

An empirical assessment of several machine learning approaches to estimate long-term wind speed conditions

Topic – 2.3 Renewable energies: Potential of wind energy

Authors:

Santiago Díaz Ruano; Fernando Castellano Hernández; José Antonio Carta González

ENERMAC Energías Renovables y Eficiencia Energética Desarrollo Sostenible de África Occidental e Islas de la Macaronesia

Introduction

Measure-Correlate-Predict (MCP) Methodology:

Description:

Method to recognize long-term wind characteristics at target sites for which only measurements recorded over short-term are available.

Machine learning techniques:

- These methods are able to determine non-linear relationships between features.
- Allows the use of multiple reference stations.
- The most commonly used data mining technique have been Artificial Neural Networks (ANNs).

Main goal of the research work:

Demonstrate the validity of Support Vector Regression (SVR) and Random Forest (RF) methods to estimate longterm wind speed conditions considering multiple reference station.

Introduction

Measure-Correlate-Predict (MCP) Methodology:

Description:

Method to recognize long-term wind characteristics at target sites for which only measurements recorded over short-term are available.

Machine learning techniques:

- These methods are able to determine non-linear relationships between features.
- Allows the use of multiple reference stations.
- The most commonly used data mining technique have been Artificial Neural Networks (ANNs).

Main goal of the research work:

Demonstrate the validity of Support Vector Regression (SVR) and Random Forest (RF) methods to estimate longterm wind speed conditions considering multiple reference station.

ENERMIAL Energías Renovables y Eficiencia Energética Desarrollo Sostenible de África Occidental e Islas de la Macaronesia

Data:

• Wind speed and direction recorded over the course of 2014 at **10 weather stations.**

- All data series were captured at **10** meters above ground level.
- The length of these data series allowed determination of **the seasonal variation patterns** as MCP methodology recommends.
- The positions that are used as **target sites** are the **weather stations that have at least one reference station** with a correlation coefficient greater than 80%

Table I. Linear correlation coefficients between the wind speeds of the Weather Stations

WS	WS-1	WS-2	WS-3	WS-4	WS-5	WS-6	WS-7	WS-8	WS-9	WS-10
WS-1	1.00	0.73	0.74	0.67	0.69	0.54	0.26	0.56	0.52	0.56
WS-2	0.73	1.00	0.68	0.58	0.63	0.55	0.30	0.54	0.58	0.57
WS-3	0.74	0.68	1.00	0.82	0.83	0.53	0.23	0.60	0.51	0.58
WS-4	0.67	0.58	0.82	1.00	0.83	0.51	0.18	0.55	0.45	0.50
WS-5	0.69	0.63	0.83	0.83	1.00	0.63	0.21	0.55	0.42	0.50
WS-6	0.54	0.55	0.53	0.51	0.63	1.00	0.39	0.36	0.31	0.40
WS-7	0.26	0.30	0.23	0.18	0.21	0.39	1.00	0.23	0.24	0.34
WS-8	0.56	0.54	0.60	0.55	0.55	0.36	0.23	1.00	0.56	0.55
WS-9	0.52	0.58	0.51	0.45	0.42	0.31	0.24	0.56	1.00	0.56
WS-10	0.56	0.57	0.58	0.50	0.50	0.40	0.34	0.55	0.56	1.00

Methodology

Main characteristics:

- Targets: WS3, WS4, WS5.
- **References**: the remaining nine.
- •Techniques: ANN, SVR and RF.
- Hyper-parameters: Grid Search.
- •Validation: 10-Folds Cross Validation.
- Metrics: MAE, MAPE, R2 and IoA.
- •Technologies: R Statistics.
- Packages:
 - ANN: nnet R package.
 - SVR: Kernlab R package.
 - **RF**: randomForest R package.
- All simulations done with the same computer to evaluate the time requirements.

Results and discussion

TARGET SITE WS-3										
Method	Variable	MAE	MAPE	R2	IoA					
	Mean	1.31	33.87%	76.22%	68.68%					
ANN	Standard Desv.	0.24	6.32%	7.20%	6.48%					
DE	Mean	0.93	23.70%	88.03%	84.66%					
ĸr	Standard Desv.	0.03	2.94%	0.97%	0.55%					
CV/D	Mean	0.97	23.06%	87.00%	84.04%					
SVK	Standard Desv.	0.03	2.51%	1.16%	0.50%					
TARGET SITE WS-4										
Method	Variable	MAE	MAPE	R2	IoA					
	Mean	2.05	33.12%	64.75%	63.43%					
ANN	Standard Desv.	0.46	9.62%	11.63%	11.39%					
PE	Mean	1.30	21.51%	79.53%	83.41%					
NF	Standard Desv.	0.04	0.98%	1.77%	0.54%					
SV/P	Mean	1.31	19.71%	77.41%	83.24%					
374	Standard Desv.	0.05	1.04%	2.24%	0.74%					
TARGET SITE WS-5										
Method	Variable	MAE	MAPE	R2	IoA					
	Mean	1.39	23.80%	73.11%	68.61%					
ANN	Standard Desv.	0.26	5.08%	8.88%	8.33%					
PE	Mean	0.84	14.05%	89.20%	86.02%					
KF	Standard Desv.	0.02	0.94%	0.68%	0.42%					
SV/P	Mean	0.89	14.98%	87.57%	85.09%					
374	Standard Desv.	0.03	1.15%	1.19%	0.66%					

RF

15120s

O Conclusions

Although the trend nowadays is towards using ANNs in implementation of MCP methodology, there are some alternatives that display greater precision and efficiency.

Random Forest gave the best results for all target sites when measuring the performance with the MAE, R² and IoA metrics. With MAPE metric it is unclear which is the best alternative (SVR or RF techniques).

SVR and RF techniques allow direct resolution of high dimensionality problems in a more efficient way than the ANN technique, but require a greater effort to optimize its hyperparameters

ENERMAC Energías Renovables y Eficiencia Energética Desarrollo Sostenible de África Occidental e Islas de la Macaronesia The computing times required for the RF method were around 35% lower than those required by its main competitor, the SVR technique.

Thank you

For your Attention!

Santiago Díaz Ruano santiago.diaz103@alu.ulpgc.es sdruano@itccanarias.org

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

ENERMAC Energías Renovables y Eficiencia Energética Desarrollo Sostenible de África Occidental e Islas de la Macaronesia

