

Results

Survey conducted between 13.06.2017 and 26.06.2017

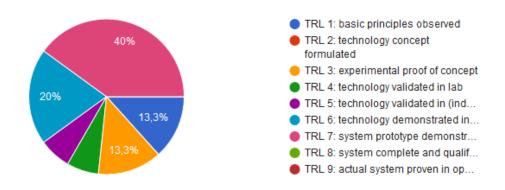
15 answers in total (almost all project partners participated)

1 Definition of Automated Driving

	Automated Driving	
Basics	 Computer System 	
	 Range of automation levels (driver assistance to full 	
	automated driving)	
	 Systematization: SAE LEVELS for automation 1-5 	
Funtionality/Capabilities	 Vehicles use processes of control to perform (some or all) 	
	(predefined) driving tasks	
	 Smart and Connected (V2I, V2V) 	
	 Preprogrammed systems 	
	 Learning systems that can react to certain changes in their 	
	environment	
	 Drives in mixed traffic on public roads without difficulty 	
	 Allows passengers to conduct other activities (e.g. sleeping) 	
Role of Humans	– No human driver	
	 Without any human interference / human 'driver' does not 	
	and cannot interfere	
	 Human operator leaves as much responsibilities as possible 	
	to the system	
	 Steward as back-up 	
	 Human driver is supported by automation 	
Fields of application	 Applicable to cars, trucks and buses (for public transport) 	
	 Transportation of goods and people 	
Fields of application		

Remarks/Questions regarding a I-AT Definition for Automated Driving

- Which SAE Level could be the reference for I-AT?
- Which specific driving tasks are included in Automated Driving? Which ones are not?
- What extent of "Learning" or "Reacting" should the I-AT definition include? There is no consensus regarding the role of humans in driving, but rather a range of possible occurrences (probably related to a very broad understanding of Automated Driving amongst the partners)
- Does "automated" mean, that humans have no possibility to influence the vehicles behavior at all?


Page 2/12

June 2017

2 TRL of Automated Driving in general

4. Based on this definition, which technology readiness level (TRL) did Automated Driving in general reach so far (as of June 2017)?

15 Antworten

Most partners see Automated Driving as a technology that has been demonstrated in an industrially relevant environment or even an operational environment (TRL 6/7 - 60 % of answers). If this is the case, the technology, if proven to be feasible and successful in an operational context, should soon be completed and deployed for commercialization. Nevertheless, there is also a group of project partners (TRL 1/2 - 15 % of answers), that see the technology only in the early stages of development.

The average TRL assessed by the project partners is 5.1. This average assessment is mostly in line with the ERTRAC Automated Driving Roadmap (2015) that envisages pilots/large scale demonstrators (TRL 5-7) for Conditional Automated Driving (SAE level 3) for 2017 and demonstrations for Automated Urban Road Transport (SAE level 4/5) for 2018.¹

¹ http://www.ertrac.org/uploads/documentsearch/id38/ERTRAC_Automated-Driving-2015.pdf

Page 3/12

June 2017

Interest of Project Partners 3

Basics	 General Interest in the innovative topic 	
	 Major trend in the development of a safer, more efficient and more sustainable traffic and transport system 	
Knowledge	 Automated buses as an alternative for public transport (in rural areas)? 	
	– Is the infrastructure ready for the future?	
	 New Mobility Concepts 	
	 Links to Electro Mobility 	
Project Partner	 Reinforcing position in research and education 	
Reputation/Expertise	 Important topic for principals (ministries, authorities, 	
	companies, etc.)	
Asset for Future Business	 Vehicle Development/ Manufacturing 	
Opportunities	 Consulting 	
	 Transportation of passengers/goods (especially last mile) 	
Influence	 Law and policy making process 	

