

INTRO

PASTA Physcial Activity Through Sustainable Transport Approaches

European project, FP7, 7 cities
https://www.researchgate.net/project/PASTA-project Objectives:

- Promotion \& evaluation of active mobility
- Reduce health impact of sedentary behaviour
- Integration of physical activity in daily routine
- Update WHO HEAT tool

Longitudinal study: online survey on (active) mobility, PM, accidents etc.

Experiments \& Top Measure analysis

TIMES
COMMENT | BUSINESS MONEY
Het Niemsblad
 Elke dag een kwartier fietsen kan

uw leven redden Fietsers a
 Jeroen Zuallaert

CYCLING to wo $\begin{array}{ll}\text { disease and respiratury } \\ \text { problems. } & \text { many toxic part } \\ \text { mand }\end{array}$ johan van cutsem
valsis mulate
manytoxic par
passengers, re
the healthy optii has shown that cities inhale ten toxic nanopartic than drivers or p than drivers or p The research in cyclists with de count the partic emitted by car air thev were br It showed that u concentrations which measure millionths of a r in a cubic centir

The particles, w have been linker RELATED LINKS

in

 particles each time they fill their journey.\square Redacteur Knack

Een kwartier fietsen per dag vermindert uw overlijdenskans met tien maandag 31 mei $2010 \quad$ Tc Een kwartien find groter dan de negatieve effecten van luchtvervuiling.

AGENDA

Inactivity: a global health hazard
Health Economic Assessment for walking \& cycling
-Why?
-What do we need?
-Relative risks \& dose-response functions

- Monetary values for health

Case studies \& available models

- The Health Economic Assessment Tool (HEAT) for walking \& cycling
- Flemish model (CWIcalc)

Summary \& conclusions

PHYSICAL INACTIVITY: A GLOBAL HEALTH HAZARD

$4^{\text {th }}$ most important cause of premature mortality

B

Active mobility

(better health)
\rightarrow : Increases exposure to air pollution
\rightarrow Increases accident risk

PHYSICAL INACTIVITY: A GLOBAL HEALTH HAZARD

Physical inactivity: a risk factor comparable to smoking

Figure: Comparison of global burden between smoking and physical inactivity
Prevalence of smoking, population attributable risk (PAR), and global deaths for smoking were obtained from WHO. ${ }^{7}$ Hazard ratio for all-cause mortality of smoking was obtained from meta-analysis studies. ${ }^{8,9}$ All inactivity data were obtained from Lee and colleagues. ${ }^{5}$

PHYSICAL INACTIVITY: A GLOBAL HEALTH HAZARD

Impacts on health in Flanders

Risk	DALYs (avg/year)	Healthy life years lost (per capita)
Smoking	144687	
Obesity	94750	1.9
Air pollution (PM)	79000	1.3
Physical inactivity	54134	1.1
Hypertension	53690	0.7
Traffic accidents*	36476	0.7
High holesterol	27930	0.5
Alcohol	10113	0.4
Passive smoking	6600	0.1
Tuberculosis	<1000	0.1
Hepatitis B	<1000	<0.01

PHYSICAL INACTIVITY: A GLOBAL HEALTH HAZARD

Health expenditures, high \& rising (but not for prevention)

Figur 1 Functionele verdeling van de uitgaven voor gezondheidszorg in België en andere landen, 2003 - 2011

Uitgaven naar functie

Uitgaven naar functie (\%) in een aantal landen, 2003 en 2011

Bron: Oeso, System of Health Accounts (SHA)

THE HEALTH ECONOMIC ASSESSMENT TOOL FOR WALKING \& CYCLING (HEAT)

Harry Rutter, Francesca Racioppi, Sonja Kahlmeier, Nick Cavill, Pekka Oja, Heini Sommer, Hywell Dinsdale, Charlie Foster, Paul Kelly, Thomas Götschi, Christian Schweizer
Karim Abu-Omar, Lars Bo Andersen, Finn Berggren , Tegan Boehmer, Nils-Axel Braathen, Dushy Clarke, Andy Cope, Audrey de Nazelle, Mark Fenton, Jonas Finger, Richard Fordham, Eszter Füzeki, Frank George, Regine Gerike, Mark Hamer, Max Herry, Marie-Eve Heroux, Michal Krzyzanowski, I-Min Lee, Christoph Lieb, Brian Martin, Markus Maybach, Christoph Schreyer, Marie Murphy, Nanette Mutrie, Luc Int Panis, Laura Perez, Gabe Rousseau, David Rojas Rueda, Candace Rutt, Tom Schmid, Elin Sandberg, Mulugeta Yilma, Daniel Sauter, Peter Schantz, Peter Schnohr, Dave Stone, Jan Sørensen, Gregor Starc, James Woodcock, Wanda Wendel Vos, Paul Wilkinson

Need for integration between different policy domains

> (transport, urban planning, health, etc.)

HEAT:
User friendly tool to estimate economic value of health benefits of cycling \& walking
Answer the question:
"For a given volume of walking or cycling what is the economic value of the health benefits?"

Inputs:

- Data on 'volume' of walking or cycling
-How many people?
-Which people?
- How far/often?

HEAT FOR WALKING \& CYCLING: RELATIVE RISKS \& DOSE-RESPONSE

$1^{\text {st }}$ HEAT for cycling version: based on Copenhagen only:

- Dose: 3h cycling; 36 weeks/year
- Response: RR 'all-cause mortality’ = 0.72
- Corrected for leisure time PA
\rightarrow Lots of criticisms
\rightarrow But nevertheless very conservative

2nd HEAT version : Meta-analysis (7 studies):

- Dose: 11.25 MET.hours/week or 100 minutes cycling/week; 52 weeks/year (cycling = 6.8 METs)
- Response: RR 'all-cause mortality' $=0.90$
- Corrected for leisure time PA
\rightarrow Even more conservative
\rightarrow Maximum 'protective benefit' (cycling = 45\%)

New HEAT version 2018 (Beta version currently being tested, Manual also in German \& French)
https://www.researchgate.net/publication/275219139 Health impact assessment of active transportation A systematic review/stats

ORIGINAL INVESTIGATION

All-Cause Mortality Associated With Physical Activity During Leisure Time, Work, Sports, and Cycling to Work
Lars Bo Andersen, PhD, DMSc; Peter Schnohr, MD; Marianne Schroll, PhD, DMSc; Hans Ole Hein, MD

Background: Physical activity is associated with low mortality in men, but little is known about the association in women, different age groups, and everyday activity

Objective: To evaluate the relationship between levels of physical activity during work, leisure time, cycling to work, and sports participation and all-cause mortality.

