

Munitions identification, corrosion and chemical impact on benthic ecosystems

Professor Paula Vanninen (paula.vanninen@helsinki.fi)

VERIFIN, University of Helsinki

Final DAIMON Conference: Open Day Bremerhaven 7th Feb, 2019

WP 2 Methods

A 2.1 Examination of marine munitions' status

Activity 2.1.1 Identification

Home Jarostaw Michalak •

Гуре:	Model:	Countr
Projectile	Gr. 19 Kh.	Germany Post 192
escription:	This projectile has two copper driving bands and a filling plug in but is included because it shows slightly different details of cons	
		M OCOUR.
Diameter:	150 mm	
ength:	560 mm missing the fuze adapter	
Veight:	N/A	
Varefare Agent Weight:	N/A	
Chemical agent:	Mustard, Mustard/Lewisite,	
Additional information		
Additional information	Description	
File		ut 7,5-15,5, cm projectiles
File 7,5-15,5 cm projectile	Description	
	Description The document contains additional information about	man of 15 cm projectile type 19
File 7,5-15,5 cm projectile 15 cm projectile_general_type 19	Description The document contains additional information about the document contains general description of General description	man of 15 cm projectile type 19 m projectiles.
File 7,5-15,5 cm projectile 15 cm projectile_general_type 19 15 cm projectile additional data	Description The document contains additional information about the document contains general description of General description	man of 15 cm projectile type 19 m projectiles. m projectiles (part 2).
7,5-15,5 cm projectile 15 cm projectile_general_type 19 15 cm projectile additional data 15 cm projectile additional data part 2	Description The document contains additional information about The document contains general description of Gen The document contains additional data about 15 cm The document contains additional data about 15 cm	man of 15 cm projectile type 19 n projectiles. n projectiles (part 2).

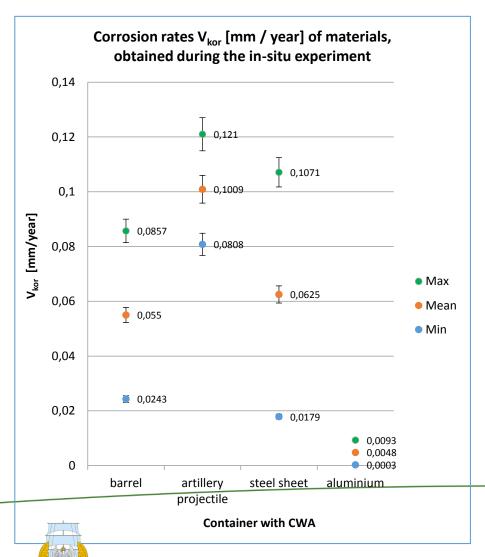
The view of the detailed safety data sheet is identical for the administrator and user level (more than one source of information)

Home Jarosław Michalak *

Туре:	Model:	Country:
Projectile	Gr. 38 Kh. Variant	Germany Post 1925
Description:	This projectile has two copper driving bands and a filling plug in the normal design, going higher into the neck of the projectile. This woul	
Diameter:	150 mm	
ength:	550 mm missing the fuze adapter	
Weight:	N/A	
Warefare Agent Weight:	N/A	
	Assumed Mustard.	

A view when the handbook of chemical weapons (OPCW) was the only source of information

Conventional ammunition in the catalogue



View of conventional munitions sheet – digitalised version of traditional paper version of the "Conventional munition catalogue" prepared within DAIMON

ENVIRONMENTAL EXPOSURE IN DUMPED SITES

- corrosion rate of coupons made from the barrel varies from 0.0243mm/year in the Gdańsk Deep to 0.0952 mm/year in the Bornholm Deep;
- coupons made of artillery projectile shell corrosion rate range from 0.0808 mm/year in the Słupsk Furrow to 0.1210 mm/year in the Bornholm Deep;
- steel sheet corrosion rate is in the range of 0.0179 mm/year in the Gdańsk Deep to 0.1071 mm/year in the Słupsk Furrow and 0.1002 mm/year in the Bornholm Deep;
- corrosion rate of aluminum is in the range from 0.0003 mm/year to 0.0046 mm/year.

