gives the bending stiffnesses and failure loads of the beams manufactured and 

tested by Bocquet et al. (2007). Overall, the stiffnesses and failure loads of the laminated 

beams with beech lamellas were greater than those with spruce lamellas. For the beams 

with spruce lamellas, the study showed that the welded dowel laminated beam had a 

bending stiffness being twice that of steel nailed laminated beam and about 33 % greater 

than that of a laminated beam connected via bonded wooden dowels. Furthermore, the 

failure loads of the nailed laminated beam, beams with bonded dowels and welded dowels 

were 3.20, 3.21 and 3.25 kN, respectively, which reflect no significant difference.  
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A similar trend can be seen in the beams with beech lamellas (see Table 1). The welded 

dowel laminated beam had the highest bending stiffness and the nailed laminated beam 

had the lowest. Also, there were no substantial differences in the failure loads between the 

three beams with beech lamellas. These results also show that the species and mechanical 

properties of the lamellas have a significant effect on the failure loads of the beams. The 

relatively higher stiffnesses of the bonded dowel and welded dowel laminated beams 

compared to the nailed laminated beam may also be attributed to the dowel insertion angle 

of 30 degrees.   

O’Loinsigh et al. (2012a) manufactured and tested laminated timber beams that were also 

assembled via rotational welding of beech dowels. The beams comprised Irish spruce 

lamellas and a single row of dowels. The dowels were inserted at a 60-degree angle (with 

respect to the longitudinal axis of the beam), as shown in Figure 7. The dimensions of the 

beam were 140 mm (width) by 152 mm (depth) by 2200 mm (length), and the dowels were 

10 mm in diameter. The study entailed four-point bending tests on beams with 20, 32 and 

44 dowels, which were compared with an unfastened beam with no dowels/adhesive (i.e. 

stacked lamellas). One limitation of this work was that although one of the objectives for 

the paper (O’Loinsigh et al., 2012a) was to demonstrate the fabrication of laminated timber 

beams without adhesives, experimental work was not carried out to compare the results 

with those of a similar glued-laminated timber beam. An additional observation was the 

presence of gaps between the lamellas (see Figure 7), which was also shown in the dowel 

laminated timber beam developed by Bocquet et al. (2007).   

 

Figure 7: Dowel laminated timber beam fabricated by O’Loinsigh et al. (2012a) 

The initial stiffness and ultimate loads of these beams are given in Table 1. The beam with 

44 dowels resulted in a higher initial stiffness of 0.565 kN/mm, which is 41 % greater than 

the beam with 20 dowels. As expected, all the dowel connected beams had initial stiffnesses 
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which were at least two times greater than the unfastened beam. The study also 

investigated the stiffness of a laminated beam with 56 dowels, which gave a similar stiffness 

to the beam with 44 dowels. The authors (O’Loinsigh et al., 2012a) thereby concluded that 

the stiffness increased with an increasing number of dowels, however, beyond 44 dowels 

(i.e. less than ~50 mm dowel spacing), there was no substantial improvement in the stiffness 

of the beam.  

On the other hand, although the beam with 44 dowels resulted in the greatest ultimate 

load, this was only 14% larger than that of the unfastened beam (see Table 1). Therefore, 

the dowels had a more significant influence on the initial stiffness of the beam than on the 

ultimate load. The paper (O’Loinsigh et al., 2012a) also reported that there was no dowel 

failure in the bending tests on the beams, with the failure mode being a tension failure 

occurring at the bottom lamella where knots were located. The insignificant influence of the 

type/number of the dowels on the ultimate failure loads was also shown in the work carried 

out by Bocquet et al. (2007) (see Table 1).  

O’Loinsigh et al. (2012b) carried out further research and parametric studies using FE 

modelling to supplement their prior experimental work (2012a). Although the load versus 

deflection responses of the beams (with different parameter changes) were shown, the 

values of the initial stiffnesses and failure loads were not reported for a quantifiable 

comparison. Nonetheless, the paper (O’Loinsigh et al., 2012b) stated that the FE study 

showed that independently increasing the mechanical properties of the dowels, lamella (or 

layer) at the top and bottom of the laminated beam, number of dowels and the thickness of 

the lamella at the centre of the beam (close to the neutral plane) led to increases in the 

initial stiffness of the laminated beam.     

