How to stimulate innovation to reduce the environmental cycle of medicines and multi-resistant bacteria Dr. Maximilian Hempel Deutsche Bundesstiftung Umwelt ### CONTENT - 1. DBU initiative "Sustainable Pharmacy" and some project examples - 2. How to apply for funding at DBU # **Emission pathways of pharmaceuticals entering the environment** # **Emission pathways of pharmaceuticals entering the environment** ### Dissimination of antibacterial agents and antibiotic resistances in the environment ### Dissimination of antibacterial agents and antibiotic resistances in the environment # Approaches for a more sustainable pharmacy ### **European authorization of pharmaceuticals:** - environmental risk assessment of veterinary (since 1998) and human (since 2006) pharmaceuticals - Restrictions, if environmental risks are proven # Approaches for a more sustainable pharmacy ### **European authorization of pharmaceuticals:** - environmental risk assessment of veterinary (since 1998) and human (since 2006) pharmaceuticals - Restrictions, if environmental risks are proven ### But... - only relevant for **new** drugs - environmental risks not relevant for approval of human pharmaceuticals - No subsequent assessment of older drugs - Example for denied approval: contraceptive for pigeons - Efficacy unclear, ecological effects and chemical fate of active ingredients ethinylestradiol und levonorgestrel # SHORT-, MEDIUM- AND LONG-TERM MEASURES FOR REDUCTION OF PHARMAECUTICALS IN THE ENVIRONMENT **Table 1**Short-, medium- and long-term measures for the reduction of pharmaceuticals in the environment. | Precedence | Human Pharmaceuticals | Veterinary Pharmaceuticals | |-------------|--|--| | Short-term | Avoid questionable prescriptions Regular education and training of doctors and medical staff Improvement of hygienic standards and hospital management Avoid the disposal of pharmaceuticals via sink or toilet Implementation of a take-back system for drugs Development of technical processes to eliminate trace substances in sewage treatment plants Reduce effluent emissions from pharmaceutical production facilities Extensive monitoring of active ingredients in the environment and their impact on living organisms | • Extensive monitoring of active ingredients in the environment and their impact on living organisms | | Medium-term | Change prescriptions to more environmentally-friendly drugs Change galenics of drugs to minimize the excretion of the active ingredients Inclusion of relevant aspects of pharmaceuticals for the environment to sustainability and environmental reports of pharmaceutical enterprises | | | Long-term | Human and veterinary pharmaceuticals New development or redesign of pharmaceuticals, e.g., addressing "benign by design" or drug targeting Improvement of diagnostics to personalize healthcare, e.g., personalized medicine Incentives for pharmaceutical manufacturers to design benign products | | # SHORT-, MEDIUM- AND LONG-TERM MEASURES FOR REDUCTION OF PHARMAECUTICALS IN THE ENVIRONMENT **Table 1**Short-, medium- and long-term measures for the reduction of pharmaceuticals in the environment. | Precedence | Human Pharmaceuticals | Veterinary Pharmaceuticals | |-------------|--|--| | Short-term | Avoid questionable prescriptions Regular education and training of doctors and medical staff Improvement of hygienic standards and hospital management Avoid the disposal of pharmaceuticals via sink or toilet Implementation of a take-back system for drugs Development of technical processes to eliminate trace substances in sewage treatment plants Reduce effluent emissions from pharmaceutical production facilities Extensive monitoring of active ingredients in the environment and their impact on living organisms | • Extensive monitoring of active ingredients in the environment and their impact on living organisms | | Medium-term | Change prescriptions to more environmentally-friendly drugs Change galenics of drugs to minimize the excretion of the active ingredients Inclusion of relevant aspects of pharmaceuticals for the environment to sustainability and environmental reports of pharmaceutical enterprises | | | Long-term | Human and veterinary pharmaceuticals New development or redesign of pharmaceuticals, e.g., addressing "benign by design" or drug targeting Improvement of diagnostics to personalize healthcare, e.g., personalized medicine Incentives for pharmaceutical manufacturers to design benign products | | ### **DBU** - initiative "sustainable pharmacy" #### Goals: - Reduce the emission and the impact of pharmaceutical residues in the environment - increase resource-efficiency production of pharmaceuticals - 3 calls (20.8.2012, 5.11.2013, 15.1.2015) - Funded projects: | year | Funded projects (applied projects) | Subsidies (Total costs of the project) | |-------|------------------------------------|--| | | | | | 2013 | 6 (31) | 2,5 Mio. € (4,0 Mio. €) | | 2014 | 7 (31) | 2,6 Mio. € (3,8 Mio. €) | | 2015 | 5 (23) | 1,9 Mio. € (2,8 Mio. €) | | 2016 | 1 | 0,4 Mio. € (0,4 Mio. €) | | total | 19 | 7,4 Mio. € (11 Mio. €) | ### Can biogas plant eliminate antibiotics? #### Issue: 200 Mio. t manure