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Abstract
The geo-referenced regional exposure assessment tool for European rivers (GREAT-ER) is designed to support river basin
management or the implementation process within the EUWater Framework Directive by predicting spatially resolved exposure
concentrations in whole watersheds. The usefulness of the complimentary application of targeted monitoring and GREAT-ER
simulations is demonstrated with case studies for three pharmaceuticals in selected German watersheds. Comparison with
monitoring data corroborates the capability of the probabilistic model approach to predict the expected range of spatial surface
water concentrations. Explicit consideration of local pharmaceutical emissions from hospitals or private doctor’s offices (e.g., for
X-ray contrast agents) can improve predictions on the local scale without compromising regional exposure assessment.
Pharmaceuticals exhibiting low concentrations hardly detectable with established analytical methods (e.g., EE2) can be evaluated
with model simulations. Management scenarios allow for a priori assessment of risk reduction measures. In combination with
targeted monitoring approaches, the GREAT-ER model can serve as valuable support tool for exposure and risk assessment of
pharmaceuticals in whole watersheds.
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Introduction

A major problem for humankind is access to clean and
readily available drinking water. Therefore, protection of
groundwater and surface water against unwanted and po-
tentially harmful chemical contaminants is important. The
European Water Framework Directive (WFD) constitutes a
legal framework that imposes the protection of common
water resources on European states (EU 2000). The call
of the directive among other things is the good chemical
status of European surface waters. To achieve this goal,
exposure and risk assessment of micropollutants, including
pharmaceuticals, followed by development and implemen-
tation of reduction measures for critical compounds is

necessary. Currently, the WFD lists 45 priority substances
in Annex X of the directive and sets environmental quality
standards for each of these substances.

A prerequisite for the definition and implementation of
mitigation measures is knowledge of the exposure concentra-
tions of chemicals in the aqueous environment. This has led to
large monitoring efforts for so-called emerging contaminants
such as pharmaceuticals. To focus these efforts on potentially
harmful substances, a watch list was established in 2015
whose purpose is to enforce collection of concentration data
for those emerging pollutants for which available monitoring
data are considered insufficient. The first watch list included
diclofenac, three hormones (estrone (E1), 17β-estradiol (E2),
and ethinylestradiol (EE2)), and three macrolide antibiotics
(erythromycin, clarithromycin, azithromycin). The list is reg-
ularly reviewed in order to respond to new information and to
avoid monitoring of substances for longer than necessary. In a
recent review conducted by the Joint Research Centre (JRC)
of the EU, it was concluded that diclofenac could be removed
and the updated list should instead include the two antibiotics
amoxicillin and ciprofloxacin among thirteen other substances
(Loos et al. 2018).
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In the last years, numerous papers have been published
demonstrating the ubiquitous presence of pharmaceutically
active substances in surface waters all over the world (e.g.,
Ivešić et al. 2017; Chiffre et al. 2016; Nebot et al. 2015). The
monitoring data show a large variability of micropollutants’
surface water concentrations in time and space. Consequently,
each data point should always be interpreted in relation to
environmental conditions during sampling, e.g., values of
key parameters such as river flow. However, it is obvious that
permanent basin-wide monitoring of thousands of possible
contaminants is virtually impossible. Moreover, even if selec-
tion of sampling sites has been done considering local circum-
stances, spatial variability of the monitoring results can often
not be satisfyingly explained. At this point, geo-referenced
simulation models can be of great help for exposure and risk
assessment such as the GREAT-ER model (Kehrein et al.
2015). Other prominent examples are substance flow models
set up for Switzerland (Ort et al. 2009; Kuroda et al. 2016) and
the Netherlands (Coppens et al. 2015) or the LF2000-WQX
water quality model (Price et al. 2010).

The well-established model GREAT-ER (Geo-referenced
Regional Exposure Assessment Tool for European Rivers)
predicts spatially resolved exposure concentrations for
down-the-drain chemicals (Kehrein et al. 2015; Aldekoa
et al. 2013; Alder et al. 2010; Koormann et al. 2006; Feijtel
et al. 1998). Simulation results can be used to easily identify
river sites where elevated concentrations, e.g., above a defined
target value (PNEC or EQS), are expected. This information
can support targeted selection of sampling sites and compli-
ment the interpretation of monitoring data in terms of plausi-
bility. Additionally, simulations of management scenarios for
selected reduction measures and a priori evaluation of their
effectiveness can be very helpful for water managers.

