

TEACHER'S MANUAL

Course: Effects of Ship Stability in Emergencies and Evacuations

TEACHER'S MANUAL

The purpose of the teacher's manual is to assist teachers in organizing and introducing the course. It is not the intention to present teachers with a rigid teaching package which they are expected to follow blindly. Instead, it is an introduction to the material produced in the OnBoard-Med –project.

LEARNING METHODS

Lecture (online, face to face, video)

There are several types of lectures, e.g. online in real time, face-to-face with target groups, or video lectures, which are created offline and presented at a suitable time.

Active lecture

Face-to-face lectures, with dialog between students and lecturers. Normally we use that learning method in theory lessons. Students and teacher will together discuss with open minds.

<u>eLearning</u>

E.g. pre-tasks via learning environment, Kahoot questions, and discussion between international students in discussion platform. Mobile phone or computer is required.

Exercise

Various types of tasks; oral, written, individual, group etc.

NAME OF THE COURSE AND ECTS

Effects of Ship Stability in Emergencies and Evacuations 8 ECTS (1 ECTS = 27 hours; 135 hours)

The course consists of three part courses: Basic Ship Stability (3 ECTS), Stability in Extreme Conditions (3 ECTS) and Loading Computers (2 ECTS)

OBJECTIVES

As the courses are dealing with major safety issues of ship use and design, the studies start with basics of stability, followed by more advanced topics. The objectives are:

After the Basic Ship Stability course (3 ECTS), the student possesses an understanding of ships' stability theory and rules on intact stability, and is able to perform the basic calculations

After the course in Stability in Extreme Conditions (3 ECTS), the student possesses an understanding of ships' stability theory in wind and waves, as well as basics of damaged stability and relevant rules, and is able to perform the basic calculations

After the course on Loading Computers (2 ECTS), the student understands the structure of a loading computer and is able to use it in loading tasks

CONTENTS

Basic Ship Stability (3 ECTS)

- 1. 2. Ship's hull
- 3. Ship's displacement and deadweight
- 4. Ship's buoyancy
- 5. Centre of gravity
- 6. Ship's draft
- 7. 9. Ship's initial stability
- 10. 11. Ship's stability during large angles of heel
- 12. Ship's stability when carrying grain cargo
- 13. Ship's stability requirements and information to the captain

Stability in Extreme Conditions (3 ECTS)

- 14. Ship's stability during wind
- 15. 16. Ship's damage stability
- 17. Division of ship's hull into watertight compartments.
- 18. Ship's stability when grounding
- 19. 21. Ship's stability in waves

Loading Computers (2 ECTS)

22. Loading computer

TARGET GROUP

Deck and engine officers and Naval Architects

IMPLEMENTATION AND WORKLOAD

LEARNING METHODS: Teacher assisted learning, slides, problem/solutions, videos, tutorials

- Basic Ship Stability (3 ECTS) course: 30 hours in class or e-learning, 48 hours of calculation task assignments
- Stability in Extreme Conditions (3 ECTS) course: 30 hours in class or e-learning, 48 hours of calculation task assignments
- Loading Computers (2 ECTS) course: 20 hours in class or e-learning, 32 hours of loading exercises
- Practicing for the Final Exams; hours depend on ability and ambition of the student

ASSESSMENT

Examinations at the end of each course (0-5), assessment of exercises

COURSE MASTER

There is a **COURSE MASTER** Excel- file, where all course materials are linked in logical order. **It is the heart of the course!** See illustration below for topic 1. By clicking the link, the respective slide, video, problem etc. opens to the screen. The Course Master file can be used by the teacher in classroom, as well as by the students in their distance learning.

