PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND SAMENWERKINGSPROGRAMMA

GoToS3

Elasto-Plast

Relations Procédé / Structure / Propriétés de polymères et de mélanges de polymers obtenus par impression 3D

Sébastien Charlon

IMT Lille Douai

Samir Kasmi

Ingénieur de Recherche URCA

Cofinanciering

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING

Сотоsз Elasto-Plast

Des élastomères thermoplastiques (TPE) conventionnels à ceux de nouvelles générations

Améliorer la processabilité et les propriétés des polymères :

- ✓ Augmentation de la resistance à l'impact
- ✓ Déformabilité sous pression, etc.
- ✓ Nouveaux procédés de mise en forme (Impression 3D)
- ✓ Applications en plasturgie et textile

Dans le context :

Matériau biodégradable

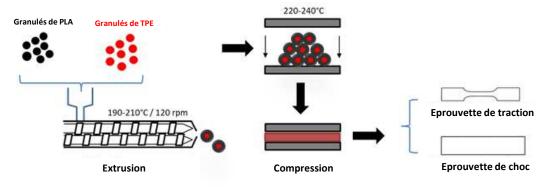
Faible ductilité (fragile)

Acide Polylactique (PLA)

Comment augmenter la resistance à l'impact du PLA ?

Mélanges de polymères

∟ Résultats intéressants

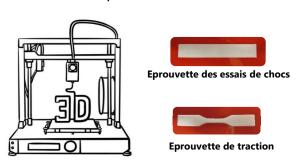


GoToS3 Elasto-Plast

Modification de la composition du mélange

Process

Essais de traction



Essais de resistance aux chocs

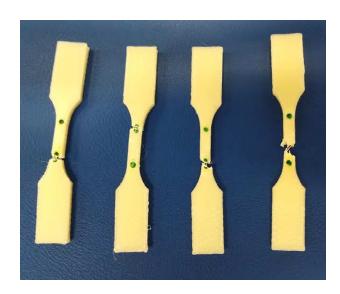
Mélange PLA-Hytrel-X%

Bon équilibre entre la résistance aux chocs et la rigidité, avec un allongement à la rupture suffisant.

Sélectionné pour être testé dans le processus d'impression FFF

Effet des paramètres d'impression

→ Température de buse→ Température du plateau



Elasto-Plast

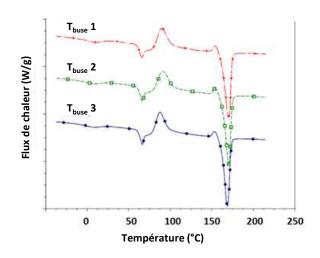
Effets des paramètres d'impression

Effets des temperatures de buse et de plateau

Quand les temperatures de buse et du plateau 7 :

- ✓ Bonne qualité du remplissage → Porosité
- ✓ Module de Young

 ▼
- ✓ Résistance en traction **7**


GoToS3 Elasto-Plast

Effets des paramètres d'impression

Résistance aux chocs

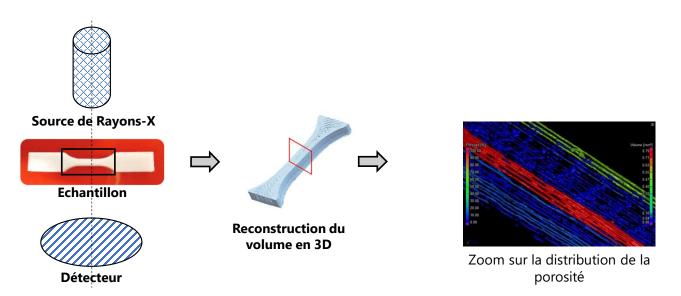
Cristallinité

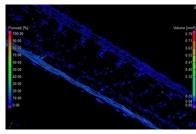
Quand les temperatures de buse et du plateau 7 :

✓ Résistance à l'impact

Pas d'impact de la temperature de buse sur la cristallinité

Quand la temperature du plateau 7 :


✓ Taux de cristallinité



Elasto-Plast

Observations au tomographe

Porosité interne

Analyses tomographiques

✓ Anisotropie locale de la porosité Davantage présente entre les contours et le remplissage

Quand les temperatures de buse et du plateau **7** :

- ✓ Réduction du nombre et de la taille des pores
- ✓ Bon état de surface

6

Conclusions

Mélanges PLA / TPE :

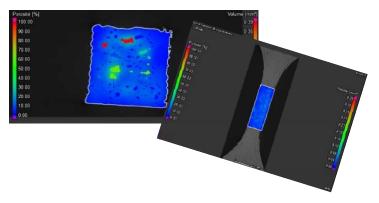
Faibles ajouts de TPE:

- ✓ Amélioration de la résistance à l'impact
- ✓ Amélioration de la deformation à rupture
- ✓ Faible reduction du module de Young

Impression 3D:

Températures de buse et de plateau 7 :

- ✓ Augmentation de la rigidité et de la resistance à l'impact
- ✓ Réduction de la porosité
- ✓ Meilleur état de surface
- ✓ Pas d'impact de la temperature de buse sur la cristallinité
- ✓ Influence positive de la temperature du plateau sur la cristallinité


Module de Young (pièces imprimées) < Module de Young (pièces injectées)

Dû à la présence de porosité

Davantage présent sur les bords

GoToS3

Elasto-Plast

Projectleider

Chef de file

Partners

Partenaires

Geassocieerde partners

Partenaires associés

