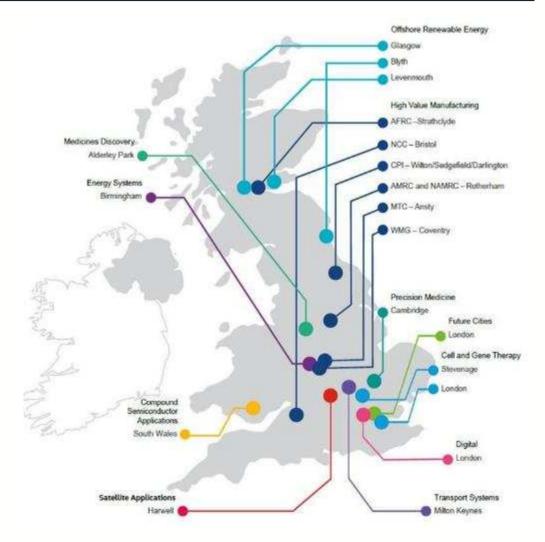


ORE Catapult Overview CLIPPER July Meeting

Agenda

- The Catapult network
- Offshore Renewable Energy Catapult
- Offshore Wind in the UK
- Offshore Wind Supply Chain
- Case studies



The catapult network: A long-term vision for innovation & growth

11 Catapults

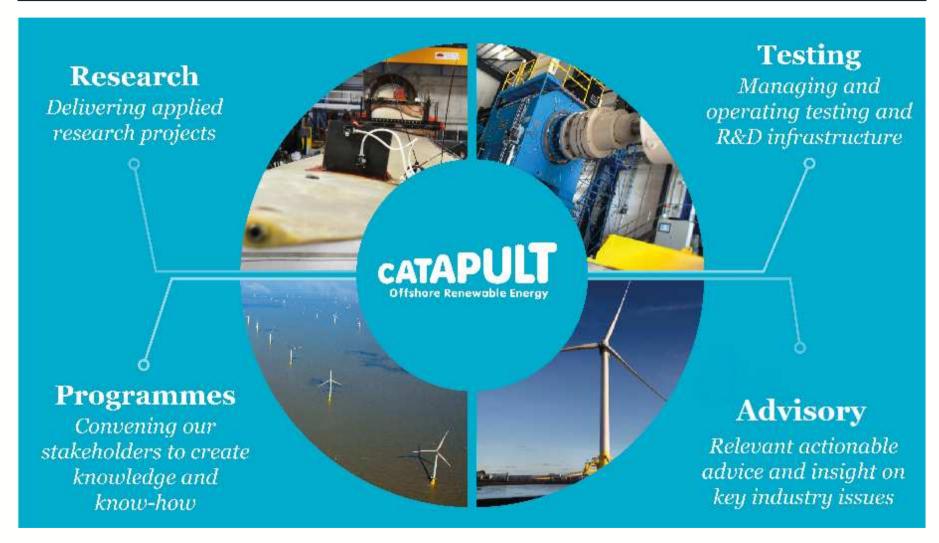
- Established by InnovateUK
- Designed to transform the UK's capability for innovation
- Core grant leveraged with industry and other public funding

ORE Catapult

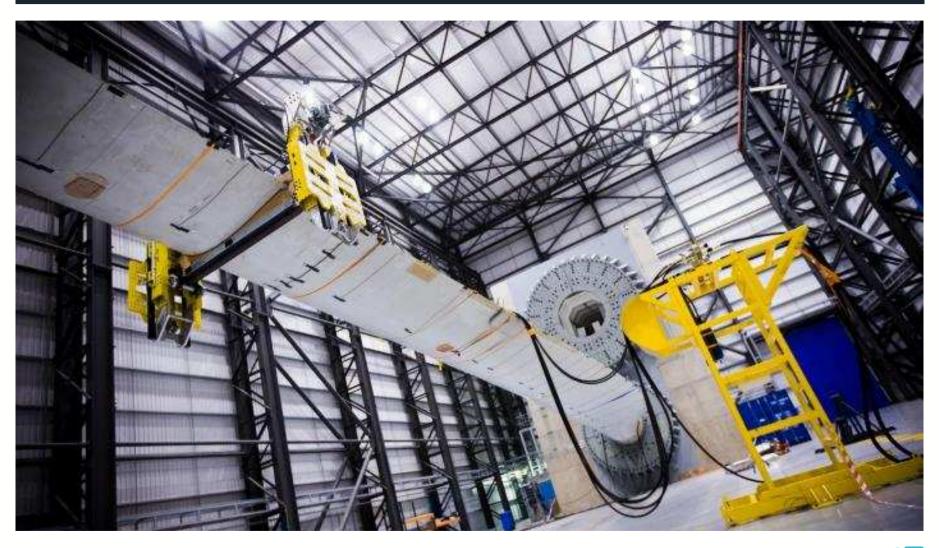
Our Vision:

