

WP 2.6. Valorization

Presentation 12 September 2019 Wertle

Goal:

Biorefinery of byproducts from agri-related processes and isolation of novel microorganisms for bioconversion

Goal

Extraction of protein from different sources

Horse manure

Sewage plant digestate

Enzymatic modification of protein

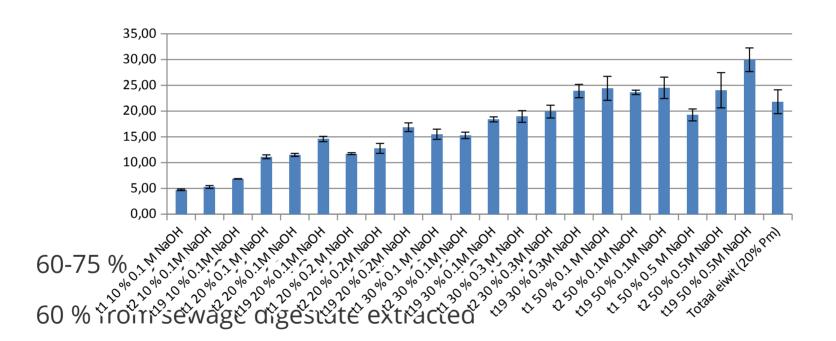
Bioactivity

Investigate growth performance of industrial micro organisms

Isolation and characterization of novel microorganisms

Cellulolytic activity

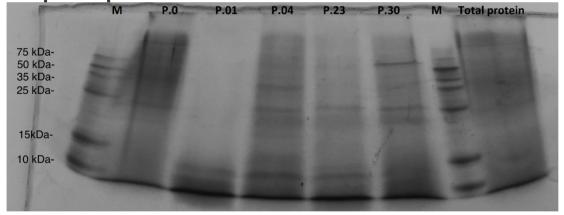
Biobased building block production


- D-lactic acid

- L-lactic acid

Results

Protein from different sources



Results

Hydrolysis and validation of extracted proteins

unique protease collection

bioactivity assays

N-source in fermentations => YEA

Results

bioactivity assays

inhibition of "pathogenic" mo's

Bacillus cereus

Listeria monocytogenes

others..

Derived from manure, so difficult to apply in food/feed/cosmetices

Results

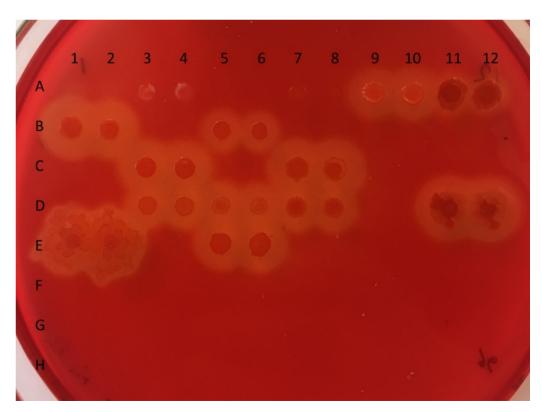
N-source in fermentations

Lactococcus lactis

Lactobacillus spp

Bacillus subtilis

Sometimes competitive with commercial Yeast extract



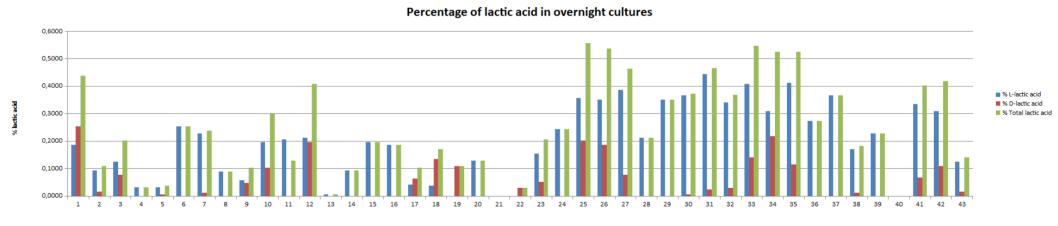
Results

novel microorganisms from horse manure and compost

70 new strains

cellulolytic activity:

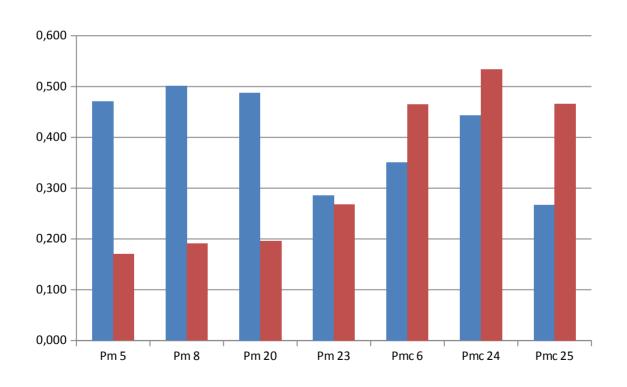
Results


sugar requirements

	No carbon source	Glucose	Lactose	Fructose	Sucrose	Maltose	Potato starch	Galactose	Arabinose	Trealose	Cellobiose	Mannitol	Sorbitol	Dextran 10
1	- source	X	x	x	X	х	-	x	-	х	x	х	х	
2	х	X	X	x	X	X	x	X	х	X	X	x	x	x
3	x	X	X	x	x	X	x	X	x	X	x	x	x	X
4	x	X	X	X	X	X	x	X	X	X	X	x	x	x
5	x	X	X	×	X	X	x	X	X	X	X	x	x	x
6	-	-	-	-	-	-	x	-	-	-	x	-	-	-
7	_	-	-	-	-	-	_	-	-	-	x	-	-	-
8	х	×	х	x	x	×	x	x	х	х	x	x	х	x
9	х	×	x	x	x	×	x	x	x	x	x	x	-	x
10	-	-	-	-	-	-	x	-	-	-	x	-	-	-
11	-	-	-	-	-	-	x	x	-	-	x	-	-	х
12	х	-	х	x	-	х	x	-	х	-	x	-	х	-
13	x	×	x	x	х	×	x	×	x	х	x	х	х	х
14	х	х	x	x	x	х	X	х	x	X	x	x	х	x
15	-	-	-	x	-	-	x	x	x	-	x	-	-	х
16	-	x	-	-	x	-	х	x	x	x	x	x	-	х
17	-	-	х	x	x	х	X	x	х	x	x	X	х	Х
18	х	x	х	x	x	х	X	x	х	x	x	X	х	X
19	-	-	-	x	-	-	-	x	-	-	x	-	-	х
20	х	x	х	x	x	х	X	x	х	x	x	x	х	X
21	х	x	х	x	X	х	X	x	х	x	x	x	х	X
22	х	x	х	x	x	x	X	x	x	x	x	x	X	X
23	x	×	x	x	x	×	X	x	X	X	x	X	х	X
24	-	×	X	x	x	×	x	×	-	X	X	x	-	-
25	-	×	X	x	X	x	-	×	-	X	x	x	-	x
26	-	x	x	x	X	x	X	x	X	X	X	X	-	х
27	-	x	х	x	X	x	X	x	X	X	X	X	-	X
28	-	-	-	x	-	х	X	-	х	-	x	-	-	X
29	-	X	Х	x	x	Х	X	X	х	X	x	x	-	х
30	-	x	х	x	x	х	x	x	-	x	x	х	-	-
31	-	X	X	X	X	-	-	X	-	X	X	-	-	X
32	-	X	X	X	X	-	х	X	X	X	X	Х	-	х
33	-	X	X	X	X	-	X	X	X	X	X	X	-	Х
34	-	X	X	X	X	-	X	X	X	X	X	X	-	Х
35	-	X	Х	X	х	-	х	Х	х	Х	X	х	-	Х
36	-	-	-	-	-	-	X	-	-	-	X	-	-	-
37	-	X	Х	X	-	Х	X	X	-	Х	X	X	-	-
38	-	-	-	-	-	-	X	-	-	-	X	X	-	-
39	-	X	Х	Х	Х	Х	X	X	-	Х	X	X	-	-
40	-	-	-	-	-	-	X	-	-	-	×	-	-	-
41	-	-	-	-	-	-	X	-	-	-	X	-	-	-
42	-	-	-	-	-	-	X	-	-	-	X	-	-	-
43	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Results

lactic acid production



very different D- and/or L-lactic acid production profiles

Results

Thermophilic lactic acid production

Conclusion

- I Valuable protein extracted from cheap sources
- I Different applications of hydrolysed protein
- I Interesting novel strains
 - Bioconversion
 - Lactic acid production @ different temperatures

Plans

Protein/hydrolysates applications?

In-depth analyses of lactic acid producing strains

- Temperature range
- D versus L lactic acid production
- Controlled fermentation experiments