The objective of this paper is to illustrate the capabilities
and limitations of GREAT-ER 4.1 using meaningful case
studies for selected pharmaceuticals in three different
German catchments. In particular, we demonstrate (1) the use-
fulness of the probabilistic model approach to consider natural
variability of river flow that is reflected by the temporal var-
iability of measured concentrations at selected sites, (2) the
explicit consideration of hospital wastewater emissions im-
portant for pharmaceuticals predominantly emitted at the lo-
cation of treatment, (3) basin-wide exposure assessment for
substances with low PEC and EQS values, and (4) the infor-
mative value of management scenario simulations.

The GREAT-ER 4.1 model software

How the model works

The GREAT-ER model calculates spatially explicit steady-
state concentrations of down-the-drain chemicals in

surface waters of entire catchment areas considering point
and non-point emissions from different sources assuming
more or less constant emissions over time (Kehrein et al.
2015; Hüffmeyer et al. 2009). In general, wastewater from
households, hospitals, and industry as well as runoff from
agricultural areas can be taken into account as emission
sources. Household emissions are treated according to the
place of residence using an average per capita consumption
value. In GREAT-ER 4.1, a hospital sub-model to investi-
gate the local effect of hospital wastewater on the concen-
trations of selected medicinal agents has been adopted. The
number of total patients (or beds) in hospitals has been
suggested as appropriate proxy for respective emissions
from a single hospital (Kuroda et al. 2016). Therefore,
GREAT-ER 4.1 requires a per patient consumption value
in this case.

The model uses mass balance equations that track the
chemicals along the emission pathways into surface water
including removal in wastewater treatment plants (WWTPs).
Sedimentation, volatilization, and degradation by photolysis,
hydrolysis, or biological processes are considered as pseudo-
first-order in-stream loss processes.Mass conservation applies
to each segment, so that the mass flow at the beginning cor-
responds to the mass flow at the end, unless it has been
changed by diffuse emissions or loss processes. In the model,
the river network is represented as a hydrological geometric
network which is subdivided into segments (edges) of maxi-
mum length of 2000 m. Nodes are set at all confluences, point
emission sites, and other points of interest (e.g., gauges, mon-
itoring sites, weirs). Emission loads from point sources (main-
ly WWTPs) are estimated by a series of submodules. The
loads are discharged into the receiving river at the respective
node and are then transported further downstream in the mod-
el. Loads are expressed in terms of mass per unit time and are
considered constant over time in order to obey to the steady-
state assumption.

The model requires a number of substance-specific input
parameters as well as environmental attributes. This encom-
passes physicochemical data, consumption, and use patterns
as well as removal efficiencies during sewage treatment. The
latter is modeled as simple percentage removal whose effi-
ciency depends on the specific treatment category (lagoon,
constructed wetland, bio filter, or activated sludge). Each river
segment possesses a vector of attributes, e.g., flow velocity
and river flow, which is used for the calculation of required
intermediate parameters such as travel time. Depending on the
available information, the user can choose between different
complexity modes for the different submodules. A detailed
description of the model equations is given in the appendix
of Kehrein et al. (2015).

Natural variability of environmental parameters, uncertain-
ty of substance parameters, and temporal fluctuation of con-
sumption patterns can be considered by a probabilistic Monte
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Carlo approach. As opposed to deterministic model runs, cor-
responding parameters are not fixed, but defined as probabil-
ity distributions of random variables. The distributions repre-
sent the expected frequency with which a parameter will take a
single value. Probabilistic model runs are performed iterative-
ly with parameter value vectors chosen from the probability
distributions. The model calculates concentration distributions
for each river segment mapping the expected range of the
temporal variability for the selected parameter combinations.
The output can be used to calculate any percentile of the re-
spective concentration distribution. Results are primarily pre-
sented as color-coded maps or concentration profiles along a
selected river course (see Figs. 2 and 4 in the case study
section). In addition, a number of options for in-depth analy-
ses of the results are implemented. Another key feature of the
GREAT-ER model is the scenario builder. It enables the user
to evaluate the effect of defined changes in boundary condi-
tions on the simulated concentrations. Potential scenarios in-
clude changes in consumption, technical retrofitting of sewage
treatment plants (tertiary/quaternary treatment), or re-routing
of wastewater.