Design: Prospective study to assess different types of physical activity associated with risk of mortality during follow-up after the subsequent examination. Mean follow-up from examination was 14.5 years.

Setting: Copenhagen University Hospital, Copenhagen, Denmark.

Participants: Participants were 13375 women and 17265 men, 20 to 93 years of age, who were randomly selected. Physical activity was assessed by self-report, and
health status, including blood pressure, total cholesterol level, triglyceride levels, body mass index, smoking, and educational level, was evaluated.

Main Outcome Measure: All-cause mortality

Results: A total of 2881 women and 5668 men died Compared with the sedentary, age-and sex-adjusted morwere 0.68 (95% confidence interval, $0.64-0.71$), 0.61 (95% confidence interval, $0.57-0.66$), and 0.53 (95% confidence interval, 0.41-0.68), respectively, with no difference between sexes and age groups. Within the moderately and highly active persons, sports participants experienced only half the mortality of nonparticipants. Bicycling to work decreased risk of mortality in approximate time physical activity

Conclusions: Leisure time physical activity was inversely associated with all-cause mortality in both men and women in all age groups. Benefit was found from moderate leisure time physical activity, with further benefit from sports activity and bicycling as transportation.

BICYCLING TO WORK

Information on bicycling as transportation to work was available for 783 women and 6171 men. Among these 6954 subjects, 2291 died during follow-up. The same tendencies were found in men and women when mortality rates were compared between those who cycled to work and those who did not, but the estimates were not significant in women. The average time spent cycling in those who did cycle to work was 3 hours per week. The analyses are presented for the whole group, with adjustment for sex. Bicycling to work was inversely related to years of education. Among the less educated subjects (<8 years of school), 27.8% used the bicycle to work, in the middle group ($8-12$ years of school) 24.5% cycled, and in the most educated group (≥ 12 years of school) 20.3% cycled. After adjustment for age, sex, and educational level, the relative risk in those who cycled was 0.70 (95% CI, 0.55-0.89). After additional adjustment for leisure time physical activity, body mass index, blood lipid levels, smoking, and blood pressure, the relative risk was 0.72 (95\% CI, 0.57-0.91).
'Value of a Statistical Life' (VSL)

- 'willingness to pay' to reduce mortality risk e.g. from 3/10000 to 2/10000?
- Different for each country

WHO European region average	2587175 EUR
België	4380597 EUR
Hongarije	1576768 EUR

Should be discounted

- Interaction between transport related PA \& air pollution
- Accidents/crashes
- Morbidity
- Climate
- Noise
- Social
- ...

HIGH AIRPOLLUTION CONCENTRATION ON CYCLE LANES

Near "park"
(Louisa Square, KDG avenue)
"Busy street canyon" rue de la Loi
\square "Quiet street" (rue Jozef II)

$$
\begin{aligned}
& 8040 \text { tot } 10300 \\
& 10300 \text { tot } 12000 \\
& 12000 \text { trite } 13000
\end{aligned}
$$

$$
\begin{aligned}
& 15200 \text { bot 16800 } \\
& 16800 \\
& 19200 \text { tet } 19220
\end{aligned}
$$

$$
\begin{aligned}
& 16800 \text { of } 19200 \\
& 19200 \text { of } 20700 \\
& 20700 \text { te } 22800
\end{aligned}
$$

$$
\begin{aligned}
& 35400 \text { bet } 40000 \\
& 40000 \text { bot } 45000
\end{aligned}
$$

77600 bet 152100

ACCIDENTS/CRASHES

Review

Do the Health Benefits of Cycling Outweigh the Risks?

Jeroen Johan de Hartog, ${ }^{1}$ Hanna Boogaard, ${ }^{1}$ Hans Nijland, ${ }^{2}$ and Gerard Hoek ${ }^{1}$

${ }^{1}$ University of Utrecht, Institute for Risk Assessment Sciences, Utrecht, the Netherlands; ${ }^{2}$ Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands

BACKGROUND: Although from a societal point of view a modal shift from car to bicycle may have beneficial health effects due to decreased air pollution emissions, decreased greenhouse gas emissions, and increased levels of physical activity, shifts in individual adverse health effects such as higher exposure to air pollution and risk of a traffic accident may prevail.
Objective: We describe whether the health benefits from the increased physical activity of a modal shift for urban commutes outweigh the health risks.
DATA SOURCES AND EXTRACTION: We have summarized the literature for air pollution, traffic accidents, and physical activity using systematic reviews supplemented with recent key studies.
DATA SYNTHESIS: We quantified the impact on all-cause mortality when 500,000 people would make a transition from car to bicycle for short trips on a daily basis in the Netherlands. We have expressed mortality impacts in life-years gained or lost, using life table calculations. For individuals who shift from car to bicycle, we estimated that beneficial effects of increased physical activity are substantially larger (3-14 months gained) than the potential mortality effect of increased inhaled air pollution doses ($0.8-40$ days lost) and the increase in traffic accidents ($5-9$ days lost). Societal benefits are even larger because of a modest reduction in air pollution and greenhouse gas emissions and traffic accidents
CONCLUSIONS: On average, the estimated health benefits of cycling were substantially larger than the iel-relative to car driving for individuals shifting their mode of transport
KEY words: air pollution, biking, cycling, life table analysis, modal shift, physical activity, traffic accidents. Environ Health Perspect 118:1109-1116 (2010). doi:10.1289/ehp. 0901747 [Online
30 June 2010] 30 June 2010]

In the quantitative comparison between car driving and cycling, we considered air pollution, traffic accidents, and physical activity as main exposures. We summarize the relevant evidence of health effects related to air pollution, traffic accidents, and physical activity separately. For these sections, we made use of published (systematic) reviews, supplemented with more recent key studies.