Several of the existing studies are limited by the lack of information on the moduli of 

elasticity and bending strengths, which are typically the mechanical properties used in 

design and structural analysis. Belleville (2012), Dourado et al. (2019), Bocquet et al. (2007) 

and O’Loinsigh et al. (2012a) presented only the bending stiffness (kN/mm) and failure loads 

(kN) of the beams, and did not report the moduli of elasticity and bending strengths. The 

provision of these mechanical properties would have been useful for investigating the 

effects of the different assembly techniques (e.g. dowel insertion angle, dowel species and 
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dowel arrangement) on the structural behaviour as well as a quantifiable comparison with 

other EWPs.   

3. Densified Wood Materials  

This section focuses on densified wood (also referred to as compressed wood in the 

literature) materials, which is considered as a type of EWP and belongs to the category of 

hydro-thermo-mechanical modifications of wood (Riggio, Sandak and Sandak, 2016) (NOTE: 

The words “densified” and “compressed” are used interchangeably in this review article). A 

primary aim for densification is to increase the mechanical properties of low-density wood 

by reducing the pores and voids (called lumen) between the cell walls, as shown in Figure 8 

and Figure 9, thus increasing the density and other mechanical properties (e.g. strength, 

Young’s modulus and hardness). Asako et al. (2002) also stated that the effective thermal 

conductivities in the tangential and fibre directions of wood increased proportionally due to 

the densification process.  

 

Figure 8: Optical microscopy images of: (a) Undensified and (b) Densfied Douglas Fir 

(Pseudotsuga menziesii), using a Nikon Epiphot TME inverted microscope  
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Figure 9: Image of: (a) Undensified and (b) Densified Douglas Fir  

Following densification, low-density timber species can be used as an alternative to 

hardwood species (Kutnar and Šernek, 2007). The higher mechanical properties of densified 

wood products allow their use in diverse and advanced applications (such as jigs and tooling 

in the construction, aerospace and automotive industry) (Permali Deho, 2010). For example, 

Anshari et al. (2012) utilised the moisture-dependent swelling and improved mechanical 

properties of densified wood as a reinforcement material in glulam beams. The authors 

reported a bending stiffness increase of up to 46 % compared to that of unreinforced 

glulam. FE modelling was also used to supplement the study by investigating the influence 

of geometry and arrangement of the densified wood on the pre-camber, bending stiffness 

and maximum load of the reinforced glulam beams (Anshari et al., 2017). Guan et al. (2010) 

used densified wood plates and dowels to replace steel plates and dowels in a timber beam-

column connection. These connections utilised the moisture-dependent swelling effect of 

densified wood materials to create a tight fit in the connections. Additional benefits of 

densified wood include recyclability, reusability and relatively lower density when compared 

with steel (Riggio, Sandak and Sandak, 2016).   

Wood densification can be classified into two categories, which are bulk densification and 

surface densification (Sandberg, Kutnar and Mantanis, 2017). Bulk densification refers to the 

compression of wood cells through the total volume of the timber section, whereas surface 

densification involves the partial compression of the wood cells close to the surface of the 

timber section (Sandberg, Kutnar and Mantanis, 2017; Kutnar, Sandberg and Haller, 2015; 

Rautkari et al., 2008). The research on densified wood products goes back to the 1930s 

(Kollmann, 1936; Kollmann, Kuenzi and Stamm, 1975). Additionally, timber can be densified 
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by impregnating the voids between the cell walls with different materials such as molten 

metals/sulphur and polymers (Kollmann, Kuenzi and Stamm, 1975).  