contain ca. 200 t antibiotics (Germany2014) ### Project goals: - Increase elimnating rate for antibiotics - Investigate fermentation process by varying the process parameter and adding enzymes - Develop recommendations for biogas plants AZ 31812: "Elimination of veterinary medicines through effective manure treatment "; Justus Liebig University Giessen, PD Dr. Spielmeyer; Subsidies: 344 k €; runtime: 2015 - 2018 ### Can biogas plant eliminate antibiotics? #### Issue: 200 Mio. t manure contain ca. 200 t antibiotics (Germany2014) ### Project goals: - Increase elimnating rate for antibiotics - Investigate fermentation process by varying the process parameter and adding enzymes - Develop recommendations for biogas plants #### results: - A slight reduction of emitted sulfonamides and tetracyclines - <u>But</u>: antibiotics are not eliminated, but adsorptive bound to substrate - Biogas plants are no barrier for antibitics !!! AZ 31812: "Elimination of veterinary medicines through effective manure treatment "; Justus Liebig University Giessen, PD Dr. Spielmeyer; Subsidies: 344 k €; runtime: 2015 - 2018 ### Is sow cycle control possible without drugs with endocrine function in the environment? ### **Situation** - In pork farming ovulation is synchronized by medicinal cycle control - Advantageous for feeding, hygienic status & livestock health - But: endocrine function of drugs ### Goals: - Develop a time-released drug using a peptide hormone - agent (Gonadorelin[6-D-Phe]) is completely metabolized in the animal ### Current status: waiting for results of pre-clinic and endocrinological results Veyx-Pharma GmbH , Universität Leipzig , LMU München, L.B. Bohle GmbH, subsidies: 1.055 T €; 2013 - 2019 DBU AZ 30815-32 & DBU AZ 33529-32; # Can mastitis be treated without antibiotics? ### DBU - Develop a therapeutic agent with living lactic acid bacteria - Reduce the use of antibiotics and prevent the formation of antibiotic resistance - Reduce the loss of milk due to waiting times ### Results: - bacteria are effective for mastitis treatment - Bacteria are cultivatable, stable, storable - Next: application concept and field studies ## Can Bacteriophages help to reduce the amount of antibiotics in poultry husbandry? ### Situation - Large amounts of antibiotics used in poultry husbandry - high rates of antibiotic resistance, e. g. ESBL-E. coli ### Goals: - Use bacteriophages, the natural antagonists of bacteria, to reduce resistant germs specifically - Reduce amount of antibiotics by 30% ### Current status: Ongoing project; laboratory and stable experiment produce different results; time of dosage seems to be important; # Can galenic formulation help to minimize emission of pharmaceuticals? ### Project goals: - Improved formulation for oral medication - Reduce contamination in the stable's surrounding - Prevent residues of pharmaceuticals in drinking troughs ### action plan: - improve the bioavailability of drugs to reduce the amount of the active substance → less excretion - develop physical methods in order to reduce drug residues in water pipelines #### Current status: Ongoing project; optimized formulation produced; invivo-experiments with pigs in a stable are running X Sammelstellen für Sedimentationsstaub Luftprobennahmepumpe ### Is it possible to develop degradable Pharmaceuticals? ### Problem: - Cyprofloxacin is a widely used antibiotic - Cyprofloxacin frequently detected in water samples ### Goal: - Benign alternative for Cyprofloxacin - Degradable after leaving the body ### Procedure: Using QSAR (Quantitative Structureactivity relationship) for prediction ### Results: - Improved new lead compound - Synthesis of new antibiotics; degradation test afterwards = successful - BUT: Till now no industrial partner # Is the actual sustainability assessment in the pharmaceutical industry appropriate? # Is the actual sustainability assessment in the pharmaceutical industry appropriate? AZ 33011-31 "Sector specific LCA for pharmaceutical products and processes"; TU Berlin; Subsidies: 456 k €; runtime: 2015-2019 ### CONTENT - 1. DBU initiative "Sustainable Pharmacy" and some project examples - 2. How to apply for funding at DBU ### **Deutsche Bundesstiftung Umwelt** - founded in 1990 - 1.28 bn € endowment capital, today 2,2 bn € - appr. 50 mio € for project funding p. a. ### criteria - innovation - exemplary - environmental benefit ### A typical project, funded by DBU - Small/medium enterprise is engaged - Cooperation of partners (can, does not have to) - Typical finance volume: 100 400 T€ - Duration: 12 36 months - Financing of enterprises: 50% - salary, overhead, material costs, travel expenses, contracts - Financing Universities: 100 % - salary, material costs, travel expenses, contracts (no overhead) ### What to do? Find a German partner (university, enterprise, NGO, ...) Write a short proposal (3-6 pages, German) \leftarrow - -DBU is evaluating Who is applying? What is the aim of the project? Costs? Duration time? Write a complete proposal (workplan, costs, ..) • DBU & extern experts are evaluating decision ### THANK YOU FOR YOUR ATTENTION **Max Hempel** E-Mail: m.hempel@dbu.de www.dbu.de