Health effects related to air pollution, traffic accidents, and physical activity differ-for example, traffic accidents resulting in injuries and physical activity affecting cardiovascular disease. Therefore, we compare potential effects of these exposures (in conjunction with driving or cycling) on mortality rather than morbidity. In addition, epidemiologic evidence of associations of these exposures with mortality is stronger than associations with other outcomes, particularly for physical activity. All three exposures have been associated with mortality, so a common metric can

The correspondence section is a public forum and, as such, is not peer-reviewed. EHP is not responsible for the accuracy, currency, or reliability of personal opinion expressed herein; it is the sole responsibility of the authors. EHP neither endorses nor disputes their published commentary.

Cycling: Health Benefits and Risks

doi:10.1289/ehp. 1003227
de Hartog et al. (2010) quantified the balance between physical activity and air pollution and accident risks of cycling and concluded that the benefits outweigh the risks by an order of magnitude. This is the most comprehensive and quantitative comparison to date, based on the published data available at the time. In weeks after publication of the article, two he weeks plicare two new relevant studies were published; this illustrates that a scientific answer to this question is urgent from the societal perspective. In many places cyclists are perceived to have a higher exposure to air pollution and a higher accident risk. Do the new data tilt the balance between the risks and benefits of cycling?
de Hartog et al. (2010) used a ventilation rate that is twice as high for cyclists as for car drivers. In a recent study in Belgium (Int Panis et al. 2010), we found that both the ventilation rate and the tidal volume were increased and that minute ventilation was 4.3 times higher in cyclists compared was 4.3 times higher in cyclists compared with car passengers (similar to the ratio of metabolic rates). The difference can further be explained by differences in cycling speeds and lung deposition resulting in a dose that is up to 9 times higher in cyclists.

The life expectancy (LE) loss estimated from substituting this ratio into the calculation by de Hartog et al. (2010) may thus offset most of the expected LE gain. However, this is unlikely because some studies have observed an LE gain in the presence of air pollution (Andersen et al. 2000). To resolve this conflict, it is important to consider the implicit assumptions in the comparison.

First, the higher dose ratios apply only to situations without route choice, although cyclists prefer to avoid motorized traffic,

LE loss or those in which many people have a small loss (Rabl 2003). Cyclists are generally young and in excellent health and therefore less vulnerable, implying that the relative risk used by de Hartog et al. (2010) is too high for application to this specific population.

In addition, accidents remain an important cause for concern. Aertsens et al. (2010) recently estimated the cost of minor bicycle accidents at astonishing $0.12 € / \mathrm{km}$ cycled Including the more serious accidents in the equation would yield a cost that could easily offset the value of the LE benefit calculated offset the value of the LE,
by de Hartog et al. (2010).

If the higher LE observed in present day cyclists can be transferred to people now taking up cycling, the benefits will probably be higher than the risks. However, it will be crucial to demonstrate that cycling increases physical activity. Without increased physical activity there are only risks, but reducing those risk may yield larger benefits than anticipated.

The views and opinions expressed in this article are those of the author and not necessarily those of his employer.
L.I.P. received financial support from the Science for Sustainable Development programme (2007-2010) of the Belgian Science Policy Office and strategic research funding from VITO (Flemish Institute for Technological Research) for the SHAPES (Systematic Analysis of Health Risks and Physical Activity Associated with Cycling Policies) project but has no competing financial interests. VITO is a public research institute of the Flemish regional government.

Luc Int Panis
VITO (Flemish Institute for
Technological Research)
Mol, Belgium
E-mail: luc.intpanis@vito.be

Cycling: de Hartog et al. Respond

doi.10. 1289lehp. 1003227
We thank Int Panis for his thoughtful comments on our article (de Hartog et al. 2010), and we broadly agree with his comments In fact, we discussed most of the issuesincluding the limitation to impact on mortality, sensitive subgroups, route choice, and activity substitution-in our paper.

The first issue discussed by Int Panis is whether we underestimated the difference in minute ventilation between cyclists and car drivers; however, his comment was based on a recent Belgian study (Int Panis et al. 2010) that was not published at the time of our study. In our analysis we used a ratio of 2.2 [the average of two Dutch studies that closely agreed (van Wijnen et al. 1995; Zuurbier et al. 2009)], whereas the Belgian study (Int Panis et al. 2010) found a ratio of 4.3. The difference is probably explained in part by differences in cycling speed: $12 \mathrm{~km} / \mathrm{hr}$ in the recent Dutch study (Zuurbier et al. 2009) and $>19 \mathrm{~km} / \mathrm{hr}$ in the Belgian study (Int Panis et al. 2010). In urban areas, the average cycling speed is about $15 \mathrm{~km} / \mathrm{hr}$, including stop time. Rather than replacing the previous stop time. Rather than replacing the previous estimates by with the newer Belgian estimate, we believe that the best current estimate would be the average of the ratios of the three available studies. This would lead to a ratio of 2.9 . Use of this ratio based on more studies clearly would not tip the balance between cycling and car driving as Int Panis suggests. We think it is stretching the data too much to use deposited particle mass (actually 5.9-8.99 higher in the Belgian study) for the analysis, because the ong-term epidemiological studies we used are based on concentrations measured in outdoor air. In the most likely estimate we provided for air pollution [based on black smoke, which for air pplluion (bas on black smok which

De Hartog et al. 2010

What if:

$$
500000 \text { people switch from car to bike for daily short trips? }
$$

- More air pollution exposure: 0.8-40 days lost
- Accidents: 5-9 days lost
- Increased physical activity: 3-14 months gained
-Benefits even larger if social benefits are included

No morbidity impacts included in most studies or models (increases complexity \& uncertainty)

Source: Presentation of Aphekom findings at the Policy Workshop: EU Year of Air - how can we reduce air pollution to improve health? 13 September 2012, Brussels, Belgium, http://www.aphekom.org/c/document_library/get_file?uuid=e5e5777f-968c-484c-8a51-652f132030c7\&groupld=10347

AIR POLLUTION IS USUALLY NOT A PROBLEM IN EUROPE

How long could you cycle in your city before the negative impacts of pollution would outweigh the benefits of exercise?
ou could cycle *literally* all day before harm from pollution would outweigh the health benefits from exercise

Graphic by John Burn-Murdoch / @jburnmurdoch

What?

