



Environmental Risk Factors in Alzheimer Disease

Venkatanaidu Karri, Julian Krauskopf, Jacco J Briedé, Jos CS Kleinjans

Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands

- ☐ Alzheimer's disease (AD) cases estimated to rise to nearly **106 million by 2050**.
- ☐ Environmental risk factors are majorly contributing to the >90% sporadic AD cases. For instance, Heavy metals, Pesticides, Industrial chemicals, and Air pollution are the top risk factors.
- □ AD pathological hall Marks
 Amyloid plaques
 Neurofibrillary tangles
 Neuronal degeneration

Top environmental Risk Factors for Sporadic Alzheimer's disease (sAD)

1. Heavy metals

Heavy metal	Human/ Animal/ In vitro	Toxicity Outcome
exposure	Study	
Aluminum	Human	Aggregation of $A\beta 42$ forming the
		amyloid plaques.
Arsenic	Human	Hyper phosphorylation of protein
		tau.
Cadmium	Human	Increased aggregation of tau protein.
Lead	Human	Affects cognitive function.
Mercury	In vitro	Affect the tau protein function.
Copper	Human	Influence the $A\beta$ 40, 42 homeostasis.
Cobalt	In vitro	Oxidative stress reason to induce AD.
Iron	Human	Aggregation of $A\beta 42$ to form plaques.
Zinc	Human	Affects the Cu, Fe levels in AD.
Selenium	Rat	Damage the acetylcholine neurons in hippocampus region of brain.

3. Industrial Chemicals

Human/ Animal/ In vitro	Toxicity Outcome
Study	
Rat	Cognitive dysfunction.
Rat	Dementia.
Rat	Neurodevelopmental
	disorder.
Rat	Inhibit synapsis formation in
	hippocampus.
Human	Impaired neurodevelopment.
	Study Rat Rat Rat Rat

2. Pesticides

Pesticides exposure	Human/ Animal/ In vitro Study	Toxicity Outcome
Organochlorine pesticides (OCPs) [lindane, HCH, Aldrin, Dieldrin, Endosulfan, DDT, DDE]	Children	Cognitive dysfunction.
Organophosphate insecticides (OPIs) [Methyl parathion, Dimethyl parathion, Trichlorfon, Chlorpyrifos]	Children	Cognitive dysfunction.
Carbamates (carbofuran)	Rat	Neurodegeneration in the hippocampus of brain
Fipronil and its metabolites	In vitro	Increased the toxic A\beta42, 43 expression.

4. Air Pollutants

Air pollutants	Human/ Animal/ In vitro	Toxicity Outcome
	Study	
Particulate matter (PM)	Mice	Amyloid-β40 and 42 levels
		double in mice brains.
Volatile Organic	Human	Memory impairment.
Compounds		

- ☐ Multiple classes of environmental chemicals have been hypothesized to play a role in the sporadic AD.
- ☐ In a realistic exposure, chemical mixtures/ cocktail of chemicals may increase the risk of sporadic AD compared to single chemical exposure.

References

- □ Karri et al. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. 48 (2016): 203-213.
- ☐ Killin et al. Environmental risk factors for dementia: a systematic review BMC Geriatr. 16(1):175.
- ☐ Kamel et al. Association of Pesticide Exposure with Neurologic Dysfunction and Disease. Environ Health Perspect. 112(9): 950–958.

Meer info: www.grensregio.eu

Correspondence to:
Venkatanaidu Karri
v.karri@maastrichtuniversity.nl
www.toxicogenomics.nl

Department of Toxicogenomics

T +31 684843166 O: +3143 3881145 Maastricht University

P.O. Box 616 6200 MD Maastricht, The Netherlands