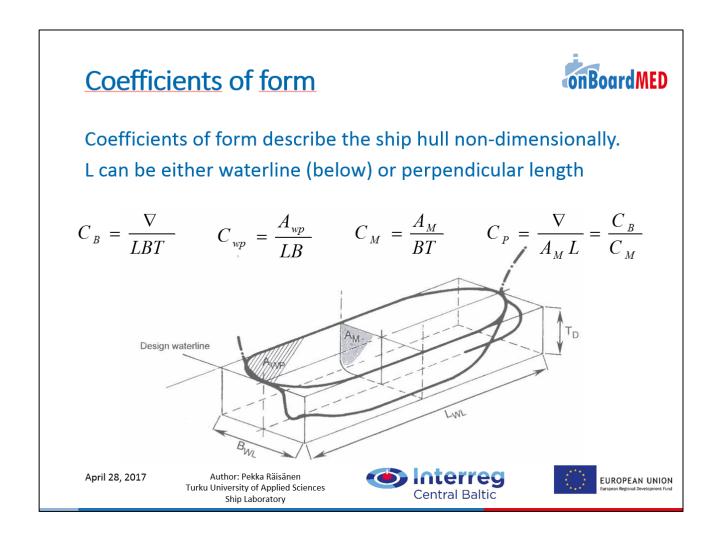
В								
D	C	D E						
	Central Baltic	EUROPEAN UNION European Regional Development Fue						
1. Ship's hull: shape, general arrangements, r	main dimensions, line drawings							
	Click here to play th	e video						
Ship terminology and design spiral	Ship main parameters							
Main terms Main dimensions	Kelluvuus ja vakavuus\Main dimensions\S 1.1 Definitions ontv							
Main dimensions	V 1.1 Definitions.mp4 Click here t	o show 📃						
Maritime Training: Ship Stability: Learn Basic Definitions	https://www.youtube.com/watch?v=c0DvDRftF11 Internet co	ntent						
	Kelluvuus ja vakavuus Lines S 1.2 Curves of the lines plan.pptx							
Click here for the slide show								
	\Kelluvuus ja vakavuus\Lines\1.1 Draw the body plan from waterlines and	buttocks.pdf						
	Kelluvuus ja vakavuus Lines 1.2 Draw a buttock to clipper ship Fiery Cross.xlsx							
	\Kelluvuus ja vakavuus\Lines\1.2 Draw a buttock to Fiery Cross photo pr	int.pdf						
Click here for the slide show								

SUMMARY

Ship Stability in Emergencies and E	vacuations 8 ECTS				
12 weeks total, about 1					
12 weeks total, about 1	6 h of student work per week				
Basic Ship Stability (3 ECTS	Starting week no:	Learning methods			
 Ship's hull: shape, general arrang line drawings. 	1	Teacher assisted learning, slides, problem/solutions, videos			
 Ship's hull: coefficients of finenes of ship's' hull parameters. 	1	Teacher assisted learning, slides, problem/solutions, videos			
3. Ship's displacement and deadwei determination using loading scale, T	e	1	Teacher assisted learning, slides, problem/solutions, videos		
 Ship's buoyancy: Archimedes prince centre of gravity, conditions of equi 	librium.	1	Teacher assisted learning, slides, problem/solutions, videos		
5. Centre of gravity: determination movement when moving or loading	2	Teacher assisted learning, slides, problem/solutions, videos			
6. Ship's draft: change of draft when cargo, change of draft due to water determination of draft using loading load line.	2	Teacher assisted learning, slides, problem/solutions, videos			
7. Ship's initial stability: metacentre radius, GZ lever, its determination,	3	Teacher assisted learning, slides, problem/solutions, videos			
8. Ship's initial stability: the effect o ships initial stability, the effect on s and free surface of a liquid cargo.	3	Teacher assisted learning, slides, problem/solutions, videos			
 Ship's initial stability: the effect o unloading on ships stability, neutral cargo, inclining test. 	3	Teacher assisted learning, slides, problem/solutions, videos			
10. Ship's stability during large angl construction, effect of ships parame	-	5	Teacher assisted learning, slides, problem/solutions, videos		
11. Ship's stability during large angl diagram for dynamic stability.	6	Teacher assisted learning, slides, problem/solutions, videos			
12. Ship's stability when carrying gr	ain cargo.	6	Teacher assisted learning, slides, problem/solutions, videos		
13. Ship's stability requirements and	6	Teacher assisted learning, slides, problem/solutions, videos			