Densification of wood is typically carried out in the radial direction, which involves flattening 

the wood cells without fracture (Kutnar, Sandberg and Haller, 2015). It is essential to densify 

wood in the radial direction (rather than tangential direction) to avoid damage caused by 

the buckling of the latewood annual rings or the formation of a zigzag pattern on the cross-

section faces on the densified wood (Sandberg, Haller and Navi, 2013; Kutnar, Sandberg and 

Haller, 2015). At low moisture contents and low temperatures, wood exhibits a glass 

behaviour (stiff and brittle). On the other hand, at high moisture contents and high 

temperatures, it has rubbery behaviour (Kutnar and Šernek, 2007; Salmén, 1990). Hence, 

the temperature at which transition occurs from glassy to rubbery behaviour is known as 

the glass transition temperature. Figure 10 shows the glass transition temperature of wood 

polymers as a function of their moisture content (Salmén, 1990). The figure shows that the 

glass transition temperature of wood is affected by the moisture content. When wood is 

above the glass transition temperature, densification can occur without damaging wood 

cells. The temperature required for the densification of wood typically ranges between 120 

– 160 oC (Kutnar, Sandberg and Haller, 2015). The quality and mechanical properties of 

densified wood are also dependent on different factors such as species, pre/post-treatment 

conditions, pressing time, pressing temperature, pressure applied, pressing speed and 

compression ratio (Santos, Del Menezzi and de Souza, 2012; Islam, Razzak and Ghosh, 

2014).  

 

Figure 10: The glass transition temperature of wood polymers as a function of the 

moisture content (Salmén, 1990) 
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The compression ratio (or densification ratio) refers to the difference between the initial 

and final thickness of the wood as a percentage of the initial thickness. Equation (1) gives 

the formula for the compression ratio (CR), where t� and t� are the thicknesses (in the 

compression direction) before and after compression, respectively.  

CR = 	
t� −		�

t�
× 100	%																																																												(1) 

Different studies have been undertaken to investigate the effect of compression ratios on 

the mechanical properties of densified wood. The type and species of wood can limit the 

compression ratios, as the degree of densification is dependent on anatomical features and 

initial density of the wood. For example, Riggio et al. (2016) compressed black locust 

(Robinia pseudoacacia L.) with an initial density of 750 – 900 kg/m3 to a maximum 

compression ratio of 50 %; exceeding such compression ratio would lead to damage of the 

cells. Therefore, wood with relatively higher densities (commonly hardwood species) would 

need to be compressed less, to avoid macroscopic damage. The same study also showed 

that 60 % radially compressed beech reached the highest density values in the range of 

1103 – 1246 kg/m3 and compressing it further would have fractured the cells (Riggio, Sandak 

and Sandak, 2016). Thus, there are compression limits for different wood species to avoid 

damage. 

Several studies have reported on different densification processes of wood. However, this 

review article focusses on some of the processing conditions and mechanical properties of 

‘bulk’ densified wood without a second phase addition of resin and other chemical products. 

Some of the fundamental mechanical properties of densified wood are reviewed and 

compared, with the effect of compression ratios on the mechanical properties highlighted. 

3.1. Processing Conditions and Mechanical Properties of 

Densified Wood 

Anshari et al. (2011) carried out compressive and shear tests on uncompressed and 

compressed Japanese cedar and evaluated their mechanical properties at different 

compression ratios (33, 50, 67 and 70 %). A maximum compression ratio of 70 % was set to 

avoid cell damage. The manufacturing conditions included pre-heating the timber samples 

for 1 hour at 130 oC, before pressing for 30 minutes, and cooled for about 1.5 hours. These 
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properties were analysed, compared with those of uncompressed Japanese cedar and are 

reproduced in Table 2 (NOTE: Materials with a CR of 0 % refers to uncompressed wood). 

Table 2 also shows that an increase in the compression ratio typically led to an increase in 

the density and longitudinal Young’s modulus. The samples with a 70 % compression ratio 

showed the highest mechanical properties, for example, there was over a 300 % increase in 

the longitudinal modulus compared to that of the uncompressed wood. This research 

investigated the elastic properties of compressed wood but did not report their strengths. 