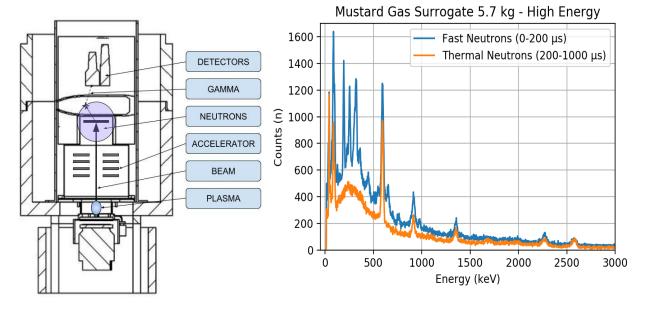
ENVIRONMENTAL EXPOSURE IN DUMPED SITES

Assuming a 70 years' time of presence of munitions weapons in the marine environment, it can be concluded, that the thickness of the barrels that were not covered by the sediments layer decreased from 1.7 mm to 6 mm, therefore, currently regardless dumping site and environmental conditions prevailing in the these areas, the barrels are completely destroyed and unsealed, and the CWA have already been released to the marine environment.

Summarize

- High content of mesophilic, psychrophilic and halophilic bacteria was found in the tested samples
- The number of anaerobic bacteria was clearly lower
- The number of fungi was low
- The presence of sulfuric bacteria (SRB) was detected, their amount turned out to be high, especially when the determinations were made using a medium prepared on the basis of seawater.

A 2.1 Examination of marine munitions' status


Activity 2.1.3 Composition

Payload identification via neutron activation

analysis (NAA)

 We have demonstrated our ability to distinguish between CWA- and HE munitions using NAA in laboratory conditions

- Preliminary design of a cost effective ROV
 -mounted system was envisioned.
- Work in progress: With BGO -detector we are able to measure N from HE and Fe signals in few weeks. Large LaBr detector delivery is delayed till spring. Fast measurements soon feasible.

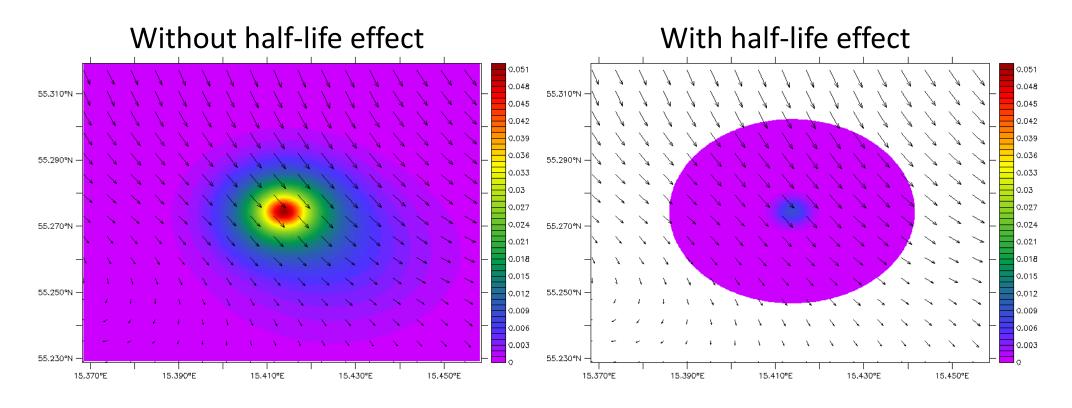
Deuterium beam is accelerated and collided to deuterium atoms, resulting fusion produces neutrons. These neutrons interact with the shell and payload producing *a gamma spectrum* characteristic to a specific munition type and possibly degradation level.

A 2.2 Modelling of contamination Activity 2.2.1 Leakage rate estimation

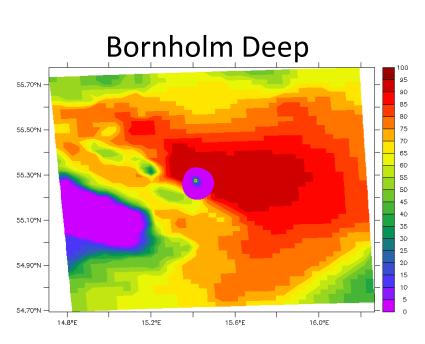
Aims:

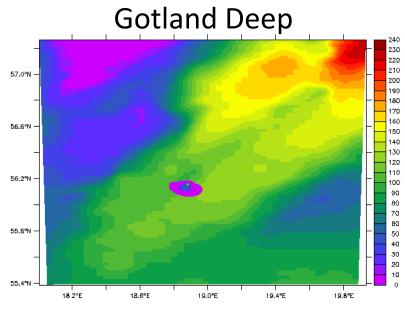
- Leakage rate estimation based on corrosion estimation will be simulated using laboratory setup. (PNA)
- The experimental data will in addition to other parameters be used to establish a physical model for the leakage rate (performed by FFI).