Stability in Extreme Conditions (3 ECTS)		
14. Ship's stability during wind: static and dynamic action of wind on a ship and its stability.	7	Teacher assisted learning, slides, problem/solutions, videos
15. Ship's damage stability: classification of flooded compartments, permeability coefficient.	7	Teacher assisted learning, slides, problem/solutions, videos
16. Ship's damage stability: calculation of ships floatability in case of damage	8	Teacher assisted learning, slides, problem/solutions, videos
17. Division of ship's hull into watertight compartments.	8	Teacher assisted learning, slides, problem/solutions, videos
18. Ship's stability when grounding: reaction force produced by seabed, refloating the ship by unloading or shifting cargo.	9	Teacher assisted learning, slides, problem/solutions, videos
19. Ship's stability in waves: characteristics of waves, basic principles of ship's rolling motions, ship's rolling in calm water, ships rolling in during swell.	10	Teacher assisted learning, slides, problem/solutions, videos
20. Ship's stability in waves: diagrams for selection of safe course and speed, application of universal diagrams.	11	Teacher assisted learning, slides, problem/solutions, videos
21. Ship's stability in waves: changes in ship's stability during waves, parametric roll, broaching-to, pure loss of stability.	12	Teacher assisted learning, slides, problem/solutions, videos
Loading Computers (2 ECTS)		
22. Loadicator: the control of ship's hull strength, bending moments, shear forces and stability parameters during its operation.	7	Tutorials, teacher assisted learning, slides, problem/solutions, videos

COURSE MATERIALS

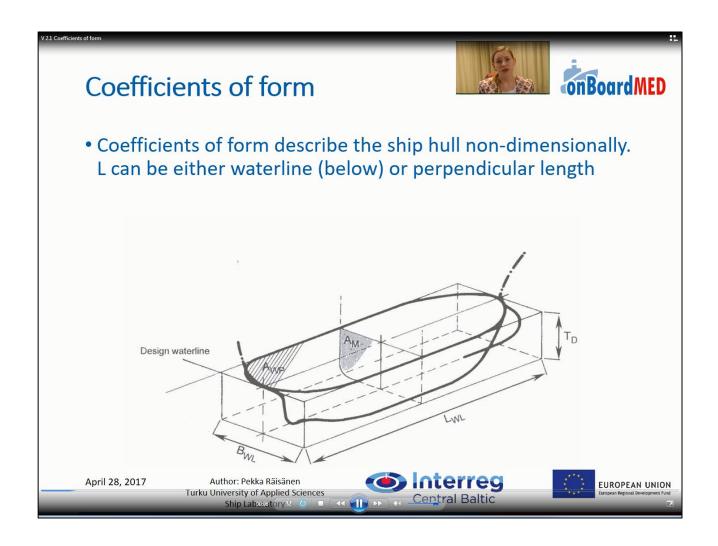

The main material types in the course are slides, videos, problem/solutions, links to public materials and design exercises. All can be presented by clicking a link in the Course Master Excel-file.

In addition, a suitable textbook should be used, e.g. Derrett, D.R.: Ship Stability for Masters and Mates, 6th ed. Butteworth Heinemann, 2006. Further, relevant International Maritime Organization publications, STCW Code and IMO Model Courses, and the rules should be consulted.