Further study on the strengths of compressed wood is therefore important, as they are an 

essential set of properties used in the design of load-bearing structures.   
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Table 2: Mechanical properties of uncompressed and compressed wood from literature 

Reference Species 

CR 

 

[%] 

Density 

 

[kg/m
3
] 

Young’s modulus Shear modulus 

EL 

[MPa] 

ER 

[MPa] 

ET 

[MPa] 

GLR 

[MPa] 

GLT 

[MPa] 

GRT 

[MPa] 

Anshari et 
al. (2011) 

Japane
se 

cedar 
(Crypto
meria 

japonic
a D. 
Don) 

0 322 8017 753 275 972 784 31 

33 403 19864 338 1592 300 669 122 

50 564 27028 354 2267 178 787 170 

67 886 28415 523 2347 208 1208 256 

70 1162 32858 3111 5061 1590 5717 878 

Jung et al. 
(2008) 

Japane
se 

cedar 
(Crypto
meria 

japonic
a D. 
Don) 

CR 

 

[%] 

Density 

 

[kg/m
3
] 

Flexural 

modulus 

[GPa] 

Flexural strength 

[MPa] 

0 330 11 86 

70 1000 30 245 

Li et al. 
(2013) 

Balsam 
fir 

(Abies 
balsam
ea (L.) 
Mill.) 

CR 

 

[%] 

Young’s modulus Shear modulus 

GRT 

[MPa] 
ER 

[MPa] 

ET 

[MPa] 

0 830 234 38 

60 284 2551 21 

Yoshihara 
and 

Tsunemat
su (2007) 

Sitka 
spruce 
(Picea 

sitchen
sis 

Carr.) 

CR 

 

[%] 

Density 

 

[kg/m
3
] 

Flexural 

modulus 

[GPa] 

Flexural 

strength 

[MPa] 

Shear 

modulus 

Shear 

strength 

GLT 

[GPa] 

GLR 

[GPa] 

SLT 

[MPa] 

SLR 

[MPa] 

0 458 14 90 1 1.1 23 18 

33 606 25 120 1.7 0.7 23 16 

50 700 26 108 2.6 0.4 15 16 

60 817 30 96 1.2 0.6 25 18 

67 800 31 115 1.4 0.6 24 17 

Song et al. 
(2018) 

N/A 

CR 

 

[%] 

Density 

 

[kg/m
3
] 

Compressive strength 

σL 

[MPa] 

σR 

[MPa] 

σT 

[MPa] 

0 460 29.6 3.9 2.6 

80 1300 163.6 203.8 87.6 

 

Jung et al. (2008) fabricated 70 % compressed Japanese cedar (Cryptomeria japonica D 

Don.). Processing conditions included pressing at 130 oC for 30 minutes. They carried out 

flexural tests on the timber samples and also reported their strength properties. From the 
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data given in Table 2, there were significant increases in the density, flexural modulus and 

flexural strength. The longitudinal flexural modulus increased from 11 GPa to 30 GPa. This 

value is slightly smaller than that of the 70 % compressed Japanese cedar (~33 GPa) by 

Anshari et al. (2011). Furthermore, there was an increase in the bending strength from 86 

MPa to 245 MPa (185 % increase).  

Jung et al. (2008) used 70 % compressed Japanese cedar dowels (square and circular) as an 

alternative to maple hardwood dowels, with the flexural modulus and strength of the maple 

dowels being 16 GPa and 152 MPa, respectively (see Table 2). Double-shear tests showed 

that the ductility of compressed wood dowels was greater than that of maple dowels and 

reasonably close to that of a steel pin, which indicate the prospect of utilising compressed 

wood dowels in connections. The study also highlighted that the insertion of the 

compressed wood dowels with the annual ring of the dowel perpendicular to the loading 

direction (during a push-out double shear test) led to a greater ductile response compared 

to insertion parallel to the loading direction.  

As a result of their improved mechanical properties, compressed wood dowels and plates 

were utilised as fasteners in column-sill and column-beam joints (Jung et al., 2009; 2010). 