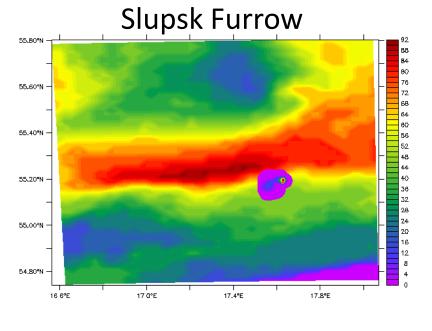
A 2.2 Modeling of contamination


High resolution dispersion model (HRDM) has been created:

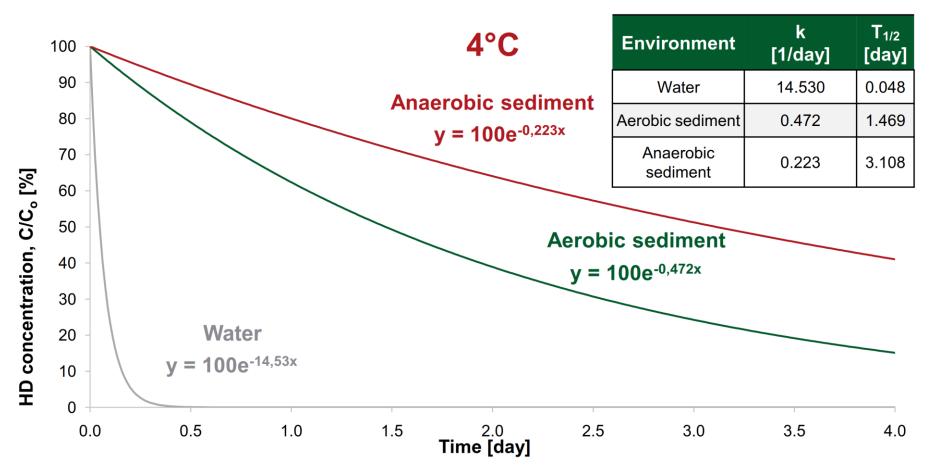
- Horizontal resolution of the model 50 metres
- Domain size 25x25 km
- Half-life included
- Temperature dependence of half-life included
- Direct access to the system (via internet) based on REST API has been implemented


modeling of contamination


Example of simulated contamination after 5 days



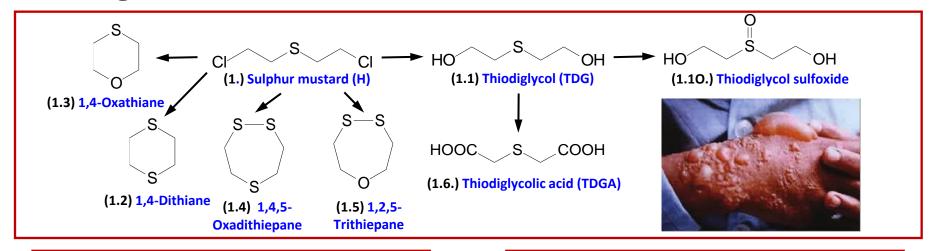
Example of results from the working system (after 5 days of integration and without half-life

