# Projeto MACASTAB

Bases para a elaboração de um

Guia metodológico para a gestão do risco natural produzido pela instabilidade de encostas e taludes de natureza vulcânica na Macaronésia

































## **ÍNDICE DO PROJETO MACASTAB**

| INTRO  | DUÇÃO                                                                  | 1  |
|--------|------------------------------------------------------------------------|----|
| CAPÍTL | JLO 1. Fatores que influenciam o equilíbrio de taludes e encostas      | 3  |
| 1.1.   | Fatores condicionantes                                                 | 3  |
| a)     | Fatores geomorfológicos                                                | 4  |
| b)     | Fatores geológicos                                                     | 7  |
| c)     | Fatores hidrogeológicos                                                | 12 |
| 1.2.   | Fatores desencadeantes                                                 | 13 |
| a)     | Fenómenos meteorológicos                                               | 14 |
| b)     | Sismicidade                                                            | 24 |
| c)     | Ações bio antrópicas                                                   | 25 |
| CAPÍTL | JLO 2. Tipos de instabilidade                                          | 27 |
| 2.1.   | Queda de rochas                                                        | 29 |
| 2.2.   | Avalanches rochosas                                                    | 31 |
| 2.3.   | Deslizamentos                                                          | 32 |
| 2.4.   | Escoadas                                                               | 34 |
| CAPÍTL | JLO 3. Diagnóstico prévio                                              | 37 |
| 3.1.   | Recolha de dados sobre um evento que já ocorreu                        | 37 |
| 3.2.   | Índice de Suscetibilidade ISTV                                         | 38 |
| 3.3.   | Avaliação rápida das condições de estabilidade em solos                | 41 |
| 3.4.   | Folha de campo para uma análise rápida da estabilidade em solo         | 44 |
| 3.5.   | Valores característicos da coesão e atrito interno em solos vulcânicos | 47 |
| 3.6.   | Faixas de risco e de proteção no topo e na base do talude              | 49 |

















| a)     | Faixas de risco e proteção do topo (FRT e FPT)                        | 50 |
|--------|-----------------------------------------------------------------------|----|
| b)     | Faixas de risco e proteção na base (FRB e FPB)                        | 51 |
| CAPÍTL | JLO 4. Estudo geológico e geotécnico                                  | 55 |
| 4.1.   | Informação prévia e antecedentes                                      | 56 |
| 4.2.   | Trabalhos de campo                                                    | 57 |
| a)     | Estudos de pormenor                                                   | 57 |
| b)     | Setorização                                                           | 58 |
| c)     | Estações geomecânicas                                                 | 58 |
| d)     | Hidrologia e drenagem do talude ou encosta                            | 58 |
| e)     | Ensaios laboratoriais                                                 | 58 |
| 4.3.   | Conteúdo do relatório geológico-geotécnico                            | 59 |
| a)     | Objetivo                                                              | 59 |
| b)     | Antecedentes                                                          | 59 |
| c)     | Características geológicas e geotécnicas dos materiais                | 60 |
| d)     | Localização e caracterização das instabilidades e das áreas de origem | 60 |
| e)     | Setorização                                                           | 61 |
| f)     | Definição dos elementos a proteger                                    | 61 |
| g)     | Modelação de trajetórias                                              | 61 |
| h)     | Conclusões e recomendações                                            | 62 |
| i)     | Anexos                                                                | 62 |
| CAPÍTL | JLO 5. Análise de riscos face a quedas de blocos de rocha             | 63 |
| 5.1.   | Zonas de trânsito                                                     | 64 |
| a)     | Ajuste por perigosidade                                               | 64 |
| b)     | Ajuste por exposição                                                  | 65 |
| 5.2.   | Zonas de permanência                                                  | 65 |
| a)     | Análise da perigosidade                                               | 66 |

















