

Comparison of IGBT and SiC power electronics in inverters for electric vehicle three phase electric traction motor

Kristaps Dambis | Drive eO

Conference Advanced Power Electronics in the Baltica Sea Region Sonderborg | 25.01.2019.

eO PP03 (2015) the first electric car to win Pikes Peak Hill Climb 93RD June 28, 2015, Colorado Springs, CO RUNNING America's Mountain™ Rhys Millen Sparco напкоок **ш**напкоок

Prototype EV development

- computer aided design and simulation
- electric motor and controller integration
- bespoke lithium ion battery packs
- high voltage and low voltage wiring looms
- thermal management solutions
- charging infrastructure
- dynamometer and road testing
- machining, fabrication, composite shops

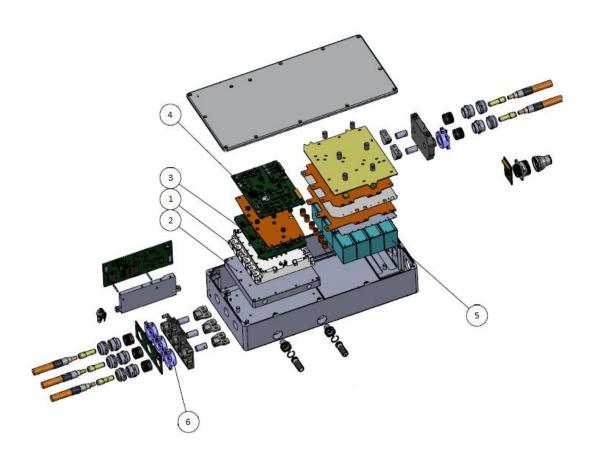
Generic electric drive system

three phase electric motor controller (inverter)

Motor drive inverter / controller

High power density

- operational voltage 500 800 VDC
- output current nominal 240 / peak 450 ARMS
- mass 11 kg, volume 8 litres


Versatile integration options

- 2× CAN interface
- multi-motor axle support
- numerous and adaptable signal I/O
- single power supply

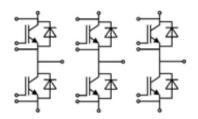
Rugged hardware

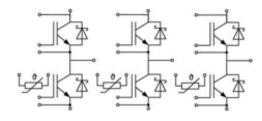
Motor drive inverter / controller

- (1) power module (2) cold plate (3) gate driver PCB
- (4) μ-controller PCB (5) DC capacitor (6) current sensors

Pilot demonstrator

Demonstrate advantages of wide bandgap power electronics by integrating a SiC power module and comparing the efficiency and output parameters


Warsaw University of Technology


Power module

VS.

Si diodes

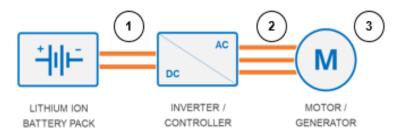
production IGBT module

SiC Schottky diodes experimental sample

Dynamometric motor test bench

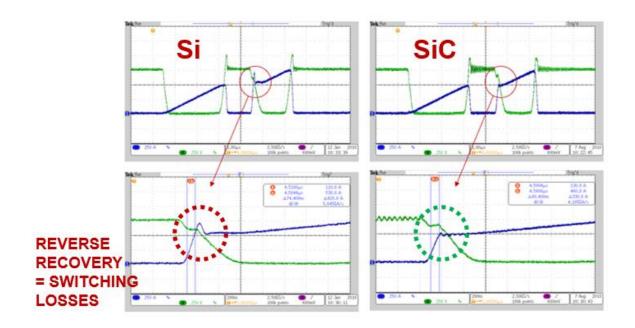
- electromagnetic brake load
- permanent magnet synchronous electric machine YASA-400 (power output nominal 80 kW / peak 160 kW at 700 V_{DC})
- DC power supply
- test inverter
- liquid cooling system
- power meter HIOKI-3194
- Tektronix MSO3000 series oscilloscope
- analogue signal converter L-Card E-502
- data logging software PowerGraph

Test conditions



- motor angular speed 2000 RPM
- inverter input voltage 660 V_{dc}
- inverter output current 200 A_{rms}
- mechanical power 40 kW
- module and winding dT/dt = 0

Results



	Switching f [kHz]	Module temp [C]	Efficiency [%]		
			1-2	2-3	1-3
Si power module	10	48	92.2	88.5	81.7
SiC power module	10	44	95.6	88.4	84.6
	15	44	95.0	88.8	84.4

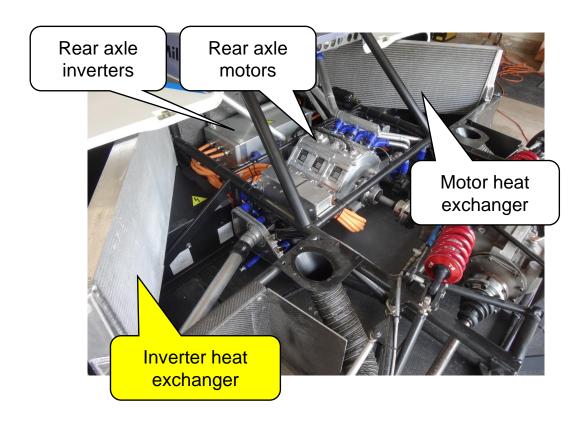
Results

Double pulse test: power module switching time and energy dissipation;

SiC diode module exhibit virtually no reverse recovery → higher efficiency

(and switching frequency, if required)

Application



Higher system efficiency allows downsizing the battery pack and inverter heat exchanger

- → lower vehicle mass and aerodynamic resistance
 - = better outright performance

Application

Application

