PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND SAMENWERKINGSPROGRAMMA

GoToS3

Elasto-Plast

Nouveaux TPE biosourcés développés dans le projet ELASTOPLAST

Adrian Gainar, Wim Thielemans (KULAK)

Stijn Corneillie (Centexbel)

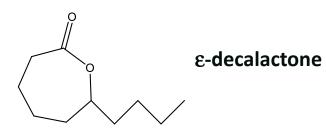
Julien Cayuela (Materia Nova)

Robert Mundil, Franck Kayser, Julie Meimoun, Audrey Favrelle, Grégory Stoclet, Philippe Zinck (ULille)

сотоsз Elasto-Plast

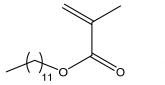
Pourqui faire des TPE biosourcés ?

- Diminution des réserves mondiales de pétrole
- Pression des consomateurs
- Accès à de nouvelles microstructures


Synthons pour TPE biosourcés

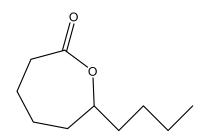
GoToS3
Elasto-Plast

■ Biomasse oléagineuse

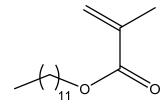

■ Ester cyclique

■ (méth)acrylate

Lauryl méthacrylate


Nouveaux TPE biosourcés : stratégie

СотоS3 Elasto-Plast


Implementation

Utilisation de monomères commerciaux

ε-decalactone

T_g PDL -60°C

Lauryl méthacrylate

T_g PLMA -55°C

PMMA comme bloc dur

- T_q de l'ordre de 110°C
- Immiscible avec PDL et PLMA (vérifié)

Température d'utilisation plus élevée que *e.g* SBS (miscibilité partielle)

- Faisabilité
- Approche One pot : copolymérisation à bloc

GoToS3

Elasto-Plast

Organocatalyse :

Phosphazene pour le PMMA

Seebach et al. Angew. Chem. 1993 **32** 716

Phosphazene pour les Lactones

 Hadjichristidis et al. *Polym. Chem.* 2014 **5** 5471

 L'idée: utiliser cette chimie pour des copolymères à bloc polydecalactone / PMMA

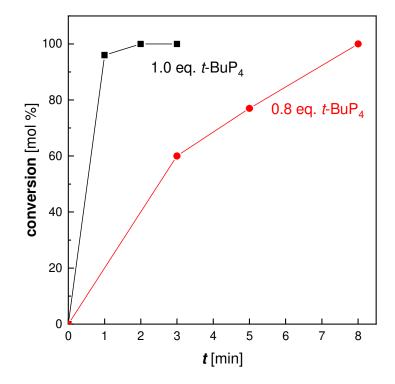
France-Wallonie-Vlaanderen

сотоsз Elasto-Plast

Peut-on polymériser la DL avec un phosphazène?

εDL	ROH	P=N Catalyst	Conversion (%)	Mn SEC g/mol	Đ	Mn calc. g/mol
100	1	0.2	2	nd	nd	-
100	1	0.4	35	8 300	1.26	6 000
100	1	0.6	65	11 300	1.31	11 100
100	1	0.8	100	14 400	1.39	17 000
100	1	1	100	12 200	1.54	17 000

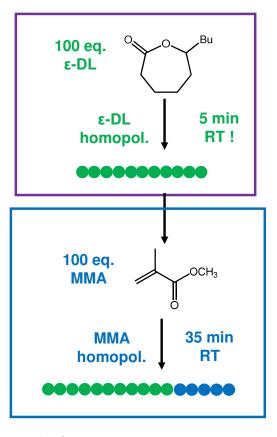
1h reaction THF 25°C

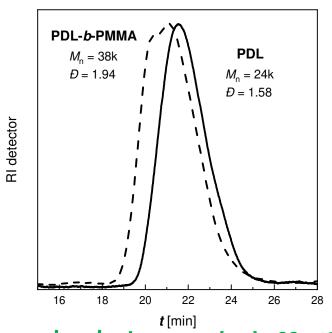

• Oui!

6

- France-Wallonie-Vlaanderen
- сотоsз Elasto-Plast

- Optimisation
- Etude cinétique


• Réaction très rapide: moins de 5 min température ambiante

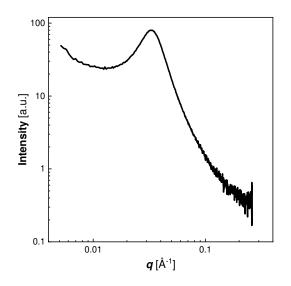


сотоsз Elasto-Plast

Peut-on copolymériser la décalactone avec le MMA?