| b)     | Estimativa da probabilidade de afetação                              | 67  |
|--------|----------------------------------------------------------------------|-----|
| c)     | Vulnerabilidade                                                      | 68  |
| d)     | Risco residual e valorização do elemento exposto                     | 69  |
| e)     | Estimativa do risco                                                  | 70  |
| CAPÍTU | JLO 6. Gestão do risco                                               | 71  |
| 6.1.   | Análise de alternativas de sistemas de proteção                      | 71  |
| 6.2.   | Tipo de medidas                                                      | 72  |
| 6.3.   | Projeto de medidas de proteção contra a queda de rochas              | 73  |
| 6.4.   | Risco residual                                                       | 74  |
| 6.5.   | Critérios de aceitabilidade do risco                                 | 75  |
| 6.6.   | Justificação da solução recomendada                                  | 77  |
| CAPÍTU | JLO 7. Relação entre as alterações climáticas e a sua incidência nos |     |
|        | movimentos de vertente                                               | 79  |
| 7.1.   | Introdução                                                           | 79  |
| 7.2.   | Influência das alterações climáticas                                 | 80  |
| 7.3.   | Mitigação dos efeitos das alterações climáticas                      | 85  |
|        | ANEXOS                                                               |     |
| ANEXO  | I. Classificação de Unidades Geotécnicas da Macaronésia              | 89  |
| ANEXO  | II. Metodologia para aplicação do Índice de Suscetibilidade de       |     |
|        | Instabilidade de Taludes em Terrenos Vulcânicos (ISTV)               | 109 |
| ANEXO  | III. Método de avaliação rápida da estabilidade em solos             | 125 |
| ANEXO  | IV. Classificação Geomecânica VSR (Volcanic Slope Rating)            | 131 |
| ANEXO  | V. Índice de Risco de Taludes em materiais Vulcânicos (IRTV)         | 137 |

















| ANEXO VI.                  | Classificação VRHRS de risco face a quedas de blocos em taludes |       |  |  |  |
|----------------------------|-----------------------------------------------------------------|-------|--|--|--|
|                            | de rochas vulcânicas                                            | . 145 |  |  |  |
| ANEXO VII.                 | Medidas de controlo e proteção                                  | . 163 |  |  |  |
| ANEXO VIII.                | Metodologia de projeto de medidas de proteção e controlo de     |       |  |  |  |
|                            | quedas de rochas                                                | .187  |  |  |  |
| REFERÊNCIAS BIBLIOGRÁFICAS |                                                                 |       |  |  |  |
| Referências b              | ibliográficas:                                                  | . 195 |  |  |  |











## INTRODUÇÃO

Os movimentos de vertente são fenómenos que constituem um dos riscos naturais mais importantes que afetam a região da Macaronésia. Neles intervêm um grande número de fatores próprios dos arquipélagos de origem vulcânica que é preciso identificar, caraterizar e ponderar para abordar com êxito a problemática existente e reduzir o risco que representam para a sociedade.

O projeto MACASTAB estabelece as bases técnicas comuns para os quatro arquipélagos a partir das quais se poderá elaborar em cada região guias metodológicos específicas, adaptadas às condições técnicas, sociais, administrativas e políticas de cada território, que estabeleçam procedimentos a seguir para facilitar a gestão do risco.

Neste documento pode-se encontrar ferramentas e procedimentos para diagnosticar as instabilidades de encostas e taludes e vulcânicas existentes na região. Também se disponibilizam tabelas para, em cada caso, selecionar a solução mais adequada. Seguindo suas recomendações e aplicando as ferramentas poder-se-á realizar uma melhor gestão do risco associado aos seus possíveis efeitos

Os procedimentos descritos neste documento não têm como objetivo o dimensionamento de novos taludes, mas apenas são de aplicação aos taludes já existentes.

O projeto foi cofinanciado pelo Fundo Europeu de Desenvolvimento Regional-FEDER do programa de Cooperação INTERREG V-A Espanha-Portugal (Madeira-Açores-Canárias) 2104-2020, pela Viceconsejería de Infraestruturas y Transportes del Gobeirno de Canárias, como chefe de fila, pelo Laboratório Regional de Engenharia Civil da Região Autónoma da Madeira, pelo Laboratório Regional de Engenharia Civil da Região Autónoma dos Açores e pela Universidade de Cabo Verde.

Para levar a cabo o projeto constituiu-se uma equipa técnica formada por técnicos com experiência nesta atividade, conhecedores das circunstâncias e da problemática que envolve a gestão deste tipo de riscos, cujos elementos se identificam a seguir:

















#### CANÁRIAS

Luiz Gonzáles de Vallejo (Instituto Volcanológico de Canárias, INVOLCÁN) Ana Miranda Hardisson (Instituto Volcanológico de Canárias, INVOLCÁN) Sergio Leya Campos (Cabildo de Tenerife) Luis Hernández Gutiérrez (Viceconsejería de Intraestruturas Y transportes) Javier Jubera Pérez (viceconsejería de intraestruturas Y transportes)

#### MADEIRA

José Fernando Vieira de Sousa (LREC, Região Autónoma da Madeira) João Perneta (LREC, Região Autónoma da Madeira)

### AÇORES

Paulo Alexandre Pimentel Amaral (LREC, Região Autónoma dos Açores) Ana Maria M. A. P. Malheiro (LREC, Região Autónoma dos Açores) Luís Teixeira (LREC, Região Autónoma dos Açores)

#### CABO VERDE

Alexandra Delgado (Universidade de Cabo Verde) Sónia Silva Victória (Universidade de Cabo Verde)