The authors also stated that satisfactory pull-out and moment-rotation properties were 

obtained, thereby demonstrating the potential of compressed wood in connections. In a 

separate study on glued-in-rod joints by Jung et al. (2010), 67 % compressed Japanese cedar 

dowels had a pull-out strength of up to 1.6 times greater than maple hardwood dowels. 

Li et al. (2013) densified balsam fir (Abies balsamea) at a temperature of 230 oC for 20 

minutes and was cooled until the temperature was below 60 oC. The processing 

temperature of 230 oC is higher than those reported in the literature and risk wood damage 

(Navi and Heger, 2004). The compression ratio was 60 %, with Table 2 giving the mechanical 

properties of uncompressed and compressed balsam fir. The Young’s modulus of the 

compressed wood in the radial direction, ER, was 284 MPa, which was 66 % lower than that 

of uncompressed balsam fir (830 MPa). However, Young’s modulus (ET) of the compressed 

balsam fir was 2551 MPa compared to the uncompressed wood of 234 MPa. The reduction 

of the ER of compressed wood was attributed to minor fractures of the cell walls during 
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densification. However, Li et al. (2013) did not report Young’s modulus and the strength 

properties in the longitudinal direction of the 60 % compressed balsam fir.  

Yoshihara and Tsunematsu (2007) determined the flexural and shear properties of 

uncompressed and compressed Sitka spruce (Picea sitchensis), which are given in Table 2. 

The processing conditions included pre-soaking the wood in water (20 oC) for two days, 

before compressing at a temperature of 180 oC for ten minutes. Further processing involved 

the addition of steam at a temperature of 180 oC for about one hour before cooling to limit 

the moisture-dependent swelling of the compressed wood. When the wood was 

compressed by 67%, the density increased from 458 kg/m3 to about 800 kg/m3, reflecting a 

75 % increase. The flexural moduli were 14 GPa and 31 GPa for the uncompressed and 67 % 

compressed wood, respectively. On the other hand, an increase in the compression ratio did 

not correlate with the flexural strengths, with the maximum flexural strength (120 MPa) 

being the samples with a 33 % CR. Similarly, there was no direct correlation of the 

compression ratio to the shear properties, as shown in Table 2. The soaking and steam 

treatments may have caused the lower shear properties of the compressed wood. Also, a 

study by Navi and Heger (2004) showed that processing timber at a temperature of 180 oC 

or higher could lead to macroscopic cracks and a reduction in mechanical properties. 

Furthermore, although post-treatment of wood with steam reduces the moisture-

dependent swelling, Inoue et al. (1993a) showed that it also led to a reduction in the 

mechanical properties of compressed wood.  

More recently, Song et al. (2018) carried out a processing method, which combined high-

temperature compression and chemical treatment to fabricate compressed wood. The 

chemical treatment involved the use and mixture of sodium hydroxide and sodium sulphite, 

to partially remove lignin and hemicellulose, before being compressed at a temperature of 

100 oC. Table 2 gives the average mechanical properties. The density of the 80 % 

compressed wood was 1300 kg/m3 (an increase from 430 kg/m3), reflecting an approximate 

200 % increase. Furthermore, the compression strengths showed gains of about 450 %, 

5100 % and 3300 % in the longitudinal, radial and tangential directions, respectively. The 

relatively greater compression ratio (i.e. 80 %) and lower processing temperature (i.e. 100 

oC) compared to those commonly used in the literature (120 – 160 oC) (Kutnar, Sandberg 

and Haller, 2015), were perhaps attributed to the partial removal of lignin. 
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The authors (Song et al., 2018) also reported the ultimate longitudinal tensile strengths for 

different species (oak, poplar, cedar, pine and basswood), which are reproduced in Table 3. 

These results show that the processing conditions utilised by Song et al. (2018) increased 

the ultimate tensile strengths for both softwood and hardwood species from 47 – 115 MPa 

to 432 – 587 MPa. These notably improved mechanical properties are greater than other 

studies reported in the literature and are attributed to the chemical treatment of the wood. 

