

Infrared Laser Spectroscopy For Sensing Applications

Markus W. Sigrist ETH Zürich, Switzerland sigristm@phys.ethz.ch

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C_1 - C_4 alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Key issues in spectroscopic sensing

Requirements	Approach
High sensitivity	Strong fundamental absorption lines: mid-IR for low concentrations, near-IR for higher concentrations feasible, ev. Raman for homonuclear molecules and high concentrations Sensitive detection scheme
Multi – component and analytical capability	Broad, continuous tuning range
High selectivity / specificity	Narrow laser linewidth, if selectivity is not an issue broadband sources, e.g. LEDs
In – situ monitoring	Room temperature operation Compact, robust set – up Easy or no sample preparation

Laser Spectroscopy and Sensing

(Broadly) tunable narrow-band mid-IR lasers

Laser	Wavelength [μm]	Tuning Characteristics	Power	Operation
CO ₂	9 – 11	Only line tunable	Watts	RT operation
Sb-based ICL	3 – 6	Typ. 10 nm	Few mW	RT operation
QCL	<4 – 12, THz	cm ⁻¹ to > 100 cm ⁻¹ per device	mW to W	LN ₂ /TE cooling, also RT
Lead-salt VECSEL	3 – 30	> 150 cm ⁻¹ (piezoel.)	< mW	Pulsed only TE cooling
DFG/OPO ^a	3 – 16	~ μm for specific setup (MHF)	μW to mW Watts	RT operation

^a DFG: difference frequency generation / OPO: optical parametric oscillator Examples: PPLN (periodically poled lithium niobate, eventually with waveguide), OP-GaAs, AgGaSe₂, LiInS₂, LiInSe₂, etc.

Laser Spectroscopy and Sensing

Semiconductor Lasers

Tunable narrowband mid-infrared lasers

idler

Difference frequency generation

PPLN in crystal oven

signal

Quantum cascade laser

TE, 4-12 μ m, "broad" tuning, compact

Diode-pumped VECSEL

TE, $\approx 3.4 \ \mu m$, >150 cm⁻¹ tuning, compact *ETH Zurich*

RT, 3-17 μ m, broad tuning

Laser Spectroscopy and Sensing

Absorption measurement: Detection schemes

Transmission

Beer-Lambert absorption law

Various cell designs

V=38 ml (3.5 m pathlength cell, EMPA / IRsweep, Switzerland)

80-microphone photoacoustic cell (A. Bohren)

QEPAS Lei Dong et al. Shanxi U., China

High-temperature multi-pass cell pathlength: 9 - 35 m (R. Bartlome)

Cavity-ringdown cell für NIR (D.Vogler)

Laser Spectroscopy and Sensing

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C₁-C₄ alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Mobile CO₂-laser PA setup

Mobile Laser-PA system at exit of freeway tunnel

A. Thöny, M. Nägele, D. Marinov

Laser Spectroscopy and Sensing

Gas concentrations at tunnel during one week

800

600

400

200

500

400

ammonia [ppb]

Detection limits

Ammonia and ethene: sub-ppb CO₂: ppm

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C₁-C₄ alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Nitrous acid (HONO)

- Important source of OH radicals in earth atmosphere
- Key role in atmospheric oxidation capacity which affects regional air quality and global climate change
 - HONO sources and sinks not well understood due to challenging measurement:
 - Atmospheric concentration only few ppb, >10 ppb indoor
 - Atmospheric lifetime: 10 20 minutes

Sensitive and fast measurement technique is essential

Short-lived species detection (HONO) with EC-QCL-QEPAS

EC-QCL (ca.1255 cm⁻¹) 50 mW QEPAS with mR compact 40 mm³ cell

Calibration with 110 m cell and DFB QCL Air sampling resid. time: 10 ms vs 7 min.

H. Yi, W. Chen et al.: Appl. Phys. Lett. **106**, 101109 (2015)

Laser Spectroscopy and Sensing

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C₁-C₄ alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Sensing of alkanes (methane, ethane, propane, butane)

- Natural gas / biogas composition analysis
- Energy content measurement
- Fuel blending and control
- Optimization of power generation (fuel cells, gas turbines)
- Monitoring of hydrocarbon leaks at pipelines and refineries

Diode-pumped lead salt VECSELs (Vertical Extended Cavity Surface Emitting Lasers)

 $\lambda \approx 3.4 \ \mu m$

Tuning range: > 150 cm⁻¹

Pulse power: 10 mW_p

Duty cycle: 0.5%

Laser Spectroscopy and Sensing

Experimental setup with VECSEL, sample and reference cell

Measured reference spectra of $C_1 - C_4$ alkanes

Spectrum of mixture of $C_1 - C_3$ alkanes and H_2O vapor

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C₁-C₄ alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Surgical smoke: in vivo studies