Results

June 2017

Page 4/12

4 Issues

The least of the least			
Technical	 Sensor data fusion 		
	 System learning 		
	Higher Speeds (> 50 km/h)		
	Mixed traffic		
	Reaction time, esp. related to fast and unforeseen		
	circumstances and movements of cyclists and pedestrians		
	– Safety		
	 Cybersecurity 		
	 Optimization of physical and digital infrastructure and 		
Legal	 Legal uncertainty 		
	 Special vehicle permissions needed 		
	 Current regulations do not allow for automated driving on a 		
	regular basis		
Human Factor	 Interaction between humans and automated vehicles 		
	 How will current drivers react to this technology 		
	 Missing consensus on what is "safe" 		
	 Confidence and Acceptance of passengers 		
	 Social security 		
	 Comfort, user-friendliness and reliability 		
Deployment	 Diversification of risks and responsibilities between driver, 		
	vehicle owner, insurances, car producers and the state		
	 New distribution of objects of regulation between car 		
	registration law and traffic law		
	 Regulation for new business models (esp. in public transport) 		
Impact	 Traffic Safety, efficiency, sustainability and comfort 		
	 Crucial effects are to be expected, but project partners only 		
	have simulated ideas about impact		
	 Needs further research 		

June 2017

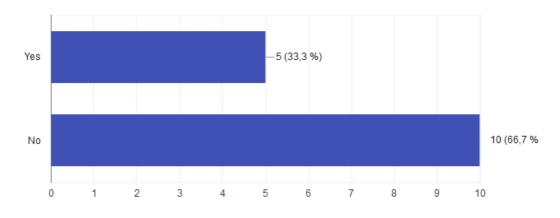
Page 5/12

Most important: 5

- Technical capabilities of companies involved, feasibility of autonomous driving in the next 30 years is yet unclear
- Legislation influenced by the automotive industry, hinders innovation
- Unclear definitions -
- Current regulatory framework -
- Managing the overall innovation process -
- Safety -
- Acceptance -
- Sensor data fusion, deep learning -
- Permissions for autonomous cars to drive on public roads -
- the state of technology; more specific: the 'intelligence' of the software -
- Fleet Management
- **Driving Operations** -
- _ Insurance
- Optimizing the interaction between vehicle, human driver/passenger and infrastructure -

The project partners name a very diverse set of issues that are crucial for their organizations which reflects the diverse composition of the partnership. Recurring issues are technical feasibility of the system in general and certain operational aspects, safety, acceptance as well as the regulatory framework.

Page 6/12

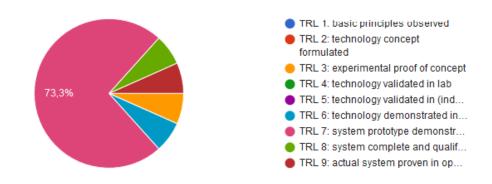

nesures

June 2017

6 Objections

8. In your organization/company, were there any voices that raised objections regarding the involvement in a project related to Automated Driving?

- Involvement of public authorities in technology innovation usually linked to private companies
- Feasibility of automation (in urban contexts)
- Complexity of Automated Driving
- (Risky) Technology push
- Human-out-of-the-loop issues
- Acceptance
- Future job losses through Automated Driving


Page 7/12

June 2017

7 Project I-AT

9. Which technology readiness level (TRL) of Automated Driving is addressed within the project I-AT?

15 Antworten

Almost 75 % of all project partners think that I-AT addresses TRL 7 (system prototype demonstration in operational environment) but there are also project partners that think I-AT will reach TRL 8 or 9 and prove the operability and market readiness of automated driving. Therefore, the average TRL attributed to I-AT is 6.9 – almost two levels above the TRL assessed for Automated Driving in general. Obviously, the project partners have high expectations regarding the scope and impact of the project I-AT.