- Planning of new projects (infrastructure or other)
- Monetise health benefits of estimated use
- Evaluation of finished projects
- Monetise health benefits of observed change in use

As part of general economic evaluation of transportation projects (e.g. relative to cost of investment, ROI, ...)

CASE STUDIES

http://oldheatwalkingcycling.org

Example 1:
Cycling bridge over ring road in Antwerp
Connects Bicycle highway F1 (Antwerpen-Mechelen) with
 Berchem train station and city center.

Expectations:

- New cyclists
- Safer
- Faster (traffic lights)

HEAT FOR WALKING \& CYCLING: CASE STUDY

Q1: Your data: amount of cycling from a single point in time, or before and after an intervention

- Single point in time
- Before and after

Q2: Enter your pre-intervention cycling data
-Duration

- Distance
-Trips
Q4: Pre-intervention cycling data
-Average distance cycled/day: 28 km
- Number of days per year: 200

Q7: How many people benefit ?

High level of cycling 5600 km/person/year Protective benefit: 45\%
-Number of cyclists: 2365

HEAT FOR WALKING \& CYCLING: CASE STUDY

Q2: Enter your post-intervention cycling data
-Duration

- Distance
-Trips
Q4: Post-intervention cycling data
-Average distance cycled/day: 28 km
- Number of days per year: 200
- Q7: How many people benefit
-Number of cyclists: 2601

HEAT FOR WALKING \& CYCLING: CASE STUDY

- Q9: How much of the change is attributed to the intervention -Proportion: 100\%

Q10: Time needed to reach full level of cycling
-Years: 1 year

- Q11: mortality rate
- Age
-Average population (20-64 years old)
- Younger average population (20-44 years old)
- Older average population (45-64 years old)
-Country mortality data: Belgium (524 deaths/100000 persons/year)

HEAT FOR WALKING \& CYCLING: CASE STUDY

- Q9: How much of the change is attributed to the intervention -Proportion: 100\%

Q10: Time needed to reach full level of cycling
-Years: 1 year

- Q11: mortality rate
- Age
-Average population (20-64 years old)
- Younger average population (20-44 years old)
- Older average population (45-64 years old)
-Country mortality data: Belgium (524 deaths/100000 persons/year)

HEAT FOR WALKING \& CYCLING: CASE STUDY

Q12: Value of a statistical life?
-Belgium (4 380597 Euro)

- Q13: Time period over which benefits are calculated?
- Years: 10 years
- Q14: Costs to include a benefit-cost ratio in the HEAT calculation?
-Yes
-No
Q15: Cost associated with promoting cycling?
- Total costs: 4000000 Euro
- Duration to calculate benefit-cost ratio: 10 years (standard this is equal to Q13)
Q16: Discount rate to apply to future benefits: 5\%

HEAT FOR WALKING \& CYCLING: CASE STUDY

HEAT estimate

Reduced mortality as a result of changes in cycling behaviour

The number of individuals cycling has increased between your pre and post data
There are now 236 additional individuals regularly cycling, compared to the baseline

However, the average amount of cycling per person per year has not changed
The reported level of cycling in both your pre and post data gives a reduced risk of mortality of: 45%, compared to individuals who do not regularly cycle.

Taking this into account, the number of deaths per year that are prevented by this change in cycling is: 0.56

HEAT FOR WALKING \& CYCLING: CASE STUDY

Financial savings as a result of cycling

Currency: EUR, rounded to 1000

```
The value of statistical life applied is: 4,381,000
The annual benefit of this level of cycling, per year, is:
The total benefits accumulated over 10 years are:
When future benefits are discounted by 5% per year:
the current value of the average annual benefit, averaged across 10 years is:
the current value of the total benefits accumulated over 10 years is:
```


Benefit-Cost Ratio

```
The total costs of:}4,000,00
Should produce a total saving over 10 years of:
assuming }5\mathrm{ year build up of benefits, }1\mathrm{ years build up of uptake, and discounting of 5% per year
The benefit to cost ratio is therefore:

\section*{HEAT FOR WALKING \& CYCLING: CASE STUDY}

Please bear in mind that HEAT does not calculate risk reductions for individual persons but an average across the population under study. The results should not be misunderstood to represent individual risk reductions. Also note that the VSL not assign a value to the life of one particular person but refers to an average value of a "statistical life".

It is important to remember that many of the variables used within this HEAT calculation are estimates and therefore liable to some degree of error.

You are reminded that the HEAT tools provide you with an approximation of the level of health benefits. To get a better sense for the possible range of the results, you are strongly advised to rerun the model, entering slightly different values for variables where you have provided a "best quess". such as entering high and low estimates for such variables.
```