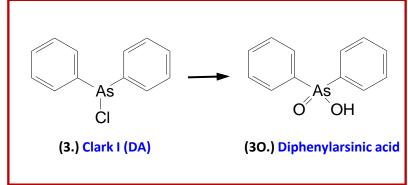


More detailed information is presented on the poster

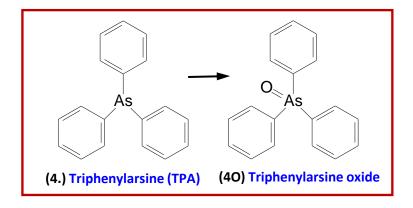
Modeling of contamination

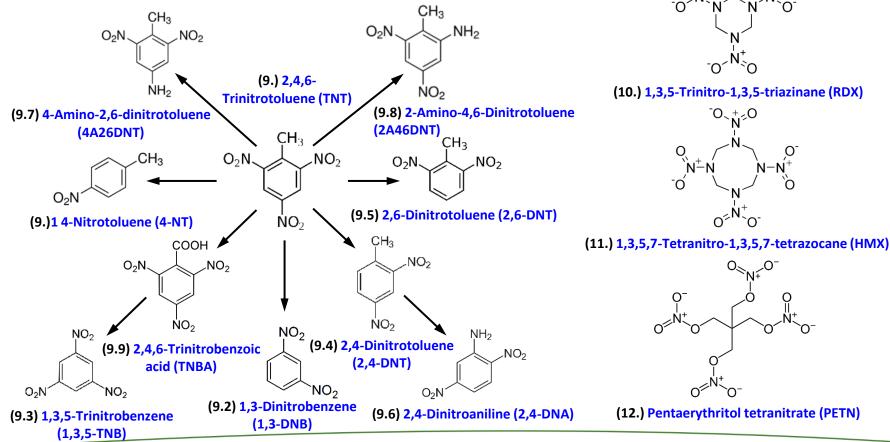
Sulfur mustard


2.3 and 2.4 Methods for measurement of warfare agents' pollution in sediments and in water body

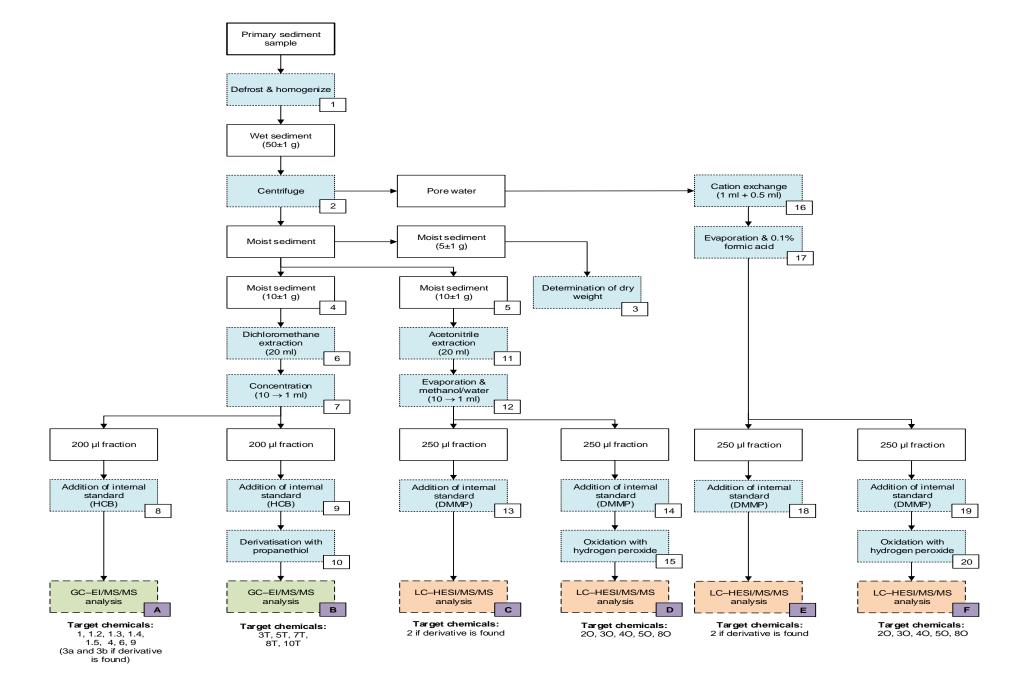

Methods for determination of CWAs and explosives

- To evaluated effects of chemical and conventional munitions, method have been developed, tested, and validated:
- For determination of CWAs and related chemicals in sediments
- For toxic explosives related chemicals in sediments