It is, however, unclear if the chemical processing stages are costly or energy-intensive. 

Therefore, further research on the sustainability of the processing conditions could be 

carried out. The addition of chemical solutions might also decrease the environmental 

benefits of densified wood. 

Table 3: Longitudinal tensile strengths of uncompressed and compressed wood species by  

Song et al. (2018) 

Species Longitudinal tensile strength 

[MPa] 

Uncompressed Compressed 

Oak (Quercus) 115.3 584.3 

Poplar (Populus) 55.6 431.5 

Western red cedar (Thuja plicata) 46.5 550.1 

Eastern white pine (Pinus strobus) 70.2 536.9 

Basswood (Tilia) 52.0 587.0 

 

3.2. Moisture-Dependent Swelling of Densified Wood  

Though densification of wood has improved mechanical properties, a drawback for some 

applications is the irreversible swelling characteristic and dimensional instability due to 

moisture changes or high relative humidity conditions. When subjected to these conditions, 

the internal stresses introduced to the wood during densification are released. Furthermore, 

in the literature (Navi and Heger, 2004; Rautkari et al., 2010; Rautkari, Kamke and Hughes, 

2011; Morsing, 1998; Laine et al., 2013; Pelit, Sönmez and Budakçı, 2014; Skyba, Schwarze 

and Niemz, 2009; Peyer, Wolcott and Fenoglio, 2007; Anshari et al., 2011; Islam, Razzak and 

Ghosh, 2014; Welzbacher et al., 2007), this phenomenon is commonly used interchangeably 

with other words (such as moisture-dependent swelling, spring-back, shape-memory, set 

recovery, irreversible swelling) and is significantly accelerated when densified wood is put in 

water. It is also worth clarifying that when densified wood is exposed to moisture, both 
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reversible and irreversible swelling occur. Reversible swelling is due to the natural 

hygroscopicity of wood (moisture absorption makes wood swell, whereas, wood shrinks as it 

loses moisture or when dried) but irreversible swelling (which is the focus of this section) of 

densified wood causes a partial or full return to its original dimensions (Laine et al., 2013; 

Glass and Zelinka, 2010; Thelandersson and Larsen, 2003).  

Anshari et al. (2011) evaluated the moisture-dependent swelling of compressed Japanese 

cedar (Cryptomeria japonica D. Don). The radially compressed wood with dimensions of the 

67 % were 20 mm (radial) x 20 mm (tangential) x 60 mm (longitudinal) were placed in 

ambient environmental conditions to attain a moisture content of approximately 12 %. The 

results showed maximum moisture-dependent swelling strain values of 12, 1.4 and 0.1 % in 

the radial, tangential and longitudinal directions, respectively, over a 15-day period. As 

expected, due to compression occurring in the radial direction, maximum swelling occurred 

in the radial direction compared to the tangential direction. Also, a miniscule 0.1 % swelling 

occurred in the longitudinal direction. The authors (Anshari et al., 2011) carried out further 

study on 70 % compressed wood with dimensions of 15 mm (radial) x 30 mm (tangential) 

and 65 mm (longitudinal). The maximum moisture-dependent swelling strains recorded in 

the radial and tangential directions were 17 % and 1.5 % respectively, over 60 days. The 

study also showed that an increase in the compression ratio of the densified wood led to a 

rise in the moisture-dependent swelling strain in the radial direction.  

To reduce and/or eliminate moisture-dependent swelling of densified wood, studies have 

shown that additional treatments such as heat/steam/chemical treatments can be used to 

alleviate this phenomenon (Islam, Razzak and Ghosh, 2014; Hsu et al., 1988; Peyer, Wolcott 

and Fenoglio, 2007; Cloutier et al., 2008; Ispas, 2013; Stamm and Seborg, 1941). More 

specifically, thermo-hygro-mechanical treatments of wood, which typically involves high-

temperature densification combined with stream treatments (with post-treatment 

temperatures in the range of 140 – 180 oC) have been used to limit the moisture-dependent 

swelling and enhance dimensional stability (Skyba, Schwarze and Niemz, 2009). 