Back Print Save Start a new calculation

```

\section*{HEAT FOR WALKING \& CYCLING: CASE STUDY}

\section*{http://oldheatwalkingcycling.org}

\section*{Example 2:}

Estimate the value of the present level of walking on an existing trail in Belgium.

100 elderly people walk 3 km every day
What is the value of that level of physical activity over 10 years?

\section*{(S) HEAT \\ Health economic assessment tool}
(9) HEAT

Health economic assessment tool

News / Announcements
Introduction
HEAT for walking
HEAT for cycling
Examples of applications
Return to current assessment

Home - HEAT for walking - Scope for the use

\section*{Scope for the use of HEAT Walking}

Please read these explanations carefully to make sure HEAT is applicable to your case.
1) HEAT is to be used for assessments at the population level: for groups of people and not for individuals.
2) This tool is designed for habitual behaviour, such as walking for commuting, or regular leisure time activities.
Do not use it for the evaluation of one-day events or competitions (such as walking days

Health economic assessment tool
(9) HEAT

Health economic
assessment tool
- HEAT for walking

Q1: Single or before / after

Home for walking - Q1: Single or before/after

\section*{HEAT for walking}

Q1: Your data: amount of walking from a single point in time, or before and after an intervention
©. Single point in time
Before and after
Click on "next question" or "back" to move between questions; do not use the back-button of your internet browser. You can also go back to a previous question by clicking on it in the flow chart of questions on the left-hand side of the screen. If you make changes, click on "save changes" before you continue.

Please note that the HEAT tool does not support multiple sessions. Carrying out several calculations in parallel will affect the stability of the HEAT tool. It is recommended to run only one calculation at a time, and to start a new one only once you finished your current assessment.

\section*{Hints \& Tips}

If you select 'Single', you will be asked to enter data on levels of walking only once.

If you select 'Before and after', the tool will prompt you to enter two sets of walking data.

The difference in levels of walking between the pre- and post-measures will be used to calculate the health benefits and associated financial savings

\section*{GHEAT Health economic assessment tool}
(9) HEAT

Health economic
assessment too
- HEAT for walking

Q1: Single or before \(/\) after
Q2: Walking data type
Q4: Distance

Home for walking \({ }^{-}\)Q2: Walking data type

\section*{HEAT for walking}

\section*{Q2: Enter your walking data}

The HEAT model requires an estimate of the average duration spent walking in the study population in order to calculate the corresponding health benefit (based on a relative risk from a review of the epidemiological literature on the health benefits of walking). This duration can be entered directly, if available (and this is the most direct data entry route), or calculated based on the distance, number of steps, or number of trips.
\%. D Duration (average time walked per person)
- Distance (average distance walked per person)

Steps (average number of steps taken per person)
Trips (average per person or total observed across a population)

\section*{Hints \& Tips}

More information on walking data
(9) HEAT

Health economic
assessment tool
- HEAT for walking

Q1: Single or before / after
Q2: Walking data type
Q4: Distance

Home for walking \& Q4: Distance

\section*{HEAT for walking}

Q4: Average distance walked
Enter the average distance walked per person:
3 km \(\square\)
Is this for an average day, week, month or year?
Day V

\section*{HEAT FOR WALKING \& CYCLING: CASE STUDY}
(9) HEAT
\begin{tabular}{c} 
Heathe economic \\
assesment tool \\
\hline
\end{tabular}
- HEAT for walking

Q1: Single or before / after
Q2: Walking data type
Q4: Distance
Q7: Population

Home - for walking - Q7: Population

\section*{HEAT for walking}

\section*{Q7: How many people benefit?}

The tool now requires information on the number of individuals doing the amount of walking you entered in the previous questions
In most cases, this will also be the number of people who stand to benefit from the reported levels of walking. If the trips data you have entered is based on a representative sample of a larger population, you may need to change this number. In this case, you need to enter the total population number, rather than the number in your sample (e.g. in case of ationalion use rvey data that has already been extrapolated to the whole poplation, the previously ntered value is already the number of the total population and no change is required here.

It is important to ensure the right population figure is entered here, as this can substantially affect the resulting calculations.
Important note: Please bear in mind that HEAT works for averages across the population under study and not individual persons. The larger the study population is the more accurate the results will be.

Number of walkers:

\section*{1000 persons*}
* Please enter full number without delimiters such as commas or full stops

\section*{HEAT FOR WALKING \& CYCLING: CASE STUDY}

\section*{HEAT}

Health economic
assessment tool
- HEAT for walking

Q1: Single or before \(/\) after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary

\author{
Home for walking Walking Summary
}

\section*{HEAT for walking}

Summary of walking data

\section*{Review your entered data}

Average distance walked per person per day in km: 3
This level of walking is likely to lead to a reduction in the risk of mortality of: \(17 \%\) Total number of individuals regularly doing this amount of walking: 100

Please bear in mind that HEAT is to be applied for assessments on a population level, i.e. in groups of people, not in individuals. HEAT does not calculate risk reductions for individual persons but an average across the population under study. The results should not be misunderstood to represent individual risk reductions.

Contact I Copyright I Login
(9) HEAT

Health economic
assessment tool
- HEAT for walking

Q1: Single or before \(/\) after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary
Q8: All current walking or change

Home for walking - Q8: All current walking or change

\section*{HEAT for walking}