Target chemials- CWA's



Target chemials- CWA's

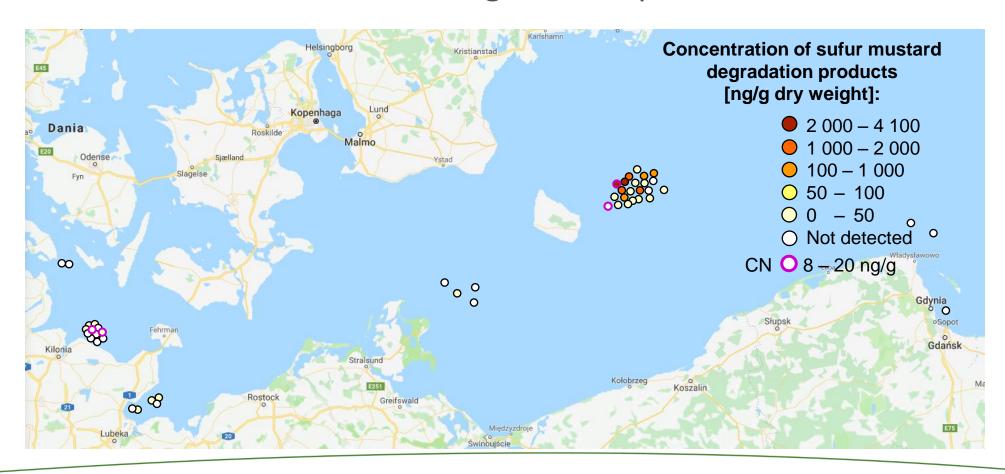


Target chemicals - Explosives

A 3.2 Case studies on wrecks filled with chemical munitions

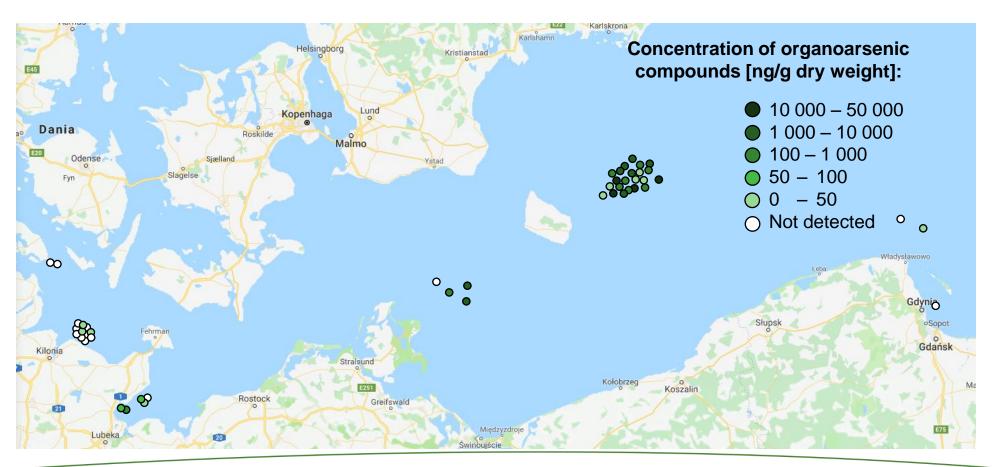
Results from LC-MS/MS analysis (78 samples)

		Analyzed Chemic	als: concentrations	μg/kg (sediment)		
Outside code	VERIFIN code	PDCA ox	L2 ox	DM ox	DPA ox	TPA ox
C11-C57 (total of 58 samples)	R3845-R3902	No chemicals in question detected				
lb-oc-sep16-1a	R3912	ND	ND	ND	ND	ND
lb-oc-sep16-2	R3913	ND	ND	ND	ND	ND
kh-oc-sep16-1	R3914	ND	ND	ND	ND	ND
kh-oc-sep16-6	R3915	ND	ND	ND	ND	ND
kh-oc-sep16-5	R3916	ND	ND	ND	ND	ND
kh-oc-sep16-4	R3917	ND	ND	ND	ND	ND
oc-mar17-bo5-3	R3918	8	ND	35	2	ND
oc-mar17-bo2-8	R3919	138	ND	21	63	79
oc-mar17-bo5-1	R3920	5	ND	9	14	ND
oc-mar17-gd01-5	R3921	ND	ND	ND	ND	ND
oc-mar17-gd01-4	R3922	ND	ND	ND	ND	ND
oc-mar17-bo5-2	R3923	2	ND	225	6	ND
oc-mar17-bo2-3	R3924	187	ND	82	77	309
oc-mar17-gd01-2	R3925	ND	ND	ND	ND	ND
oc-mar17-bo2-7	R3926	255	ND	13	86	321
oc-mar17-bo2-5	R3927	191	ND	144	95	138
oc-mar17-bo2-6	R3928	13	ND	3	5	43
oc-mar17-bo2-4	R3929	2737	ND	157	1138	202
oc-mar17-gd01-6	R3930	ND	ND	ND	ND	ND
oc-mar17-bo2-2	R3931	5900	ND	57	2076	194