Abundant, affordable energy from offshore wind, wave and tide

- Reduce the cost of offshore renewable energy
- Deliver UK economic benefit
- Engineering and research experts with deep sector knowledge
- Independent and trusted partner
- Work with industry and academia to commercialise new technologies

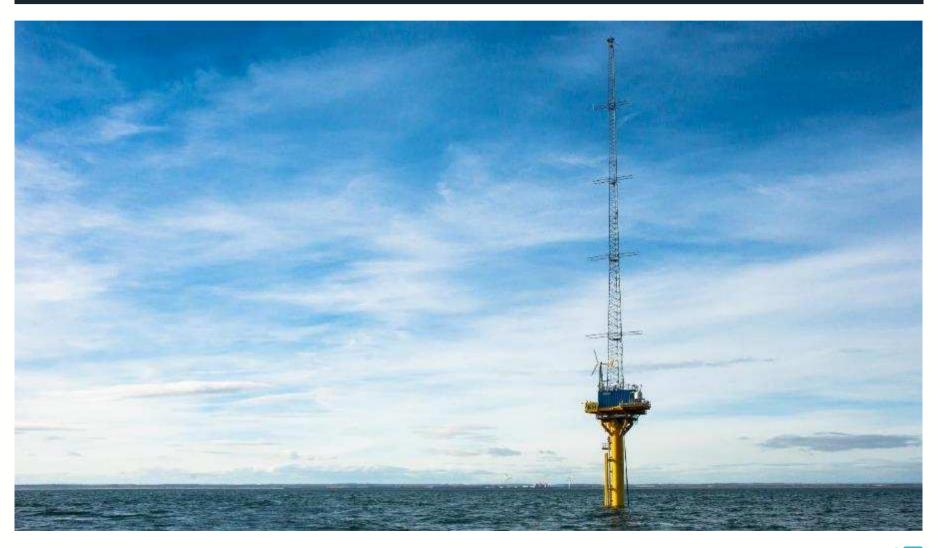


80+ technical experts


Our delivery

Wind turbine blade testing facility

15MW Wind turbine nacelle testing facility


Electrical and materials laboratories

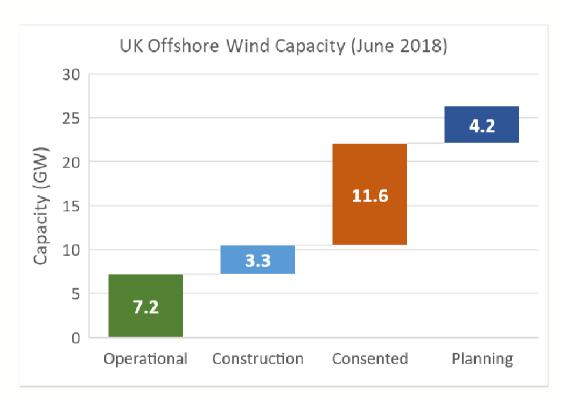
Offshore Anemometry Platform

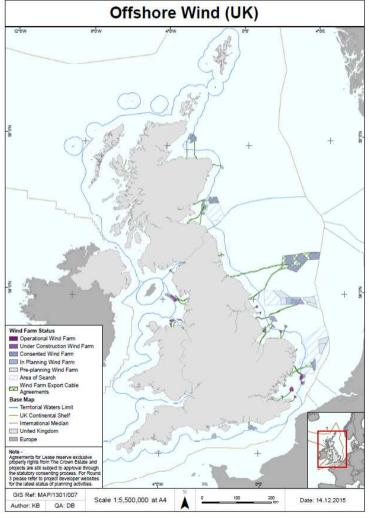
Marine testing facility

7MW Levenmouth Demonstration Turbine

ORE Catapult's 7MW Offshore Wind Turbine Specification

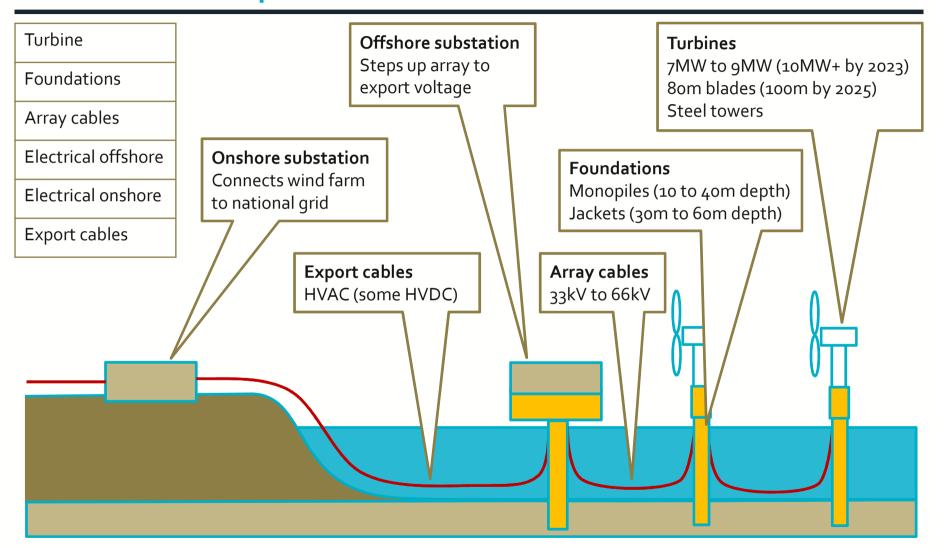
Wind Class		IEC Class 1a	Rotor dia.		171.2m		
Capacity		7MW at grid side	Hub height		110.6m	85.6 m	25 m
Generator		Medium (3.3kV), PMG	Converter		Full power conversion		
Drive train		Medium speed (400rpm)	Rated frequency		50/60 Hz		
