

Hyvää päivää

Laba diena

Labdien

Tere päevast

Dzień dobry

Smart and Safe Work Wear

Coordinator Egidija Rainosalo

egidija.rainosalo@centria.fi

Centria UAS, Kokkola, Finland

www.centria.fi/sww

Program

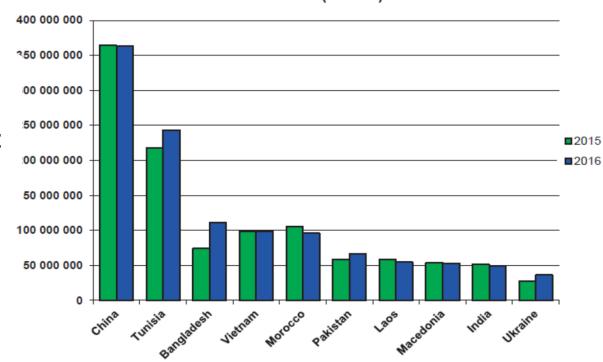
9.00 - 9.30	Welcome and Opening – Smart and Safe Work Wear, Egidija Rainosalo, Centria UAS, Finland
9.30 - 9.50	3D Body Scanning, New Measurements Tables, Inga Dobolina, Riga Technical University, Latvia
9.50 – 10.10	New Prototype of Work Wear, Elzbieta Mielicka, IW Textile Research Institute, Poland
10.10 – 10.30	Virtual Garment Design and Fitting for Chemical Protective Costume, Eugenija Strazdiene, Vilnius UAS, Lithuania
10.30 - 11.00	Coffee Break
11.00 – 11.20	Electronics Integrated into Textiles, Inga Dobolina, Riga Technical University, Latvia
11.20 – 11.40	Location Tracking Inside the Building, Ari Lamberg, Centria UAS, Henri Hakunti, Ruuvi Innovations Ltd, Finland
11.40 – 12.00	Permethrin Treated Clothes – Material with Anti-insect Treatment, Teele Peets, TTK UAS, Estonia
12.00 – 12.20	Supply Chain Management, Heikki Mattila, Centria UAS, Finland
12:20 – 12:30	Closing and discussion
12.30 – 12.50	Arctic Fashion and Design, Ana Nuutinen, University of Lapland, Finland



Smart and Safe Work Wear

2,438,870.00 €

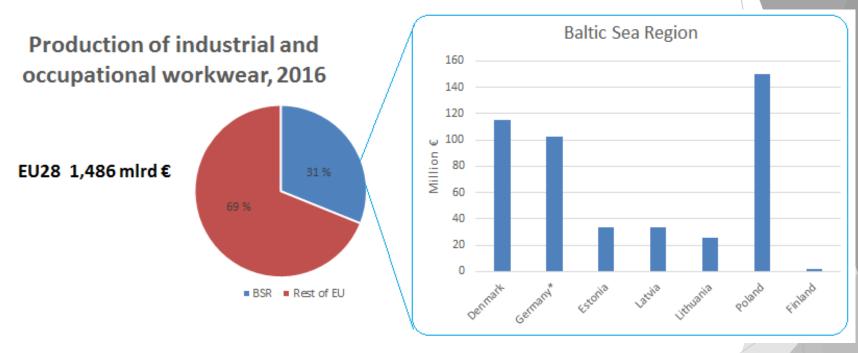
03/2016 - 02/2019


Work wear market and manufacturing in EU ~2,75 mlrd €

Import 2016 ~1,423 mlrd €

Manufacturing in EU ~ 1,482 mlrd €

Export ~o,15 mlrd €


EU workwear main suppliers 2015-2016 (Euros)