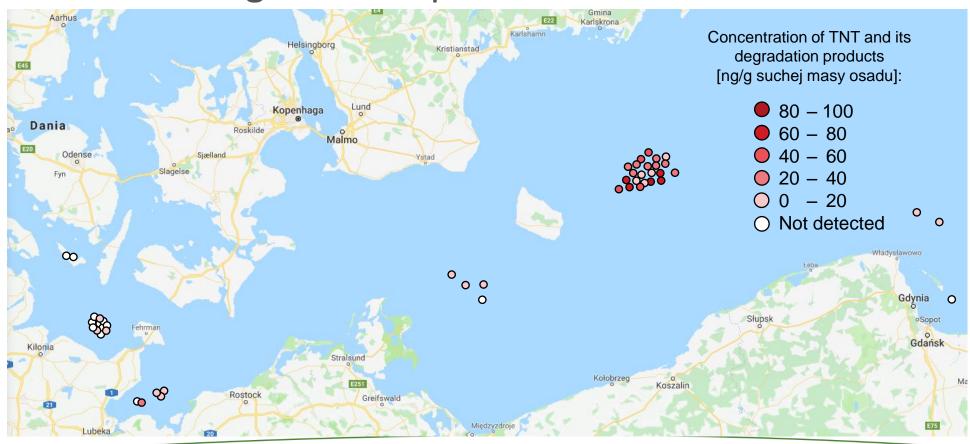

< 10 μg/kg 10–1000 μg/kg > 1000 μg/kg

ND = Not detected

PDCAox = Phenylarsonic acid, L2ox = Bis(2-chlorovinyl)-arsinic acid (oxidation product of Lewisite 2), DMox = Oxidized adamsite, DPAox = Oxidation product of Clark 1 and Clark 2, TPAox = Triphenylarsine oxide



Sulfur mustard and its degradation products

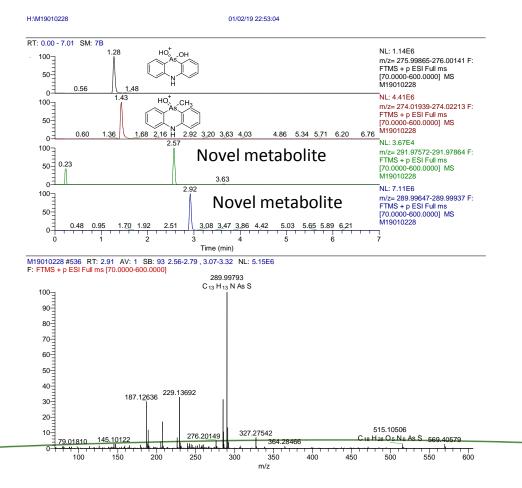


Organoarsenic compounds

TNT and its degradation products

New High Resolution Mass spectrometric (HRMS) approaches

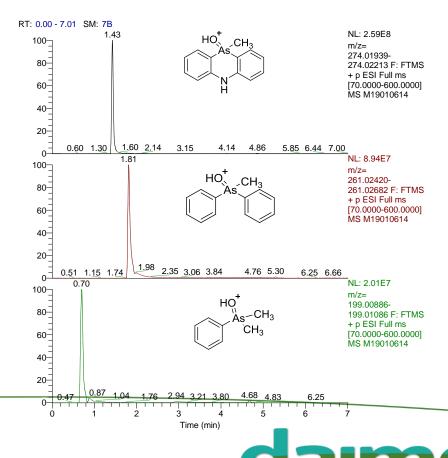
Aims:


 New approaches for analysis of both CWAs and toxic explosive related chemicals on a one method using sophisticated high resolution mass spectrometry have been tested and applied in the WP3 in pilot studies

Status:

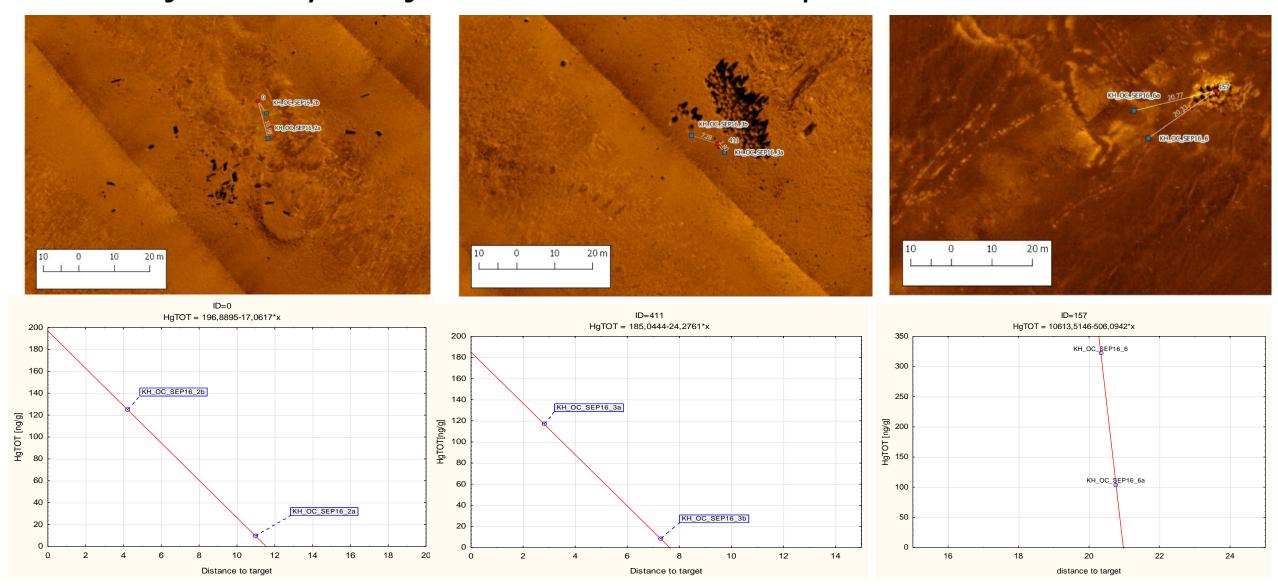
- For CWAs selected CHEMSEA, MODUM and DAIMON samples were screened and several new chemicals were detected
 - → eg. methylated phenylarsenic chemicals were found and identified using synthesized reference chemicals
- Explosives yet not studied-> will be done after sediment samples in
 WP3 have been analysed to find out interesting samples

Identification of methylated CWA-related phenylarsenic chemicals from sediment


Identification based on synthetisized reference chemicals

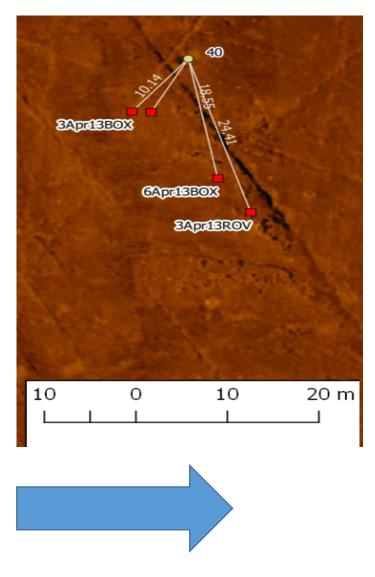
Sediment sample :

RT: 0.00 - 7.01 SM: 7B NL: 4.41E6 m/z= 274.01939-80-274.02213 F: FTMS + p ESI Full ms [70.0000-600.0000] 60-MS M19010228 40-20-0.60 1.36 2.92 3.20 3.79 4.86 5.34 6.20 6.76 NL: 1.80E6 100 m/z=261.02420-80-261.02682 F: FTMS + p ESI Full ms 60-[70.0000-600.0000] MS M19010228 40-20-0-20 0.93 1.62 3.40 <u>3.46</u> 4.95 5.58 NL: 5.09E5 100 m/z= 199.00886-80-199.01086 F: FTMS + p ESI Full ms 60 40-20-1.96 2.06 3.30 3.72 4.02 5.26 5.73 6.36


Time (min)

Reference standard:

Decision Aid for Marine Munitions

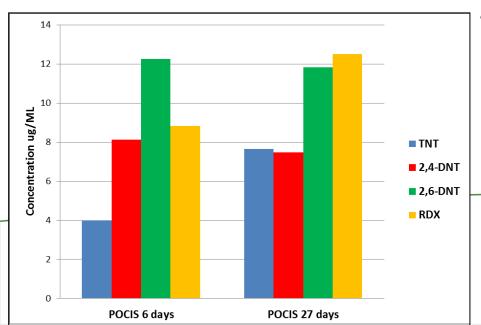

Object-by-object — drastic drop: conventional munition

Object-by-object: cwa munition

A 2.4 Methods for measurement of warfare agents' pollution in water body Activity 2.4.2 Passive sampling

Aims:

 Methods developed in WP2.4.2 will be compared with developed novel methods based upon passive samplers deployment and will be tested and applied in the WP3 in pilot studies


Status:

- <u>CWA:</u> Preliminary results for CWA presented in 4th Project Meeting in Gdynia; CWA passive samplers made available for WP3; Further tests for CWA being conducted (M.Sc. Student at VERIFIN). LC-MS results available
- FFI will write a report on passive samples for explosives and CWAs. No time for field work.

