

TPE's direct 3D printing from pellets An industrial quality breakthrough

Elastoplast final event 16th March, 2021 Manon Frydman

Strictly confidential - Do not copy, share or distribute without prior written agreement from Pollen AM.

Pellet Additive Manufacturing

Industrial-grade pellets to meet the most demanding constraints and requirements

Tensile tests results

Very low hardness material - 51 VLRH

<u>Printing settings</u>

Infill pattern : Zig-Zag – infill density : 100% - nozzle : 0.8mm – layer height : 0.4mm

Properties	u.m.	Pam tensile bar	Injection moulding	Pam performance
Hardness (DIN ISO 27588 (D=6mm)	VLRH	45	51	88,24 %
Density (DIN EN ISO 1183-1)	g/cm³	0,874	0,873	100,11 %
Tensile strength (DIN 53504/ISO 37)	Мра	1,4	1,9	73,68 %
Elongation at Break (DIN 53504/ISO 37)	%	1178	1412	83,43 %
Tear resistance (ISO 34-1 Methode B)	%	3,5	4,2	83,33 %

Pushing the boundaries of elasticity

A technology resulting from 7 years of R&D

A proved compatibility with elastomers

Car lighting sealing part in TPU 33 ShoreD

TPU **elastic properties are entirely kept** thanks to the Pam technology and **guarantee sealing** of the back of the lighting.

An ability to print low hardness materials

Application in TPE 45 ShoreA

Pam technology makes it **possible to process highly flexible materials**, unlike conventional FDM, SLS and SLA processes.

This part has an **excellent surface appearance**, good interlayer adhesion.

Printing every level of hardness [1/2]

Octopus in TPE 30 Shore00

Snorkle mouthpiece part in TPE 70 Shore A

Combining elastomer properties [1/3]

Multi-material printing: Sportwear outsole

3 materials are required to print this sole:

Material 1: TPE 45 ShA Material 2: TPE 70 ShA Material 3 (support): HIPS

DECATHLON

Combining elastomer properties [2/3]

Multi-material printing: clamp hose in PP x TPE 60 shA

Combining elastomer properties [3/3]

Pump sleeve - PP/TPE60

2 materials are required to print this part :

Material 1: PP

Material 2: TPE 60 ShA

Printing TPE with water soluble support

Example with BVOH and TPE 45 shA

2 materials are required to print this part : Material 1: TPE 45 ShA Material 2 (support) : BVOH

Printing profile under development

Advantages vs support structures printed with the same material as the final part :

- Easier to remove
- Better surface quality

Contacts

Manon Frydman mf@pollen.am +33(0)6 33 48 81 55

Didier Fonta df@pollen.am +33 (0)7 60 40 30 29

Follow us