How to prepare a GREAT-ER database

The GREAT-ER model core is delivered as Add-In for the
commercial software ArcGIS Desktop®. The GREAT-ER
philosophy follows the idea of river basin management as laid
out in the EU Water Framework Directive. This means that
model simulations are performed within whole catchments
including all watercourses with perennial flow. All required
data for the simulations must be stored in a catchment-specific
database. The databases need to have a standardized structure,
which is assigned during the so-called pre-processing. Here,
raw data are processed to form the topological river network,
to connect point sources (WWTP, industry, and hospitals),
and to assign other data (gauges, monitoring sites) to the re-
spective river segments.

Over the years, GREAT-ER has become increasingly
complex due to new simulation and analyses features to ful-
fill the needs of different users such as scientists, authorities,
(environmental agencies) and industry, and the demand for
the tool has continuously increased. However, one of the
major obstacles for widespread use of the model was the
laborious preparation of the required data set for the catch-
ment under investigation. Preparation of an executable data-
base for a selected river basin demands a number of pre-
processing steps, which has so far impeded broad application
of the model by different users. This problem has been partly
overcome since the freely available model version now
comes along with a semi-automated data processing routine
for catchment preparation, several tutorials, and an exempla-
ry dataset of a hypothetical catchment with which users can
set up a GREAT-ER database and familiarize themselves

with its practical use.1 This forms a sufficient knowledge
base for interested users to generate their own catchment
database and proceed with the full version GREAT-ER 4.1.

A prerequisite for GREAT-ER simulations is assignment
of realistic flow rates for average conditions (MQ), dry weath-
er (MNQ), and the 50th percentile (Q50) to each river seg-
ment. There are numerous hydrological models (e.g., SWAT
or NASIM) that can be used to estimate these data indepen-
dently and import them into the GREAT-ER database. The
GREAT-ER pre-processing provides an alternative semi-
automated procedure to estimate river flow for each segment
from spatially resolved runoff data for the whole catchment.
Regardless how the MQ and MNQ values for each segment
were estimated, they are calibrated against available gauging
data before use.

Substance-specific parameters have to be entered manually
into the respective fields of the database. Selected attributes in
the database (e.g., number of people connected to a treatment
plant) can be edited to keep it up-to-date.

Case study simulations

For the application of the model, three different pharma-
ceutical compounds in three German river basins of differ-
ent size (see Fig. 1) have been simulated. The specific
characteristics make them suitable to demonstrate some
of the main benefits of the new model version for exposure
(and risk) assessment. The selected substances were the
antibiotic clarithromycin, the X-ray contrast agent
iopamidol, and the natural hormone ethinylestradiol
(EE2). All simulations were performed applying the imple-
mented Monte Carlo simulation routine with 10,000 model
realizations. All substance properties used for the model
simulations are given in Table S1 in the SI. The location
of the three catchments is shown in Fig. 1; basic character-
istics are summarized in Table S2 in the SI.

Results and discussion

Simulation for clarithromycin in the Main catchment

Figure 2 shows predicted mean environmental concentra-
tions (PEC), in the whole river basin in form of a color-
coded map. This provides a quick overview of the spatial
distribution of expected concentrations in the whole water-
shed and allows for easy identification of river segments
with elevated concentrations. The environmental quality
standard (EQS) of 130 ng/l for clarithromycin defined in
the EU Water Framework Directive (WFD) (Carvalho

1 Program details available at: www.usf.uni-osnabrueck.de/en/forschung/
applied_systems_science/great_er_project
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et al. 2015) is only exceeded in a few small creeks with
mean concentrations of up to 187 ng/l (red segments
marked by circles in Fig. 2).