Smoke produced during minimal-invasive surgery with electro-knives or lasers. Smoke samples are taken at the hospital, collected in Tedlar bags, followed by laser and FTIR spectroscopic analysis in our lab

M. Gianella et al.: *Appl Phys. B* **109**, 485 (2012) M. Gianella et al.: *Innov. Surgery* (20 June 2013)

ETH Zurich

Laser Spectroscopy and Sensing

Absorption ranges of species found in surgical smoke

DFG spectrometer

(few ppm for many compounds of interest)

Laser Spectroscopy and Sensing

ECDL, 1520-1600nm 5 mW CW

- 2 Wavemeter for ECDL
- 9 Nd:YAG, 1064.5 nm, 5 kHz, 6 ns, 300 mW av
- **14** PPLN, 5 cm, 8 periods
- **23** Heatable multipass cell up to 35 m

21/25 Detectors (VIGO)

Idler: 150 μW av. 2817 - 2920 cm⁻¹ (29.5 μm) 2900 - 3144 cm⁻¹ (29.9 μm) Step size 0.002 cm⁻¹

Spectral analysis of surgical smoke

M. Gianella et al.: Appl. Spectr. 63, 338-343 (2009)

Outline

- Infrared laser spectroscopic sensing: Introduction, key issues, sources, detection schemes
- Mobile CO₂-laser PA system for urban pollution monitoring
- QCL-QEPAS detection of short-lived species (HONO)
- First lead salt VECSEL studies on C₁-C₄ alkanes
- DFG-system for analysis of surgical smoke
- QCL-PA system for non-invasive glucose monitoring
- Conclusions and outlook

Diabetes as a human metabolic disease

- Patients need to measure the blood sugar level several times a day
- Glucose level of a healthy human: 65 120 mg/dl (3.6 6.7 mmol/L)
- Common blood sugar measurements are invasive

DIN EN ISO 15197 standard for

blood glucose measurement devices: 95 % of all measurements must fall within ± 15 mg/dL for glucose concentrations < 75 within ± 20 % for glucose concentrations > 75 mg/dL

 Goal: Development of a non-invasive glucose sensor based on mid-IR laser, photoacoustic detection and glucose monitoring in interstitial fluid through skin

Interstitial fluid glucose sensing

MIR light: Strong glucose absorption, less interference than in NIR => Optical penetration < 100 µm => blood vessels are not reached

Epidermis: => Glucose diffusion into epidermal interstitial fluid => Correlation with blood glucose

=> No glucose in the stratum corneum

QCL and PA technique

sensitive technique with potential for miniaturisation

FTIR – ATR IR spectra of glucose solutions

Laser Spectroscopy and Sensing

Experimental arrangements

Oral glucose tolerance test with 2-QCL-setup

Current modulation of 2-QCL setup

In-vivo skin sample (Finger) / Total acquisition time = 50 s

QCL1: $\lambda_{on} = 1034 \text{ cm}^{-1}$ / Pulse length: 6ms / Rep. Rate: 66Hz QCL2: $\lambda_{off} = 1195 \text{ cm}^{-1}$ / Pulse length: 1ms

2-QCL measurement: In vivo test (Palm of hand)

QCL1: λ_{on} = 1034 cm⁻¹/ Pulse length = 5ms / Rep.Rate = 66Hz / 0.5mW QCL2: λ_{off} = 1195 cm⁻¹ / Pulse length = 1ms / 0.5mW

Conclusions

- Mid-IR Laser spectroscopy Strong molecular absorptions Broadly tunable laser sources: DFG, OPO, QCLs, VECSELs
- Mobile CO₂ laser PA system: 3 trace gases simultaneously
- QCL-QEPAS: HONO detection at ppb level
- Simultaneous C₁-C₄ alkane (ppm) detection with lead-salt VECSEL
- Surgical smoke: Multi-component quantitative analysis with DFG
- Non-invasive glucose monitoring in interstitial fluid via skin: 2 QCLs with current modulation, repeatability: 18-36 mg/dL (2019) next: OGTT at different locations (hand palm, finger tips, ...), ev. more fixed wavelengths,....

Outlook

New laser developments

QCL arrays, ICLs, frequency combs, supercontinuum sources

Detection schemes

PAS, QEPAS, Multipass Absorption, Photothermal radiometry, Backscattered radiation,

Quantitative detection

of cocaine in human saliva

- NO "one-fits-all" solution
- New application areas with smaller, cheaper, integrated devices: lab-on-a-chip, clinical, POC, & forensic applications

Acknowledgement

Dilyan Marinov

Michele Gianella

Jonas Kottmann

Julien Rey

Weidong Chen

D. Hahnloser: University Hospital Zürich

Matthias Fill & Ferdinand Felder

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Laser Spectroscopy and Sensing

ETH zürich

Thank you for your attention