EXAMPLES OF MATERIALS

Slides

Sets of 1 to 15 slides per topic



Videos

Video presentations of the key slide shows, 1 to 10 minutes in length

Problem/solutions

Separate pages of problems and their solutions, to be printed out for classroom teaching, or distributed as pdf in distance learning

Author Jaan Atspol Estonian Nautical Schoo	Central Bal	eg tic	EUROPU Carsen Repo	EAN UNION			
	T						
Source: Jaan Atspol Calculate a) displacement volume b) displacement mass A ship has the following detals: Waterline length L (m)	160						
$\begin{tabular}{ c c c c c } \hline Waterline breadth & B (m) \\ \hline Draught & T (m) \\ \hline Density of water & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	21 9 1,02 0,8			5		EUROPEAN Grageen Regional De	witopment Fund
		∇ = C _B * L* B *	' T				
		b) displaceme	ent mass				
		$\Delta = \rho * \nabla$					
		Calculate volu					
			B (m)		ρ (t/m3)	C _B	
		160	21	9	1,02	0,80	
		a) calculate vo	olume of disp	lacement (V))		
		V=L*B*T*C _B	24192				
		b) calculate m	ass of displa	cement (Δ)			
		$\Delta = \rho * \nabla$	24676	tons			
	L						

TURKU UM APPLIED S	U AMK	<		(D Ini Cen	terr tral Ba	eg Iltic	1	EUROP European Rep	EAN UNION						
d D	He DY-Y	Taballa		18.1												
ithor: Pe	kka Räisänen,	Turku Unive	ersity of Applie	ed Sciences												
			4	,				100								
			and a	. [
		THERMON	No. of Concession, Name	BIL				A-								
		1.1.		Wind Hard	i 🛟 er	12		Completion of	and the second							
	-			• • • •			Station of the		1999	hip.	- 3					
1	Anna In		AND THE ME AND								-					
-			- p- 13					VIKI	NG LIN	NE -	1					
	Sales and the second	100											eg	100	EUROPEA	
										-			tic	1.00	European Regional I	Nevelopment Fund
													ted below Fir	nd wheter the sh	h	
			C.									đ	egrees.	İ		
ource: Jo	nas Bergsten.												(Gi of the ship nass is 25 m l	to the lifeboat rom keel	Geor,	
	nmons.wikimed	lia.org/wiki/f	File:Ferry_viki	ng_line_am	orella_2005	50823_00	1.jpg									
tability o	curve data of	a passen	der vessel	(not illustr	ated) in a	loading	condition	are tabulate	d below Fi	nd whete	r the sh	ip is	s			
Ifils the	IMO:s IS Ru	ile Criteria	, when the	GM is 2,1	m and th	e downf	looding ar	ngle is 35 de	grees.			þ	n LWL	Zpeople	YPEOPLE	MPEOPLE (1)
	ergency, the ey are assur			_								ck,	140	25	12	150
							a the heig							ghting moment a	rm GZ	
			٦								_		°, 📃			
<u> </u>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		$\overline{}$		100m	-	\downarrow						0.a			
\sim	10 10 10 10 10 10 10 10 10 10 10 10 10 1		⇒				\leq				_		E 04			
							<u>ا</u> ع						3			
т	v (knots)	KG	в	∆ (t)	n		nass of a son (kg)	LWL	zpeople	ypeopl	e		-1,2		+ +	1
6	22	14	30	18500	2000	pera	75	140	25	12	_		-0,4	Heal (degrees	4	
											_					
leel (de	grees)	GZ [m]	e [mrad] 0													
0 10		0 0,399	0,033										nder Ažo os			
20 30		0,813 1,052	0,139 0,309								-	1	nder A≧8.05 iting B≧8.83 curve A+B≧8.85			
40 50		0,700 -0,255	0,471 0,516								_					
	regulation a			ritime Ora	anization	cito:			_		_		GZ <u>=8.2</u>		40 degrees, angle if it is I	or flooding ess than 40
	no.org/en/Knowled						ocuments/MSC	.267(85).pdf					G2 _{ontes} ;	•125°	degr	ees ↓ CRI≥0.15
					GM	2,1	greater th	an 0,15 m		OK	0.1			- <u>B</u>	~~~	T ,
													18° 28°	38°	48° 58'	57.3
					Heel fro	m passe	enger crow	ding								
					The cent	er of grav	ity of pass	engers is ass	umed to mo	ve from ini	tial KG c	f the ship	to the lifebo	at deck		
					KG _{NEW} =	(D*KG-n		+mpeople [®] Zpe	OPLE)	/(D-	14,09	m				
					CM 1	M.KO.		E+MPEOPLE)				_				
					GM _{NEW} =0	SM+RG-1	ONEW			2,01	m					
					M _{HEEL} = m _{PEOPLE} 'YPEOPLE M _{HEEL} = M _{RIGHTING} = D'GM _{NEW} ' sin (heel)						1800	tm				
					M _{HEEL} = M heel = an				2.8	dearee	s less than	10 degrees,	ОК			
								EW//							- Cit	
					Heel fro	om turni	ng									
					M 0	2.0 2			Vs		11,32					
							D"(KG-T/2)				3795	m				
					M _{HEEL} = M	leigunua-	U GMumi	sintheett								