The EU Commission Directive 2009/90/EC (EU
2009) specifies that an exceedance of EQS is incurred
when the mean value of all measurements is above this
threshold value. From the simulation results, it can be con-
cluded that the majority of the river network will meet this
regulatory criterion. Nevertheless, due to the large variabil-
ity of river flows, concentrations may occasionally exceed
the EQS at more sites even when mean values are below
(Ort et al. 2010a). This can be investigated using the results
of the probabilistic simulation. The probability distribution
represents the expected variation of concentrations over
time due to discharge fluctuations and input parameter un-
certainties. Comparison with monitoring data was per-
formed at six sites (locations shown in Fig. 2), for which
multiple clarithromycin measurements were available (see
Fig. 3). These sites cover a wide range of average river
flow in the catchment going from 2 m3/s (site 6) up to more
than 200 m3/s (site 1). Figure 3 demonstrates that the range
spanned by the 10th and 90th percentile of simulated con-
centrations (displayed in grey) well represents the temporal
variability of the monitoring data points at the six sites. At
least 80% of the data points are within the respective prob-
ability range.

On top, the Dean-Dixon test (Dean and Dixon 1951) for
small samples (n < 30) identified the two extremely high
data points at sites 1 and 6, respectively, as outliers at a
significance level of p = 0.01. The high concentration val-
ue of 100 ng/l at site 6 (Stiegmühl-Steg) may be explicable
by specific temporal emissions due to the occurrence of
combined sewage overflow (CSO) events. In the sampling
period, intense precipitation in the area was recorded
resulting in high flow rates approximately 50% above an-
nual mean flow. It could well be that the water sample was
affected by a recent CSO event having introduced large
amounts of untreated wastewater. Consequently, emission
loads of clarithromycin may have temporally jumped up
even overcompensating the dilution effect by the higher
flow rate.

Simulation of iopamidol concentrations in the Lenne
catchment

X-ray contrast agents such as iopamidol are applied exclusive-
ly in hospitals or private doctor’s offices for radiology. More
than 90% of the applied dosage is excreted via urine within the
first 24 h after administration (Duchin et al. 1986). In
Switzerland, approximately 50% of X-ray contrast media are
administered to stationary inpatients, and 75% of the dosage is
already excreted in the urine within 4 h (Weissbrodt et al.
2009). Emissions from stationary treatments will surely enter
the wastewater cycle at the location of medicinal treatment.
We presume that additionally the first urinary excretion of
treated non-stationary patients within the 4-h windowwill also
occur at the treatment site so that 87.5% of the total adminis-
tered dose was emitted there.

For GREAT-ER model simulations, the iopamidol fraction
excreted at the site of medicinal treatment (87.5%) was allo-
cated to the eleven hospitals located in the Lenne catchment
proportional to the total number of patients treated in the in-
dividual hospital. The resulting emission loads are then routed
into the receiving sewage treatment plant, since hospitals are
not directly emitting their wastewater into the river basin. The
remaining emission fraction from prescriptions to non-
stationary patients (12.5%) is still considered by the usual
per capita approach according to the place of residence prin-
ciple. This fraction represents the total iopamidol emission
from patients after leaving the hospital or private doctor’s
office and returning home. Figure 4 shows the result of the
probabilistic simulation (n = 10,000) based on these assump-
tions (standard scenario).

The simulation results were compared with monitoring da-
ta for iopamidol at six locations (M1–M6) provided by the
State Agency for Nature, Environment and Consumer
Protection, North Rhine-Westphalia for the period from
2009 to 2015. Five sites are located along the Lenne River,
while another one (M6) is in a small tributary, which enters the

Fig. 1 Location of the three German case study catchments: Main (1),
Lenne (2), and Naab (3)
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Lenne between M1 and M2. This site had been sampled on
purpose to check the possible influence of the nearby hospital.
Figure 5 (left) shows that the underlying model assumption of

evenly distributed per patient consumption in hospitals (stan-
dard scenario) does not well reflect the overall situation of
iopamidol concentrations in the Lenne basin. It turned out that

Fig. 2 Color-coded map of average clarithromycin concentrations in the Main catchment predicted by GREAT-ER; hot spots (sites with highest
concentrations) are highlighted by red circles; the six monitoring sites are marked as black triangles

Fig. 3 Comparison of clarithromycin measurements taken between 2010 and 2017 at the monitoring sites 1–6; sorted according to MQ; marked in grey
the 10th-to-90th percent interval of 10,000 simulations runs. Two outliers according to Dean-Dixon test (p < 0.01) are marked with a triangle
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the standard scenario underestimates the concentrations mea-
sured at M6, while data points at M1 were overestimated (see
Fig. 5). At M6, even the 90th percentile of the simulation (31
μg/l) is below the four data points (46–110 μg/l) indicating
stronger local influence of the nearby hospital. Further down-
stream (M2–M5), however, the results of the standard scenar-
io simulation agree well with monitoring data.