\section*{Q8: Choose: evaluate the benefits of all current walking or assess the impact of an intervention?}
- All current walking

Impact of an intervention

\section*{Hints \& Tips}

If you select 'All current levels of walking", the tool will provide an estimate of the value of all the walking data you entered.

If you select 'Impact of an intervention', the tool will ask you for an estimate of the proportion of your walking data that can be attributed to the intervention.
rates for an average population (about 20-74 years old), a younger average population (about 20-44 years old) or a predominantly older average population (about 45-74 years old).

Please choose for which age range you wish to carry out your calculation:
average population (about 20-74 years old)
younger average population (about 20-44 years old)
(-) older average population (about 45-74 years old)
Please enter a figure for mortality data either by selecting the value for your country from the WHO Mortality database, or by entering your own value. If your national value is not available, it is suggested to use the WHO European Region average value.

Select mortality data for your country using the drop down menu below:

Belgium (2010)
Your chosen rate i 812.70 deaths per 100,000 pes sons per year (crude rate)
Alternatively, you may enter your own value in the cell below:
\(\qquad\) 0 deaths per 100,000 population

\section*{More than for cyclist} example \(\rightarrow\) because \(74 y\) is upper limit

Health economic
assessment tool
(9) HEAT

Health economic
assessment tool
- HEAT for walking

Q1: Single or before / after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary
Q8: All current walking or change

Q11: Mortality rate
Q12: Value of life

Home - for walking - Q12: Value of life

\section*{HEAT for walking}

\section*{Q12: Value of statistical life}

\section*{What is the value of a statistical life?}

The value of a statistical life is derived with a methodology called "willingness to pay" to avoid death in relation to the years this person can expect to live according to the statistical life expectancy \({ }^{2}\). Please bear in mind that such assessments do not assign a value to the life of one particular person but refer to an average value of a "statistical life" This will form the basis of the financial savings shown in the model.
Whenever possible, enter a country-specific value or use a country value from the dropdown menu (not available for Andorra, Monaco and San Marino). If not known, use the European default valuea of \(€ 2.487\) million (WHO European Region), \(€ 3.387\) million (EU 27 countries) or \(€ 3.371\) million (EU-27 countries plus Croatia), respectively

First, select the country for which you want to carry out your assessment, and choose the currency (local currency, EUR or USD).

Please enter the local value of statistical life:
Country: Belgium
\(\checkmark\)
Currency: European euro (EUR)
Value of statistical life: \(4^{\prime} 380^{\prime} 597\) EUR

\section*{Hints \& Tips}

According to economic theory, the willingness to pay comprises lost consumption, immaterial costs (e.g.
suffering) and the share of health costs paid directly by the victims \({ }^{1}\)
more.

Contact | Copyright | Login
(9) HEAT Health economic
assessment tool
- HEAT for walking

Q1: Single or before / after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary
Q8: All current walking or change
Q11: Mortality rate
Q12: Value of life

\section*{Home for walking - Q13: Time period for averaging}

\section*{HEAT for walking}

\section*{Hints \& Tips}

\section*{Q13: Time period over which benefits are calculated}

Please select the time period over which you wish average benefits to be calculated

\section*{10 years \(V\)}

The time period should not be longer than you believe the entered amount of walking is being sustained.

\author{
Cancel
}

This tool shows both total and average benefits over a time period selected by the user.

The time period over which savings should be examined is often standardized within a country, and where possible you should select the time period used locally; the default value has been set at 10 years.
(9) HEAT

Health economic
assessment tool
assessment

Q1: Single or before / after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary
Q8: All current walking or
change
Q11: Mortality rate

Home for walking - Q14: Benefit-cost ratio

\section*{HEAT for walking}

Q14: Costs to include a benefit-cost ratio in the HEAT calculation
If you know how much it costs to promote walking in your case (e.g. in case of a specific promotion project or new infrastructure), and would like the tool to calculate a benefit-cost ratio for your local data, please select 'Yes'.

CX Yes
Otherwise please select ' No ' and continue.
- No
(9) HEAT

Health economic
assessment tool
- HEAT for walking

Q1: Single or before \(/\) after
Q2: Walking data type
Q4: Distance
Q7: Population
Walking Summary
Q8: All current walking or change

Q11: Mortality rate
Q12: Value of life
Q13: Time period for

\section*{Home for walking - Q16: Discount rate}

\section*{HEAT for walking}

\section*{Q16: Discount rate to apply to future benefits}

In most cases, the economic appraisal of health effects related to walking will be included as one component into a more comprehensive cost-benefit analysis of transport interventions or infrastructure projects. The final result of the comprehensive assessment would then be discounted to allow the calculation of the present value. In this case, enter " 0 " here. If the health effects are to be considered alone, however, it is important that the methodology allows for discounting to be applied to this result as well. As default value, a rate of \(5 \%\) has been set.

Please enter the rate by which you wish to discount future financial savings:
\(\square\)

Back

\section*{Hints \& Tips}

Since benefits occurring in the future are generally considered less valuable than benefits occurring in the present, economists apply a so called "discounting rate" to future benefits.

\section*{HEAT FOR WALKING \& CYCLING: CASE STUDY}

\section*{HEAT estimate}

\section*{Reduced mortality as a result of changes in walking behaviour}

The walking data you have entered corresponds to an average of 3 km per person per day.