ε-decalactone content: 66 wt%

- Oui!
- Conversion quantitative pour les deux étapes

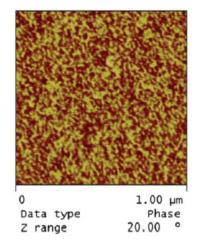


France-Wallonie-Vlaanderen

GoToS3

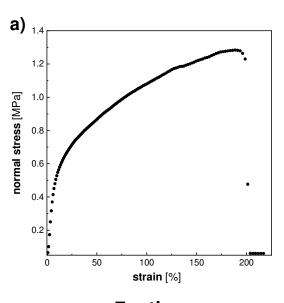
Elasto-Plast

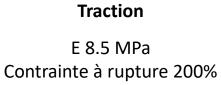
La nanostructuration est confirmée

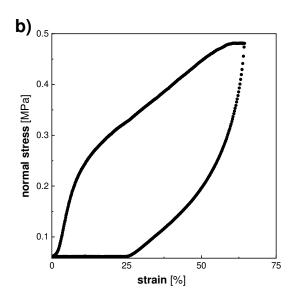


GoToS3

Elasto-Plast


AFM (Microscopie à force atomique




Séparation de phase

ESSAIS MECANIQUES

Essai de recouvrance 50%

• Chem. Com. **2020**, 56, 8067

Manuscrit disponible:

https://interreg-elastoplast.eu/sites/default/files/2021-01/Publicatie_ULille_2020_3.pdf

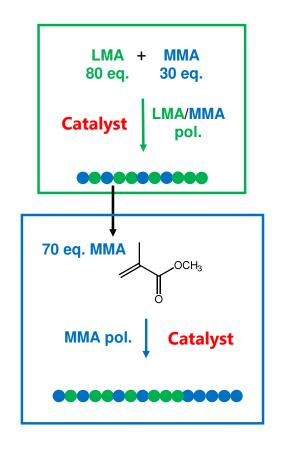
сотоsз Elasto-Plast

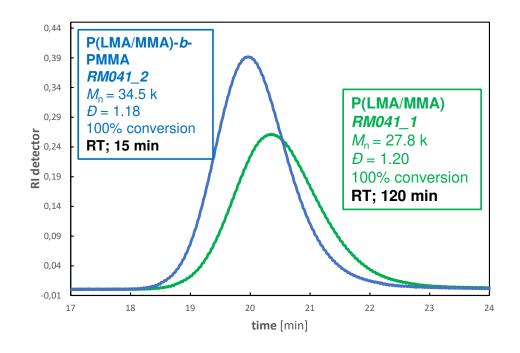
Nouveaux TPE à base de méthacrylate de lauryle

Сотоsз Elasto-Plast

PLMA – Poly(lauryl methacrylate)

Tg -55°C

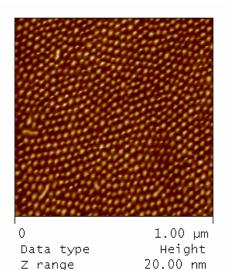

- Les TPE PMMA PLMA PMMA ont une faible déformation à rupture, 10-100%
- Attribuée à une cristallisation induite sous déformation (Mandal et al., *Macromolecules*, 2006, **39**, 91920)
- Notre idée pour y remédier :
- insérer une faible fraction de MMA dans le bloc mou pour empêcher la cristallisation

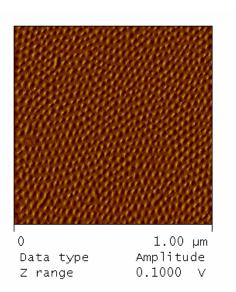


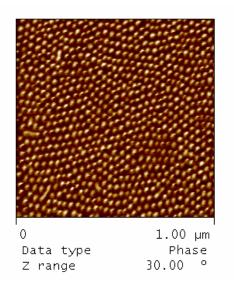
Nouveaux TPE à base de méthacrylate de lauryle

GoToS3
Elasto-Plast

Proportion de méthacrylate de lauryle : 75 wt%

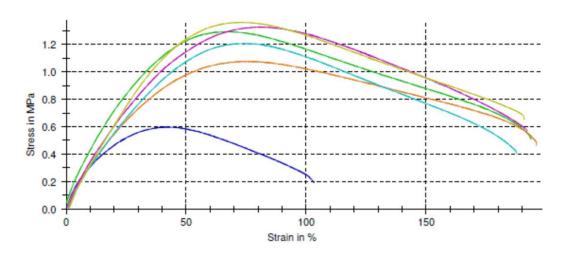






Сотоsз Elasto-Plast

Microscopie à force atomique



GoToS3

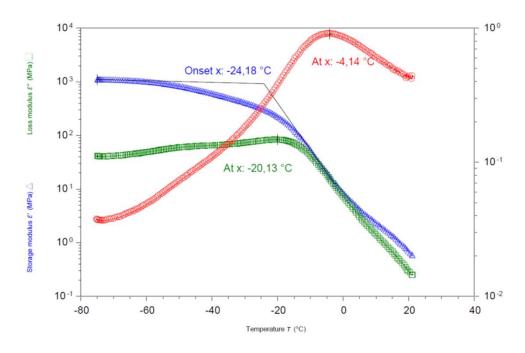
Elasto-Plast

Nouveaux TPE à base de méthacrylate de lauryle

Essais mécaniques

- La déformation à ruputre est > TPE à celle des TPE faits à base de PLMA pur pour le bloc mou (littérature)
- Concept validé ?

WAXS ou DSC à faire



GoToS3

Elasto-Plast

Nouveaux TPE à base de méthacrylate de lauryle

Analyses mécaniques dynamiques

- Bonnes propriétés d'amortissement
- Pégosité élevée : Application potentielle comme patch, adhésion PMMA

GoToS3

Elasto-Plast

Merci de votre attention!

Projectleider

Chef de file

Partners

Partenaires

Geassocieerde partners

Partenaires associés