It has already been shown that for some pharmaceuti-
cals, the size of the hospitals alone could not always ex-
plain observed variations in hospital emissions (Kuroda
et al. 2016; Kern et al. 2015). Thus, an overall per patient
consumption without taking into account the presence or
absence of specialized departments as proposed by Ort
et al. (2010b) is not generally applicable. For more real-
istic local emission estimates, specific information such as
department structure, stationary patients, and bed or dos-
age numbers should be considered if available. Since
iopamidol is above all administered in specific radiology
departments, the total number of patients may not be the
best proxy for estimation of individual hospital emissions.
Detailed review then revealed that there is only one hos-
pital in the area, for which a radiology department is of-
ficially reported. Most likely, this hospital carries out the
majority of radiological treatments with contrast agents
relative to the total case numbers per year, as none of
the other hospitals in the area is specialized in this field.
Thus, for a second scenario, iopamidol emissions from
hospitals were individually adjusted to increase the degree
of realism in the model assumptions: The receiving
WWTP of the respective hospital with radiology depart-
ment was now loaded with an above average fraction of
the iopamidol emissions, while the other hospitals’ con-
tributions were decreased accordingly in order to keep the
total emission constant. Before the adjustment, iopamidol
emissions from hospitals were evenly distributed depend-
ing on their size (number of beds and patients). In the
adjusted scenario, the single hospital with the radiology
department is assumed responsible for 90% of the
iopamidol hospital emissions (79% of overall emission).
WWTP emissions from diffuse excretion away from the
treatment location remained unchanged at 12.5% of total
emissions, since reallocation of hospital contributions
does not effect this number. Figure 5 shows simulated
concentrations of iopamidol for the two scenarios com-
pared to measured data.

The spatial redistribution of iopamidol hospital emissions
in the model leads to a much better agreement withmonitoring
data as compared to the standard scenario at M1 and M6 (see
Fig. 5, right), while further downstream (M2–M5), the previ-
ous good agreement persists. The model thus allows for con-
sideration of local impacts of hospitals on surface water con-
centrations for specific pharmaceuticals, while the regional
evaluation is only marginally affected. The analysis for

iopamidol in the Lenne basin demonstrates that substances
predominantly applied in large amounts at hospitals or private
doctor’s offices experience a shift in their spatial concentra-
tion distribution that may locally be dependent on the presence
or absence of specific medicinal departments.

Simulation for ethinylestradiol in the Naab catchment

EE2 was chosen as exemplary compound, because it was on
the first WFD watch list (2013) and remained part of the
second edition (2018). Although extensive monitoring data
have been already collected across Europe, the informative
value of the data is still low due to the insufficient limit of
quantification (LOQ) of the analytical methods. Only half of
the responsible countries were able to quantify EE2 concen-
trations in the range of the EQS or below (Loos et al. 2018).
This is where GREAT-ER simulations can be supportive,
since for EE2, the model provides the sole possibility to get
a comprehensive picture of the expected concentration range
in a whole river basin even when concentrations are below the
LOQ.

The standard scenario representing the predicted status quo
of average EE2 concentrations in the Naab catchment is
displayed on the left-hand side of Fig. 6. The map reveals that
EE2 concentrations in most of the river reaches do not exceed
the currently proposed EQS of 35 pg/l (Loos et al. 2018).
Moreover, only 65 km of the 2077 km flow length in the
Naab basin downstream of WWTPs is predicted to exhibit
EE2 concentrations detectable with the standard analytical
procedures. Thus, comprehensive exposure assessment by
monitoring cannot be achieved for EE2.

It is also seen that concentrations are highest in small creeks
receiving wastewater from one of the 102 small treatment
plants serving less than 1000 inhabitants (marked as small
green dots in Fig. 6) with unfavorable dilution ratios.
GREAT-ER provides a valuable tool to support authorities
in decision-making by a priori simulation of the effect of
mitigation measures. Therefore, we investigated the effect of
a common strategy in the implementation process of the WFD
in Germany, namely, re-routing of wastewater from these
small WWTPs to the closest treatment plant with higher ca-
pacity (e.g., SMUV 2018; UM 2017). This closest distance
boundary condition has been selected to minimize the length
of additional sewer pipes for re-routing.