Rotor speed		5.9 ~10.6 rpm	Wind speed		3.5 ~ 25 m/s		18 m **Nacelle width
	Survival	-20°C to +50°C		Blade	100%		: 8 m
Temp.	Operating	-10°C to +25°C -10°C to +35°C	Humidity	Nacelle	Inside : < 50 % Outside : 95 %	110.6 m (Hub-height)	
Lightning protection level		Level 1 (IEC 62305-1)	Corrosion Category (ISO 12944-5)		Inside : C4 Outside : C5-M		
Design life		25 years	Certification		DNV		


Offshore wind in the UK



The opportunity

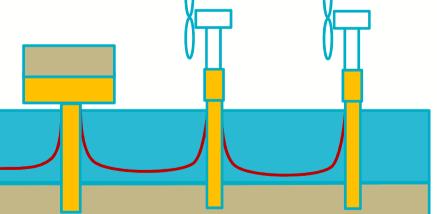
- 1,837 offshore turbines
- 7.2GW operational
- 10GW installed by 2020



Offshore wind supply chain

Offshore wind capex

Turbines

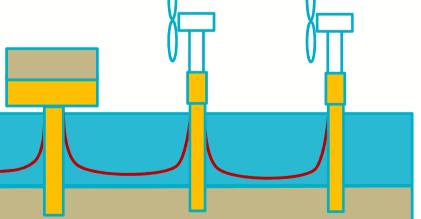

Turbine
Foundations
Array cables
Electrical offshore
Electrical onshore
Export cables

Nacelles	Design expertise but no manufacture in UK
Blades	Siemens, Hull Vestas, Isle of Wight
Towers	CS Wind, Machrihanish

Longer blades and new materials

Catapult has developed dual axis blade testing to improve testing and reduce time to market.
Catapult has advanced rain erosion testing facilities.