Furthermore, Welzbacher et al. (2007) combined oil-heat treatment (OHT) with thermo-

mechanical densification to improve the dimensional stability of densified spruce.    
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Polycarboxylic acid (PCA) resin was used to minimise the moisture-dependent swelling of 

densified wood (Peyer, Wolcott and Fenoglio, 2007). Inoue et al. (1993b) used melamine-

formaldehyde resin to significantly reduce the moisture-dependent swelling (< 2 %) in 

densified wood, and the study also stated that the addition of 25 wt. % of the resin resulted 

in a 54 % increase in the hardness of the compressed wood. Inoue et al. (1993a) post-

treated compressed wood with steam (under pressure) at 180 oC (for 8 minutes) and 200 oC 

(for 1 minute), which eliminated the moisture-dependent swelling. The aforementioned 

conditions, however, led to 3.3 % and 8.6 % reductions in the modulus of elasticity of the 

compressed wood, respectively. 50 % radially compressed sugi wood (Cryptomeria japonica 

D. Don) was heat-treated (160 – 200 oC) to eliminate the moisture-dependent swelling. 

However, the post-treatment conditions led to reductions of 11 % and 19 % in the modulus 

of elasticity and modulus of rupture, respectively (Dwsanto et al., 1998).   

In line with the preceding statement, Navi and Heger (2004) found that processing wood at 

a temperature greater than 180 oC led to a reduction in mechanical properties, which could 

be referred to as the maximum temperature for processing timber. Heat treatment also 

helps improve the dimensional stability of wood but takes a long time (e.g. 20 hours) and 

reduces its mechanical properties due to thermal degradation (Morsing, 1998; Ispas, 2013; 

Pelit, Sönmez and Budakçı, 2014). This is because lignin (a major component of timber) 

cracks when subjected to a temperature exceeding 180 oC (Navi and Heger, 2004). Inoue et 

al. (1993a) also highlighted that in order to reduce or eliminate the moisture-dependent 

swelling in compressed wood, steam post-treatment (under pressure) was more effective 

than steam pre-treatment. Furthermore, steam post-treatment time decreases 

exponentially with increasing steam temperature (Navi and Heger, 2004). However, an 

increase in the steam temperature used for the post-treatment of densified wood also leads 

to a reduction in mechanical properties (Morsing, 1998).     

4. Concluding Remarks 

As a result of environmental concerns, there is a growing interest in the use of timber and 

the development of timber-based structural members. This has led to a wide range of EWPs 

used in innovative ways, to replace traditional construction materials, such as steel and 

concrete. The development and characterisation of innovative EWPs provide new 
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possibilities for the efficient use of wood. Although EWPs have relatively low embodied 

energies and embodied carbon, a major drawback is the inclusion of adhesives during their 

manufacture and service life. The key issues with these adhesives (e.g. UF adhesive) are the 

health and environmental concerns associated with the release of toxic gases (e.g. 

formaldehyde and VOCs) as well as recyclability and reusability. As such, one of the 

objectives of the EU-funded AFTB project is to develop novel and adhesive free EWPs by 

using densified wood materials as fasteners in dowel laminated timber members and 

connections.  

Therefore, this review article has focussed on dowel laminated timber members and 

densified wood materials. Design guidelines for the aforementioned EWPs are not available 

in current European standards. Nevertheless, several studies have demonstrated the 

feasibility of dowel laminated timber members and have provided insight into their 

structural properties. The fabrication processes mainly involve high-speed rotational dowel 

wood-welding or the use of hardwood dowels (conditioned to a lower moisture content) as 

fasteners for assembling timber lamellas. Some of the studies has highlighted that an 

increase in the number of dowels leads to an increase in the initial stiffness of the dowel 

laminated timber members, whereas the number of dowels has a negligible effect on the 

maximum failure loads. Collectively, the studies show that the initial stiffnesses and 

maximum loads (in bending) of similar glued timber beams are about three to four times 

greater than those of welded dowel laminated beams. It should be highlighted that there 

are some drawbacks with the use of hardwood dowels (such as loss of stiffness over time, 

dimensional instability, maintenance requirements) as fasteners in traditional dowel 

laminated timber constructions. 