Findings

- Passive sampling is based on molecular diffusion of analytes through a diffusive surface onto an adsorbent. After sampling for days/weeks, the adsorbed analytes are desorbed off the sampler by solvent extraction.
- The POCIS adsorbent showed highest recoveries of the explosives TNT, 2,4-DNT, 2,6-DNT and RDX during laboratory experiments

Norwegian Defence Research Establishment

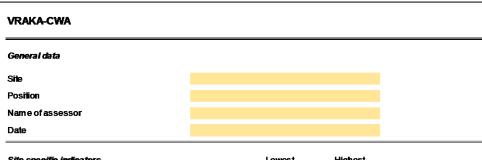
A 2.6 Risk categorisation procedures

Aims Leader: Chalmers

- 2.6.1. Creation of lists of risk chemicals and their categorisation Verifin, MUT, Chalmers
- 2.6.2. Development of leakage scenarios and their categorisation FFI, Chalmers
- 2.6.3. Categorisation of factors affecting the spreading of the chemicals in different conditions

IOPAS, IORAS

- 2.6.4. Linking of risk chemicals with their possible effects on biota Ecotoxdata (CWA), desktop study Chalmers
- 2.6.5. Development of scenarios leading to possible human exposure (IDUM...)
- 2.6.6. Building a risk categorisation procedure based on the developed lists and scenarios.


DSS, VRAKA-CWA

ts

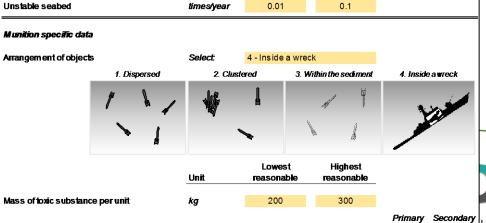
VRAKA-CWA

Risk assessment model for dur

- Probabilistic (uncertainties) and
- Calculates the:
 - probability of a hole in a CW.
 - risk by combing the probabil CWA
- Site specific indicators
 - Sea-floor oxygen concentration
 - Salinity
 - Temperature
 - Depth
 - etc.
- Activities
 - Trawling
 - Shipping traffic
 - Storms
 - etc.

Site specific indicators	Unit	Lowest reasonable	Highest reasonable	Min	Max
Average sea-floor oxygen concentration	mili	6.8	7.4	0	8
Average sea-floor salinity	PSU	34	34	1	35
Average sea-floor temperature	С	5	7	3	9
Average sea-floor current strenght	m/s	0	1	0	1
Average hull thickness at construction	mm	0	14	0	14
Dep t h	m	190	220	О	459
Time since dumped	<i>year</i> s	71	72	0	100

A - Accumulation seafloor

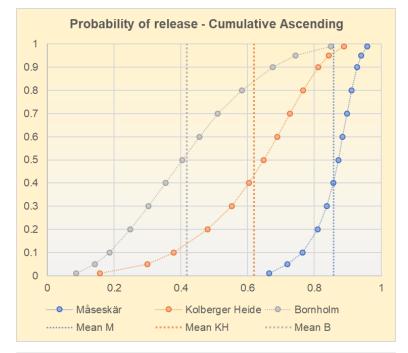

Activities	Unit	Lowest reasonable	Highest reasonable
Construction	times/year	0.01	0.1
Diving	times/year	0.001	0.01
Military activity	times/year	0.01	0.1
Shipping traffic	times/year	0.001	0.01
Storms	times/year	0.001	0.01

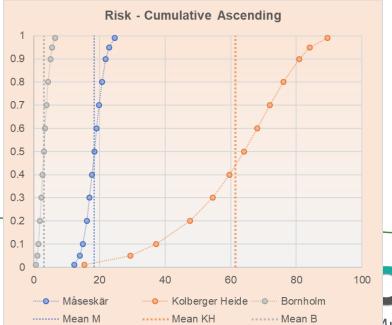
Select

Bottom character

Trawling

CWA - Toxic Unit


Clark I



VRAKA-CWA

Practical use of results

- Evaluate and compare the risk level associated with different CWA units and areas
- Evaluate the effect of mitigation measures
- Enable well-informed decisions on how to prioritize and mitigate dumped marine munitions
- Structure and transparency
- Enable uncertainty and sensitivity analysis

WP2_METHODS

Thank you for contribution and excellent collaboration!

- CHALMERS
- FFI
- IOPAS
- MUT
- NEUTRONGATE
- PNA
- SYKE
- TI-FI
- VERIFIN