8 Decision to participate

- General (research) focus of the company/organization
- Gaining experience/knowledge, expanding portfolio
- Build consulting service capacity
- Shape the policy- and law-making
- General Interest
- Continuation of a previous projects or research (e.g. moving from demo to functional automated transport with WEpods)
- Future business opportunity
- Transition towards sustainable mobility

Results

June 2017

Page 8/12

Obstacles 9

- Financial issues, esp. related to funding in European projects (prefinancing) and procurement rules
- Current regulations are to strict -
- High dependency on I-AT project declarations causes a low productivity, bad teamwork, and endangers the project result
- Involvement of local authorites takes more time than expected -
- (Missing support from German authorities)² -

10 Stakeholders

	Internal	External
Research/Development	 Spring Innovation EL-KW RES TU Delft Han University Robot Engineering Robot Care Systems 	Other researchers
Transport Companies	– ASEAG	Other transport companies Other logistics companies
Employees	 Staff association 	Trade unions
Authorities	 Road Authority Aachen City of Aachen City of Vaals City Region Aachen 	Other authorities Other politicians
Financing	 Interreg A 	Other funding opportunities
Project Development	_	Other project developers
Customers/Clients		Users/Passengers possible future Clients with related issues Other vehicle operators Other vehicle manufacturers Other service providers

² Answer given was non-distinctive

June 2017

Page 9/12


11 Stakeholder cooperation within I-AT so far

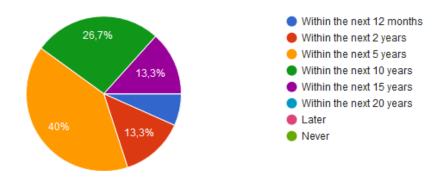
Project partners overwhelmingly consider the cooperation with stakeholders to be good, constructive and collaborative. Some state the exchange of relevant information works well but that there also have been some hard discussion with stakeholders (no further details given).

12 Stakeholder Issues

12d. Did the stakeholders address specific issues or did they raise objections related to Automated Driving in general or the project I-AT?

15 Antworten

	Internal	External
Project management	 Ongoing discussions about responsibilities Exact project goal, relation to full autonomous driving 	
Deployment	 Types of roads where automat Interaction between automate users 	•


Page 10/12

June 2017

13 Market Introduction

13. According to your assessment, when do you expect a technology readiness that allows for a successful and broad market introduction of Automated Driving?

15 Antworten

The majority of project partners expect autonomous driving to ready for market introduction within the next 5 or 10 years. This assessment aligns more or less with the project partners' views regarding the current TRL of Automated Driving in general as well as the goals for I-AT.

nesuits

June 2017

Page 11/12

14 Requirements for market introduction

		Remarks/Questions
Technical	 Reliable and able technology Safety in an expanding range of roads, traffic densities and weather conditions successful pilot projects with a fleet of vehicles 	
Legal	 Adjustment of the legal framework (esp. possibility to drive without driver/steward) 	
Human Factor	AcceptanceFavourite choices of users	
Deployment	 Costs for the automated system must be cheaper than using human drivers Needs a reliable company as a one stop service provider (responsible for vehicle, software, hardware, etc.) Affordability Quality of automated vehicles 	
Impact	-	

June 2017

Page 12/12

15 Possibilities and Risks of Automated Driving for project partners

	Possibilities	Risks
Basics	_	 Underestimating the importance of research in the implementation process Bankruptcy of partners Failure to achieve project objectives Bad press for the project Interdependency among project partners
Knowledge	 Vehicle Automation New forms of mobility 	 Investing in a technology that will not be succesful in the end technology may advance too slow
Project Partner Reputation/Expertise	 Funding opportunities from research grants and industrial funding Deploying automated vehicles as launching customer 	 Some partner input will only be visible if there is enough budget to materialise it
Asset for Future Business Opportunities/Funding	 Need for further research Use knowledge to create specific business cases (esp. in consulting and engeneering) More flexibility for customers Cost-saving in public transportation 	 Insufficient profit from technology New competitors in (public) transportation (e.g. Carsharing) Managing demand/growth
Influence	 Participation in the legislative process Creating a look and feel for services 	 Internal resistance against Automated Driving (e.g. from staff associations)

30 June 2017

Contact person: Dennis Nill | IKEM Magazinstraße 15-16 | D-10179 Berlin Tel. + 49 (0) 30- 408 18 7017 dennis.nill@ikem.de