In addition, some of the studies reviewed did not report the moduli of elasticity and bending 

strengths of the dowel laminated timber members, which would have been useful for 

assessing and comparing the effect of the different assembly processes on their mechanical 

properties. Therefore, further studies could assess and quantify the effect of dowel species, 

dowel insertion angle and dowel pattern on the mechanical properties of dowel laminated 

timber members. FE modelling and analysis could also supplement experimental work. An 

additional limitation with some of the reviewed articles is the low number of test samples, 

which limits the conclusions that could be drawn from the research work. Furthermore, 
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although the bending tests give insights into the structural properties of the dowel 

laminated timber members, experimental tests under various loading conditions (e.g. shear, 

axial), vibration and impact tests are important which should form part of any future 

research. These further work, covering the different practical scenarios for these members, 

will enhance the understanding of their structural properties, and possibly lead to useful 

structural design guidance. 

Although dowel laminated EWPs are fabricated without the use of toxic adhesives, their 

environmental impact assessments have not been reported in the literature. The embodied 

energy for different manufacturing processes (e.g. high-speed rotational welding) for dowel 

laminated timber, as well as those for densified wood (which include high-temperature 

mechanical compression), are unknown. As sustainability remains a major objective of the 

current EU environmental agenda to attain a low-carbon economy, it is vital to carry out an 

environmental impact assessment for novel EWPs so that each phase of their life cycle (such 

as production, in-service use, operational lifetime, maintenance requirements and end-of-

life options) is included for the useful comparison with other EWPs and structural materials.  

This review article also shows that densifying different species of wood leads to substantial 

increases in their key physical and mechanical properties (density, hardness, modulus of 

elasticity and strength). This highlights the potential of using low-density wood in more 

advanced and diverse structural applications. Furthermore, the effects of the processing 

parameters (such as compression ratio, temperature, pressure and time) for different 

densified wood on their mechanical properties have been reported. The processing 

conditions mainly include pre-heating, mechanical compression, cooling and possible post-

treatment options (e.g. steaming) to limit the moisture-dependent swelling. While the 

concept of wood densification is not new, its uptake is limited partly due to the moisture-

dependent swelling effect and is therefore not typically used for structural applications at 

the moment. Although research has shown that the moisture-dependent swelling can be 

minimised, it can, however, be time-consuming and requires high-temperature processing 

conditions, which may lead to a reduction in their mechanical properties. Furthermore, the 

treatment of wood with chemicals may be costly and reduce the environmental advantages 

of densified wood on account of embedded potentially harmful chemical resins.   
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Currently, the uptake of dowel laminated timber and densified wood for commercial and 

structural applications is minimal. In line with the current aim of the AFTB project, by 

utilising the moisture-dependent swelling effect and improved mechanical properties of 

highly densified wood, there is a great potential in using these materials as alternatives to 

hardwood fasteners in dowel laminated timber constructions. What has long been 

recognised as a disadvantage of densified wood for some specific applications will be used 

as an advantage for structural joints and connections. Once embedded, densified wood 

dowels and plates are exposed to moisture, therefore the moisture-dependent swelling 

effect can provide a permanent tight fit regardless of in-service moisture changes. This 

approach incorporates traditional techniques and advanced research, eliminates the use of 

toxic adhesives and metal fasteners, and leads to better reusability and recyclability, 

availability and faster processing of softwood compared with hardwood for large scale 

production. In summary, to contribute to green construction and low embodied energy and 

carbon buildings, further research is needed to develop novel and sustainable EWPs that are 

non-toxic, cheap, reusable, recyclable with well characterised mechanical properties and 

documented life cycle assessment.   
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