Foundations


Turbine		
Foundations		
Array cables		
Electrical offshore		
Electrical onshore		
Export cables		

	Monopiles	Strong continental suppliers		
	Jackets	Bifab, Global Energy Harland & Wolff		
	Gravity base	BAM Nuttall		

Deeper water and varied seabed

Catapult is gathering data from gravity base foundations.
Working with fabricators on design codes and serial production.

Array cables

Turbine

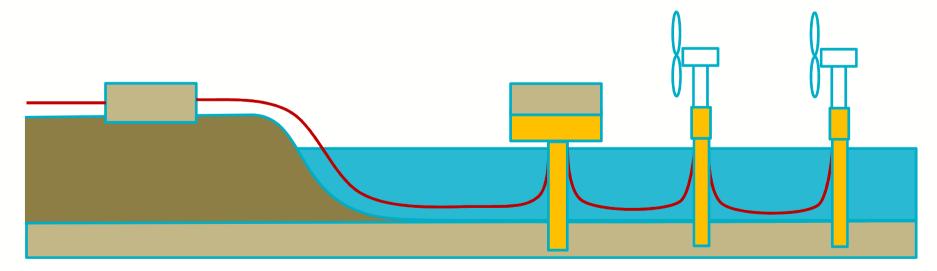
Foundations

Array cables

Electrical offshore

Electrical onshore

Export cables


33kV/66kV

JDR Cables

Increase voltage from 33kV to 66kV

Catapult has developed methodology and carried out accelerated testing of new 66kV cables