The result of this management scenario is shown in Fig. 6
(right) as relative comparison with the standard scenario. For
river reaches displayed in green, PEC values in the action
scenario are lower by at least 5% compared to the reference
(improvement), while red river parts exhibit higher values
(deterioration). Concentration changes of less than ±5% are
regarded insignificant and thus marked gray.

In total, lower concentrations are predicted for 655 km flow
length (32%) after re-routing, while only 91 km of the river
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Fig. 4 Color-coded map of the simulation results of a GREAT-ER model run (n = 10,000) for iopamidol in the Lenne catchment. The six monitoring
sites (black triangles) are numbered from M1 to M6

Fig. 5 Comparison of the 10th-to-90th percent predicted concentration
intervals of two probabilistic simulations (each n = 10,000). On the left
(orange): interval for the standard scenario. On the right (blue): simulation

with consideration of local hospital consumption patterns. Monitoring
sites M1–M6 are arranged according the flow path of the Lenne; M6 is
integrated according to the position of the tributary
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system shows an increase in concentration of more than 5%.
6.1 km is now predicted to be above the EQS where there was
no exceedance before, while 38.9 km is now below, resulting
in a net relief of 32.8 km in sum. This is a direct consequence
of the closest distance boundary condition. In the action sce-
nario, redirection of wastewater does not always occur strictly
downstream, because the closest larger treatment plant was
sometimes located in another tributary’s sub-basin. In this
case, water managers would have to evaluate different alter-
natives to find the best compromise between cost and effect.
This case study demonstrates how the GREAT-ER model can
support them to do so. In the first step, it provides information
about the actual exposure situation (status quo) which allows
for deciding whether there is a need for action at all. In the
second step, the expected effect of selected measures can be
evaluated in order to allow for implementing the most prom-
ising strategy taking into account cost-benefit considerations.
In the case of EE2, GREAT-ER simulations predict mean
concentrations in the Naab basin mostly below the current
EQS so that immediate action does not seem to be necessary.

Conclusions

The geo-referenced steady-state model GREAT-ER simulates
the spatial concentration distribution under the assumption of
steady state for specific boundary conditions. It was shown
that probabilistic simulations considering natural variability of
river flow and/or uncertainty of model parameters well predict
the expected range of concentrations. We conclude that expo-
sure assessment in river basins should not solely rely on a
restricted number of monitoring data but make use of the
complementary GREAT-ER model approach.

However, the general assumption of more or less evenly
distributed emission patterns does not hold true for pharma-
ceuticals administered in large fractions in hospitals or private
doctors’ offices. While this does not largely affect exposure
assessment on the regional scale, local assessment may fail for
such compounds if the flow path of hospital wastewaters is not
explicitly considered in the model representation.

Exposure and risk assessment for micropollutants at low
concentrations in the range of the limit of detection constitutes

Fig. 6 Left panel: PEC/EQS standard scenario. Right panel: relative change in PEC between action scenario and standard scenario for an exemplary area
in the Naab catchment
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a particular challenge. A prominent example for this dilemma
is EE2 due to its low exposure concentrations and the low
EQS value proposed. While in such cases monitoring alone
is not sufficient for basin-wide exposure assessment, this can
be achieved with the support of the GREAT-ER model.

An essential part of the GREAT-ER software is the ability
to create and analyze specific action scenarios. These features
can be used for a priori assessment of measures on the catch-
ment scale. For example, re-routing of wastewater from
decentralized small WWTPs to larger ones has been shown
to provide an option for improvement of the water quality in
small creeks with unfavorable dilution factors.

This may be all the more important as the EU recently has
run so-called “fitness checks,” assessing whether EU
Directives are fit for purpose by examining their performance.
The WFD was checked aside the Environmental Quality
Standards Directive, the Groundwater Directive, and the
Floods Directive (EU 2019). While this fitness check states
that in Germany, the implementation of theWFD has led to an
improvement of the state of numerous waters and the knowl-
edge on pollutant loads and water quality could be increased
considerably, it adds that most of Germany’s water bodies will
not achieve the 2027 targets (Vermeulen et al. 2019). We
conclude that complimentary use of targeted monitoring and
geo-referenced modeling constitutes a promising option to
save time and money while completing these tasks.
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