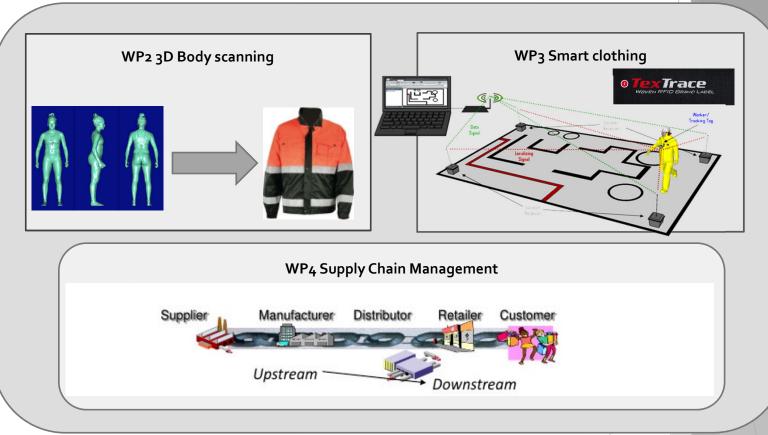
Work Wear Manufacturing in EU

*All Germany, missing data for Sweden


http://ec.europa.eu/eurostat/web/prodcom/data/database/

Objective

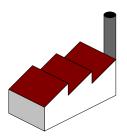
To develop the work wear clothing business process in the Baltic Sea Region and make the area more competitive against imports.

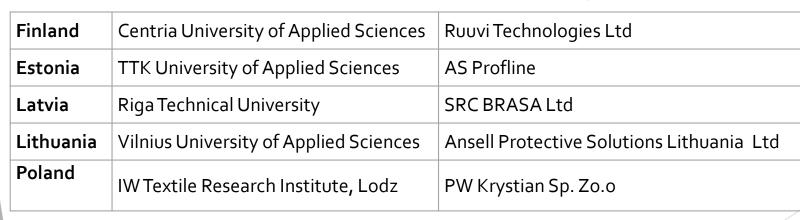

Main garment properties to win the competition

♦ Comfortable ♦ Customised ♦ Durable ♦ Smart ♦ Connected ♦ Safe

Structure of the implementation

WP1 Management




Partners

Companies

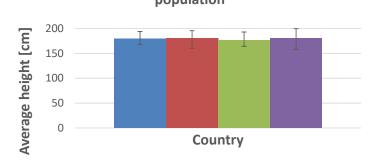
Firerfighters

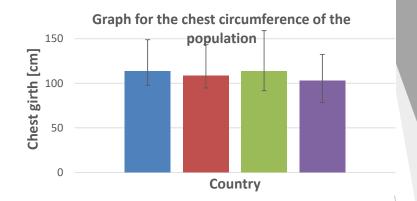
Military forces

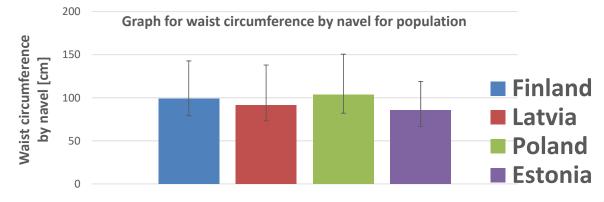
Enabling technologies – 3D body scanning

Hand held

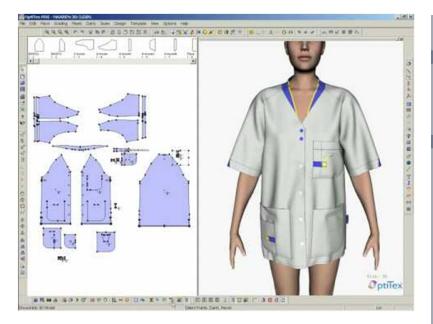
Automatic: in about 30 seconds over 130 different measurements

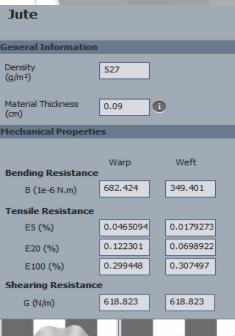



SWW has scanned 547 workers of different professions


Country	Group of end users	No of scanned people
Finland	Chemical industry	50
Estonia	Soldiers	300
Latvia	Soldiers	150
Lithuania	Fire fighters	7
Poland	Construction	40

Comparison





Enabling Technologies - Virtual Garment Design and Fitting

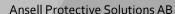
- Made-to-fit and truly tailor-made clothing
- Better fitting and more secure than regular mass made clothing
- New possibilities to special textile and tailor-made mass production
- Less material waste for prototyping
- Marketing without physical examples

Smart wearables

- smart watches and wristbands
- smart glasses
- smart clothing
- fitness trackers
- body sensors
- wearable cameras
- ▶ jewelry
- headsets
- ▶ other