Electrical offshore

Turbine

Foundations

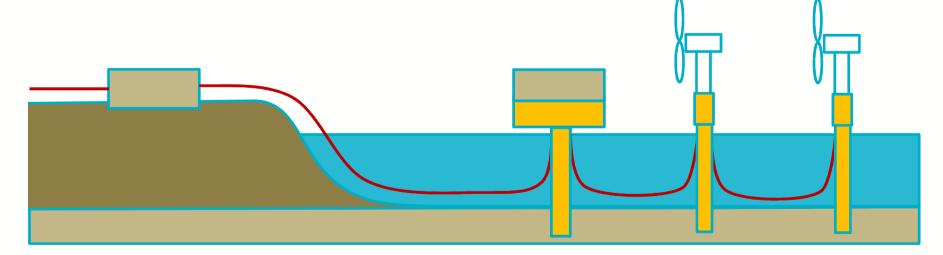
Array cables

Electrical offshore

Electrical onshore

Export cables

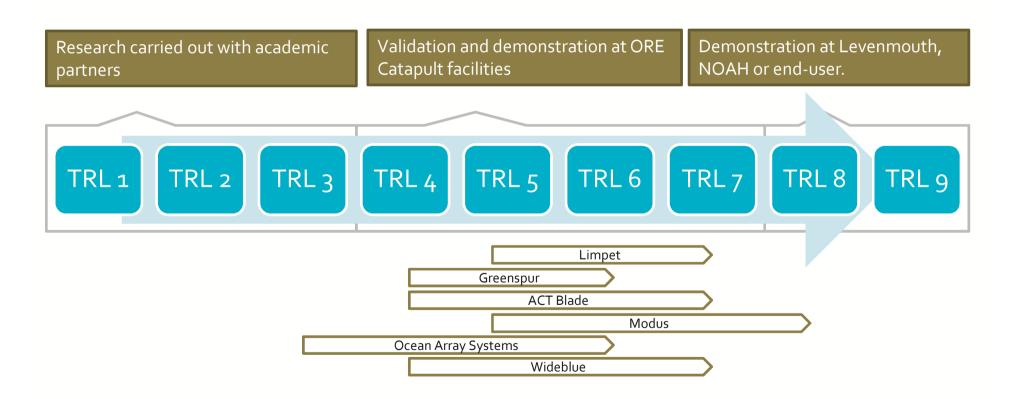
Offshore substation


Babcock

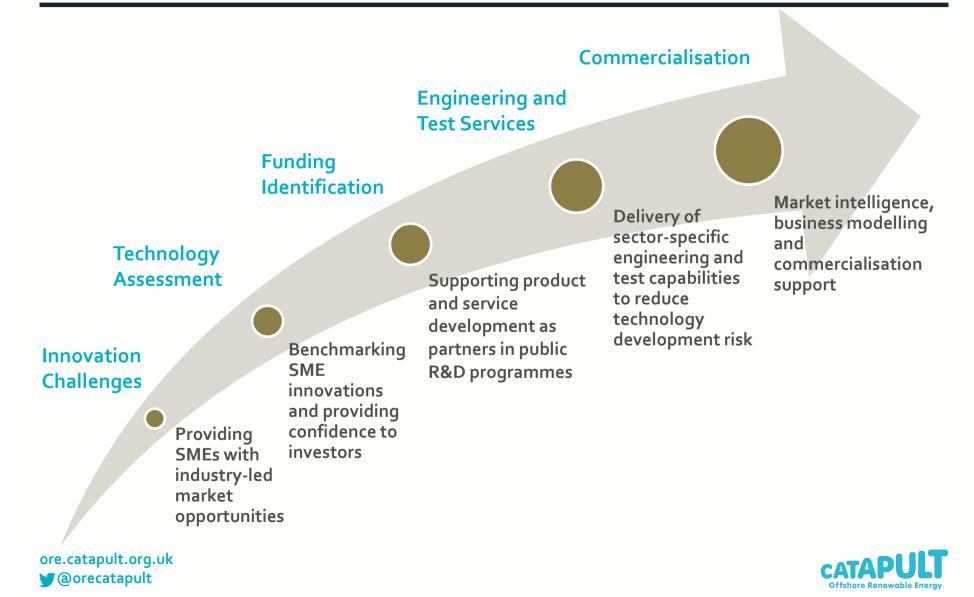
Lightweight distributed substations

Catapult carried out assessment of novel substation cost model

Babcock, Rosyth


How can Catapult help?

Commercialisation of UK innovation


- SMEs frequently struggle in the range from TRL 4 through to TRL 9
- The ORE Catapult test facilities are designed to address this need.

Commercialising technology with SMEs

SME Support Process (16/17)

Industry priorities

Innovation challenges

SME Ingagements support Collaborativ e projects

Priorities identified by industry via:

- advisory groups
- research projects
- workshops

Specific challenges and market context. Promoted via website, media, events and conferences.

Follow up engagement with SMEs on specific activity. Collaborative development of new projects proposals.

Successful in new public funding (IUK/EC)

114 SME engagements

36 proposals

11 projects

In 16/17 SME innovation challenges delivered 11 new projects worth £10m to SMEs and £2m to ORE Catapult

Case studies

Collaborative Public Funding: FS FOUND

Scope

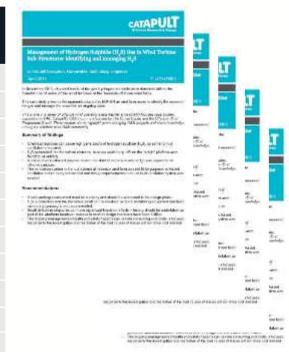
To demonstrate the feasibility of the float-and-submerged gravity base foundation solution at all critical stages: design, manufacture and quayside construction, preparation and loadout, seabed preparation, towing, installation, commissioning and operations.

Outputs

To verify the manufacturing and installation methodology and benefit from the lessons learnt in order to optimise plans for the future transnational exploitation of GBFs

To design, install, commission a condition monitoring system on two GBFs to monitor their behaviour.

To assess the structural response to extreme and fatigue loads on the GBF and compare theoretical loads with real ones


- World first of a float-and-submerged gravity base foundation for offshore wind turbines.
- Joint funded Demowind project with UK and Dutch partners include BODL, EDF Energy R&D UK Centre, Bam Nuttall and Catapult

Knowledge Sharing Case Study

Case Study Name	Lead
Self Perform O&M at Robin Rigg	E.ON
An Evidence Based Appraisal of Crew Transfer Vessel Thresholds	RWE
Early Fault Detection Using SCADA Data	E.ON
End of Warranty O&M Contracting Strategy	Centrica
Assuring O&M Data Quality	Centrica
Management of H2S Gas in Wind Turbine Sub-Structures	EDF
Early O&M Experience of Jacket Foundations	Vattenfall
Responding to an HSE Emergency	Centrica
The Integration of Operational Data Using CORE	SPR
A Novel Offshore Wind Transfer Technique	Repsol
Helicopter Strategy Appraisal at Westermost Rough	DONG