SOME REFERENCES

IMO publications

- 1. International Code for the Safe Carriage of Grain in Bulk (International Grain Code)
- 2. International Convention on Tonnage Measurement of Ships, 1969
- 3. INTERNATIONAL CODE ON INTACT STABILITY, 2008

Other publications

- 1. Derrett, D.R Ship Stability for Masters and Mates, 6th ed. Butteworth Heinemann,2006
- 2. Eyres, D.J. Ship Construction, 5th ed. London, Butterworth-Heinemann, 2001
- 3. La Dage, J. and Van Gemert, L. (Eds). Stability and Trim for the Ship's Officer. 3rd ed, Centreville, Maryland, US, Cornell Maritime Press, 1983
- 4. Taylor, D.A. Merchant Ship Construction. 3rd ed. London, Institute of Marine Engineers, 1992
- 5. Bulk Carriers: Guidance and information on bulk cargo loading and discharging to reduce the likelihood of overstressing the hull structures. IACS. London 1997
- 6. Rhodes, M. Ship Stability Mates Masters, 1st ed, Witherby Seamanship International Ltd, 2012
- 7. BARRASS, C.B. Ship stability: Notes and examples. 3rd ed. Oxford, Butterwoth-Heinemann, 2001
- 8. CURTIS, S. The law of shipbuilding contracts. 3rd ed. London, Lloyd's of London Press, 2002
- 9. FAIRPLAY PUBLICATIONS Tonnage measurement of ships. 2nd ed. Coulsdon, (UK), Fairplay Publications Ltd, 1980
- 10. KEMP, J.F. & YOUNG, P. Ship construction: Sketches and notes. Oxford, Butterworth-Heinemann, 1991
- 11. NAUTICAL INSTITUTE Improving ship operational design. London, The Nautical Institute, 1998
- 12. TUPPER, E.C. Introduction to naval architecture. Butterworth-Heinemann, 1996.
- 13. LETCHER, JOHN. Principles of Naval Architecture Series: The Geometry of Ships. The Society of Naval Architects and Marine Engineers, 2010. ISBN: 9780939773671
- 14. LEWIS, EDWARD V., ed. Principles of Naval Architecture, Vol. I & 2. New York
- 15. GILLMER, THOMAS C., AND BRUCE JOHNSON. Introduction to Naval Architecture. Naval Institute Press, 1982. ISBN: 9780870213182

Terminology

- 1. ITTC Symbols and Terminology List 2014.pdf
- 2. MSC/Circ.920, MODEL LOADING AND STABILITY MANUAL, section 2.2, table 1, which are based on ISO standards (ISO 7462 and ISO 7463).

Own ideas for implementation

Working Group Pekka Räisänen, Turku University of Applied Sciences pekka.raisanen@turkuamk.fi Jaan Atspol, Estonian Nautical School Sergejs Mašiņenkovs, Latvian Maritime Academy