This level of walking provides an estimated protective benefit of: \(17 \%\) (compared to persons not walking regularly) From the data you have entered, the number of individuals who benefit from this level of walking is: \(\mathbf{1 0 0}\) Out of this many individuals, the number who would be expected to die if they were not walking regularly would be: 0.81

The number of deaths per year that are prevented by this level of walking is: less than 1

\section*{Financial savings as a result of walking}

Currency: EUR, rounded to 1000
\begin{tabular}{l} 
The value of statistical life in your population is: \\
The annual benefit of this level of walking, per year, is: \\
The total benefits accumulated over 10 years are: \\
\(\mathbf{4 , 3 8 1 , 0 0 0}\) \\
\(\mathbf{6 1 2 , 0 0 0}\) \\
When future benefits are discounted by \(5 \%\) per year: \\
the current value of the average annual benefit, averaged across 10 years is: \\
the current value of the total benefits accumulated over 10 years is: \\
\hline \(4,725,000\)
\end{tabular}

\section*{SUMMARY \& CONCLUSION}

\section*{Input}
- How many people walk/cycle?
- Time, distance or \#trips
- Cost of Intervention infrastructure
or promotion campaign

\section*{Defaults}
- mortality rate
- VSL
- Time frame
- Discount rate


\section*{Output}
- 'Protective benefit'
- Average benefit per year (key output)
- Over longer period (default = 10 years)
- Discounted benefit per year
- (Cost-Benefit ratio)

Tool designed for transport planners
Evidence-based
Transparent
Simple to use
Order of magnitude only



\section*{CWICALC: A DEDICATED MODEL FOR FLANDERS}



\section*{HEAT compared to CWICalc}
(9) H E A T

Health economic assessment tool
- Estimate benefits of regular cycling/walking
- Estimate external benefits
- Compare with investment (e.g. building bicycle highway)
- New update: including air pollution, accidents, climate
(but not morbidity)
- Order of magnitude
- VSL (country specific)

\section*{VItO CWICalc}
- Estimate benefits of regular cycling/walking
- DALY's \& external benefits/costs
- Impact of increase in cycling accidents
- Impacts of air pollution: PM2.5
- Compare with investment (e.g. bicycle highway)
- YOLL \& Cost of Illness \& WTP (Willingness To Pay)
- VOLY (Flanders)
- Order of magnitude
+ Mortality \& Morbidity:
ischaemic HD, cancer (bowel, breast)
diabetes type II, depression, dementia (>70j)
+ Option: congestion, \(\mathrm{CO}_{2}\), noise
https://sites.google.com/site/cwicalc/input

\section*{Model specifics}
- Adults

\section*{VItO CWICalc}
- Shift car => cycling / walking
- Establishing health benefits takes years
- Health benefit is capped
- VOLY: 40000 euro (some use up to 180000 euro; 40000 euro = conservative).
=> CWICalc is very conservative!
- Specifieke values for Flanders (Belgium). Treatment costs depend on national organisation of health care system
- Air pollution : PM2.5 only (WHO preferred indicator)

\section*{Counting cyclists on Bicycle highways}


1is. telt mee! Vencleas:
3870 fietsers
Deze meand:
54828 fietsers
Je" fiets weilig? Bee het zelf met een FIETSLisBEL:
Via antwerpen. be 19:02


\section*{CWICalc application: fietsostrades / fietssnelwegen}

\author{
Why Flanders?
}
- lots of data on cycling (counts)
- high air pollution
- data on accidents
- Scenario 1:
- F1 Mechelen-Antwerpen
- 600 cyclists
- 27 km/day
- 4 days per week
- 20 year evaluation period
- Building Cost: \(6 \times 10^{6}\) Euro


\title{
Health impact model for modal shift from car use to cycling or walking in Flanders: application to two bicycle highways
}

Jurgen Buekers \({ }^{\text {a,* }}\), Evi Dons \({ }^{\text {a,b }}\), Bart Elen \({ }^{\text {a }}\), Luc Int Panis \({ }^{\text {a,c }}\)
\({ }^{a}\) Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol , Belgium
\({ }^{\text {b }}\) Centre for environmental studies, Hasselt University. Agoralaan Building D. 3590 Diepenbeek, Belgium
e School for Mobility. Hasselt University. Wetenschapspark 5 Bus 6, 3590 Diepenbeek, Belgium

\section*{ARTICLEINFO}

\section*{Article history:}

Received 2 June 2015
Received in revised form
18 August 2015
Accepted 21 August 2015

\section*{Keywords:}

Health impact assessment
Cycling
Walking
Crashes
Monetary evaluation
Bicycle highway

\begin{abstract}
In Flanders, a European hot spot for air pollution, alternatives to car transport are put in place to increase the daily level of physical activity (PA) among the population and reduce air pollution and global warming. To evaluate the economic impact of increased PA (cycling and walking), a health impact model was developed for a given volume of PA, relative to car use, within a defined population in Flanders. Flanders is an interesting region because of the combination of high air pollution, high cycling volumes and good data availability e.g on crashes and PA. The model uses two health indicators: external costs and DALYs. Considered impacts in the model are: mortality and morbidity related to increased PA, air pollution exposure for society and active individuals and crash risks. In addition to health, external costs for \(\mathrm{CO}_{2}\) emission, congestion and noise exposure can be considered. The model was applied to the new bicycle highways Antwerp-Mechelen and Leuven-Brussels, which were built near important traffic axes to provide the densely populated region with an alternative to car use. Different sensitivity analyses with a variable number of cyclists and travelled distances were elaborated to check the robustness of the results. Overall, the conclusion was that increased PA outweighed other impacts. The benefit:cost ratio
\end{abstract}

\section*{CWICALC MODEL}


\section*{Results (DALY)}


Crash risk over estimated or under estimated?

\section*{Results（costs in \(€\) ）}

Table 2
 enough information was available for correction based on HICP
\begin{tabular}{|c|c|c|}
\hline Disease & Direct costs \({ }^{\text {b }}\) in model & Indirect costs \({ }^{\text {b }}\)（productivity loss）in model if selected age for physical activ－ ity is \(<65\) years \\
\hline Breast cancer & 23，156 & 23，309 \\
\hline Colon cancer & 33,930 & 116，022 \\
\hline Diabetes Type II & 85，000 & 85，000 \\
\hline Depression & 1984 & 5175 \\
\hline Dementia & 183，000 & － \\
\hline Ischaemic heart disease & 12，722 & 22，032 \\
\hline
\end{tabular}
\({ }^{a}\) Harmonised Indices for Consumer Prices；see：http：／／appsso．eurostat．ec．europa．eu／nui／show．do？dataset＝prc＿hicp＿aind\＆lang＝en