Currently working on review of substructure inspection and monitoring best practice

All available here: https://ore.catapult.org.uk/analysis-insight

SPOWTT: improving Safety and Productivity of Offshore Wind Technician Transit

- 2 Year DEMOWIND project €3.6m
- Optimising the <u>selection</u>, <u>utilisation</u> and use of Crew Transfer Vessels (CTVs)
- Improving **productivity** & **safety** of technicians
- Combines <u>vessel motion</u> with <u>psychological</u> and <u>physiological</u> technician impacts to produce an <u>open access decision making model</u> for informing CTV launch
- Opportunity for Owner / Operators through provision of access to CTVs and technicians to increase data set

Project Partners

ACT Blade

Novel blade technology from sailing sector to renewables

- Two genuinely groundbreaking ideas:
 - a textile blade and a modular blade

Benefits

- Cost reduction
- Increased efficiency of energy production,
- More eco-friendly materials

ORE Catapult Support

- SMAR AZURE responded to Blade Innovation Challenge
- Identified funding avenues & co-developed bid
- Secured 3 rounds of Energy Catalyst funding (IUK)
- ACT Blade Ltd set up to exploit technology

Innovate UK

SMAR AZURE design and manufacture sails

Tekmar

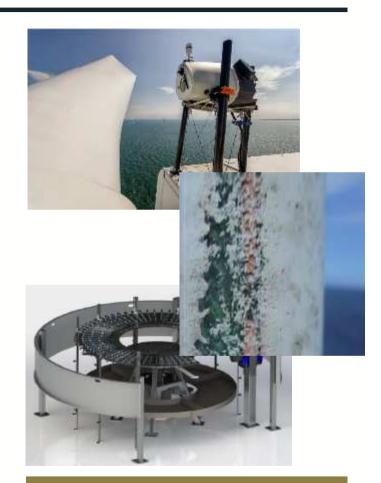
ORE Catapult's Support

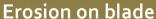
Replicated a full scale cable pull in trial in our shallow water test facility, to simulate the offshore operation of the Tekmar's cable protection system to key customers

Result

Tekmar secured an order for 92 TekTube systems for the Westermeerwind offshore wind project

Pull in trial at ORE Catapult




Blade Leading Edge Erosion Programme (BLEEP)

Aim: reduce the cost impact of blade erosion

Ongoing activity:

- BLEEP JIP
 - 8 operators and 1 OEM
 - Assessing erosion degradation rates and the impact on power performance (in field)
- Rain erosion test rig
 - Recently installed at Blyth
 - Research & testing of new blade coatings & representative test methods
- Erosion research
 - ERODE H2020 bid
 - Understanding the physics of blade erosion
 - Improving the resistance of coatings

MaRINET₂

Facility 3

Providing subsidised rates for wind, tidal and subsea testing at ORE Catapult

- 39 organisations
- 57 test facilities
- 13 European countries

How to participate

 Competitive process for funding for companies outside of the UK (to use ORE Catapult's facilities)

www.marinet2.eu

Facility 1

50m blade test

1MW powertrain test rig

Facility 2

High voltage electrical Marine and subsea laboratory

Materials laboratory

Contact us

GLASGOW

ORE Catapult Inovo 121 George Street

Glasgow G1 1RD

T +44 (0)333 004 1400 F +44 (0)333 004 1399

ore.catapult.org.uk

info@ore.catapult.org.uk

BLYTH

ORE Catapult
National Renewable
Energy Centre
Offshore House
Albert Street

Blyth, Northumberland NE24 1LZ

T +44 (0)1670 359 555 F +44 (0)1670 359 666

LEVENMOUTH

ORE Catapult
Fife Renewables
Innovation Centre (FRIC)

Ajax Way Leven KY8 3RS

T +44 (0)1670 359 555 F +44 (0)1670 359 666