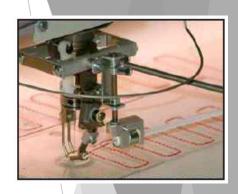
Polar Oy

Electric heated west, ORORO



ECG cardiac monitoring with lung function and activity monitoring, HexoskinLtd

EMG, electromyography for monitoring activity of muscles, Myontec Oy



Technologies for integration of electronic components into garments

- ☐ Screen-printing on textile
- ☐ Screen-printing on flexible substrate and laminating onto textile
- ☐ Direct-write printing using conductive resins
- ☐ Embedding RFID chips and sensors into filament which then is integrated during sewing
- ☐ Embroidering and sewing
- Weaving
- ☐ 3D printing

HS and wellbeing solutions for work wear

Health and Safety

- ► Work wear gathering information on wearer's location: indoor and outdoor
- ▶ **Distance form the danger sources,** e.g. moving vehicles, chemicals, heat sources, etc.
- ► Hazards in the environment: chemicals, dust, noise
- ▶ Electromagnetic hazards in the environment
- Workload hazards: weight of load being lifted, knee impact, vibration level, torque
- ▶ Illumination for lighting, warning, better visibility

Other

- Timecard properties
- ► Speech recognition/notebook

Comfort and personal wellbeing

- ► Information on wearers activity
- ► Physiological data including the wearer's body temperature, pulse, blood oxygen level, breathing rate, heart condition, sugar level, etc.
- ► Body temperature control

Requirements: carefree, no additional pieces, easy to use

Meeting needs of end-users

Chemical industry, boat building, construction indust.

Needs and Challenges

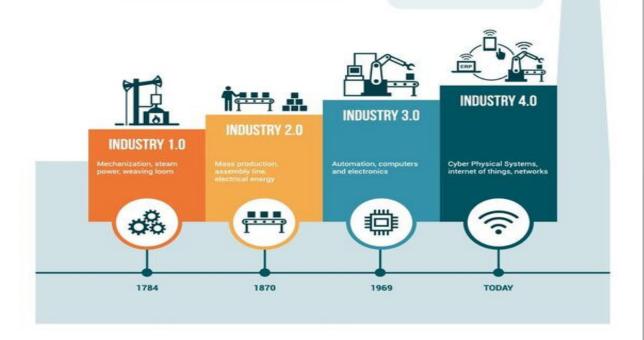
Corporate

- ▶ Increase productivity
- ► To monitor wellbeing to improve safety, reduce injuries and health care costs
- Better planning of factory operations
- ▶ Improve quality
- Improve safety

Employees

- Safety at work
- Own wellbeing
- "Big brother watching me"

- Enough knowledge about the technology and benefits
- Data protection

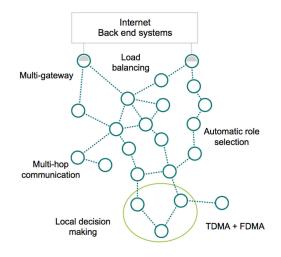


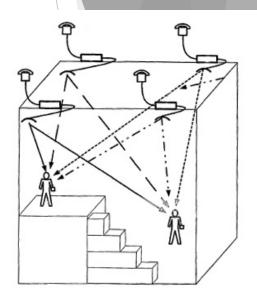
INDUSTRIAL REVOLUTION TRANSFORMING INDUSTRIES AND INNOVATION

INTEROPERABILITY

The ability to connect and communicate with each other

- √ machines
- ✓ devices
- √ sensors
- ✓ people




Connectivity solutions

Sigfox 5G MTC NB-loT LoRa Wireless mesh WiFiHalow BLE Density Ultra high

Geographical reach vs density for massive IoT technologies (Nordstream whitepaper 2017)

Wide area mesh

RFID

Ecosystem for development of smart work wear as a part of IoT

- > Work wear producers with traditional supply chain
- > End user
- > Smart solution technology providers/manufacturers
- Software developers analytics and system integration
- > IoT connectivity technology providers
- > Others: manufacturing tool producers

No one size fits all solution existing anymore!

Summary - challenges

Technical	Commercial	Social
 Integration of electronic components Elasticity Connections Microsize electronics Power management Washable, flexible and user friendly Mass production Agile manufacturing 	 What is the problem end-user wants to solve How to commercially utilize available technologies How to communicate technology to customers Are the solutions worth the money Complexity of ecosystems Distribution channels Branding 	 What are culturally accepted products Comfort issues Personal data protection Sustainability and environment protection

Have a fruitful seminar with SWW team!