\({ }^{\text {b }}\) Costs related to premature death are not considered here as they are already accounted for in the physical activity－premature mortality dose－response relationship．

\section*{Costs of cycling accidents}
\begin{tabular}{|c|c|c|c|c|}
\hline & weight & Avg. cost (€) & Cl_low (€) & CI_high (€) \\
\hline NO_I & \(22.4 \%\) & 295 & 157 & 476 \\
\hline LIGHT_I & \(47.5 \%\) & 322 & 244 & 411 \\
\hline ABI_ST & \(25.7 \%\) & 820 & 588 & 1089 \\
\hline ABI_LT & \(4.4 \%\) & 9348 & 3764 & 17425 \\
\hline minor accident & \(100 \%\) & 841 & 579 & 1205 \\
\hline
\end{tabular}
-Risk of minor accident is 155 per million kilometers cycled (link) (one accident every 6500 km )
-Risk of injury is 121 per million kilometers cycled
(one injury each \(\mathbf{8 3 0 0} \mathbf{~ k m}\) )
-Average cost of minor accident is 841 euro (vs €60.776 for major non-fatal accident)
( 0.125 euro/ km)
-Total cost of minor accidents in Belgium is 57-183 million \(€\) /year
Cycling highways expected to lower both the risk and the cost

Results (costs/benefits)

\section*{ThitO cwICalc}


\section*{Results: (costs/benefits)}


\section*{Table 4}

Total benefits, external costs and cost:benefit analysis over 20 years for Antwerp-Mechelen bicycle highway (scenario \(\mathbf{1}^{\text {a }}\) )
\begin{tabular}{|c|c|}
\hline Impact factor & euro \\
\hline Physical activity (reduced mortality) & \(1.2 \times 10^{7}\) \\
\hline Physical activity (reduced morbidity) & \(2.3 \times 10^{6}\) \\
\hline Reduced air pollution society (mortality) & \(7.4 \times 10^{4}\) \\
\hline Air pollution active mobility & \(-8.9 \times 10^{5}\) \\
\hline Crash risk & \(-1.4 \times 10^{6}\) \\
\hline Total & \(+1.2 \times 10^{7}\) \\
\hline Infrastructure construction costs & \(-6.0 \times 10^{6}\) \\
\hline Benefit:cost ratio & . 0 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Scenario 1 with building costs for the bicycle highway set to \(3 \times 10^{5} € / \mathrm{km}\) (see Table 3)
}

Most scenarios positive.

\section*{CHATHT VAN ANTWHRPRN}

Fietsos 1 dik tert

Fietsostrades betalen zichzelf tot 14 keer terug
16/03/2016 om 05:00 door svw
Print


\section*{OTHER SCENARIOS}

\section*{Table 3}
 changed until the benefiticost ratio equals one.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Scemario & \begin{tabular}{l}
\# cyclists \\
(per dary)
\end{tabular} & Travelled distance (km/tlay) & Bene costs A & for different building B & Scenario remarks \({ }^{\text {b }}\) \\
\hline \multirow[t]{4}{*}{Antwerp-Mechelen} & Scenariol & 600 & 27 & 2.9 & 0.7 & \multirow[t]{4}{*}{Average trip distance from a survey: minimum numl For the 7 first counting points (AM1-AM7; See Fig. 2 Own estimate of weighted average distance; maximt Average trip distance survey: maximum number of c} \\
\hline & Scenarioz & 2600 & 12 & 4.7 & 1.8 & \\
\hline & Scenario 3 & 4400 & 16 & 10.2 & 3.8 & \\
\hline & Scenario4 & 4400 & 27 & 14.5 & 5.4 & \\
\hline \multirow[t]{3}{*}{Leuven-Brussels} & Scenariol & 500 & 37 & 1.5 & 0.6 & \multirow[t]{3}{*}{Average trip distance from a survey: average numbe Average trip distance from a survey; number of cycli Own estimate of weighted average distance \(\&\) numb} \\
\hline & Scenarioz & 1100 & 37 & 3.4 & 1.3 & \\
\hline & Scenario3 & 1624 & 32 & 5.2 & 2.0 & \\
\hline \multirow[t]{4}{*}{Hypothetical} & Scenariol & 650 & 10 & 1.0 & & \multirow[t]{2}{*}{\begin{tabular}{l}
Number of cyclists changed until Benefit/Cast ratio e Travelled distance fixed at 10 km \\
Number of cyclists changed until Benefit/Cost ratio e velled distance fixed at 10 km
\end{tabular}} \\
\hline & Scenarioz & 1700 & 10 & & 1.0 & \\
\hline & Scenario3 & 350 & 20 & 1.0 & & Number of cyclists changed until Benefit/Cost ratio e Travelled distance fixed at 20 km \\
\hline & Scenario4 & 950 & 20 & & 1.9 & Number of cyclists changed until Benefit/Cost ration e velled distance fixed at 20 km \\
\hline
\end{tabular}

 ratios which is a conservative approach.


\section*{CONCLUSION}

Research shows that cycling is healthier than not cycling (If it increases the physical acitivity of sedentary people)

Air pollution
- Exposure peaks can be very high
- Physiological changes are evident
- Scientifically challenging
- May lead to clinical effects in the long term
\(\Rightarrow\) Policy should reduce exposure (e.g. bicycle highways)

\section*{Accidents}
-Risk of minor accident in general traffic is much higher than is higher than expected (even among experienced cyclists)
- Costs are high
=> Policy should eliminate conflicts, risks, consequences (e.g. bicycle highway design)
\(\Rightarrow\) Cost efficient policies/infrastructure is possible
\(\Rightarrow\) Benefits almost always (much) higher than cost

\section*{More info}
\begin{tabular}{|c|c|c|}
\hline  & Contents lists available at ScienceDirect Journal of Transport \& Health journal homepage: www.elsevier.com/locate/jth &  \\
\hline
\end{tabular}

Health impact model for modal shift from car use to cycling or walking in Flanders: application to two bicycle highways
Jurgen Buekers \({ }^{\text {a,* }}\), Evi Dons \({ }^{\text {a,b }}\), Bart Elen \({ }^{\text {a }}\), Luc Int Panis \({ }^{\text {a,c }}\)


# (a B S T R A C T 
# (a B S T R A C T 
# (a B S T R A C T 
# (a B S T R A C T 
#
#
# (a B S T R A C T 
# (a B S T R A C T 
# (a B S T R A C T 
```

```
```

ARTICLEINFO

```
```

ARTICLEINFO
N-NO
N-NO
Arricle history:

```
```

Arricle history:

```
```



```
```

M

```
```

M
18 August 2015
18 August 2015
\
\
Cycling
Cycling
Crashes
Crashes
Monetary evaluation

```
Monetary evaluation
```

School for Mobility. Hasselt University. Wetenschapspark 5 Bus 6, 3590 Diepenbeek, Belgium
GHEAT
Health economic
Heath economic
assessment tool
oldheatwalkingcycling.org

Buekers J, Dons E, Elen E, Int Panis L. Health impact model for modal shift from car use to cycling or walking in Flanders: application to two bicycle highways. Journal of Transport and Health, 2,549-569,2015.
http://www.sciencedirect.com/science/article/pii/S221414051500674X
https://www.researchgate.net/publication/281612872 Health impact model for modal shift from car use to cycling or walking in Flanders Application to two bicycle highways

Aertsens J et al. 2010. Commuting by bike in Belgium, the costs of minor accidents. Accident; analysis and prevention $42(6): 2149-57$
https://www.researchgate.net/publication/45799144 Commuting by bike in Belgium the costs of minor accidents

