

European Good Manufacturing Practices in Smart textiles and new ways of production

Nanostructured textiles to promote skin repair in severe burn injuries

Pilar Sepúlveda, PhD / Òscar Calvo

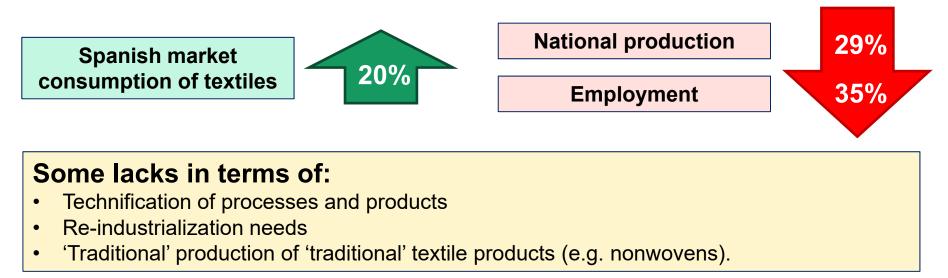
Instituto de Investigación Sanitaria - IIS La Fe / AITEX

SUMMARY

1. GMP STATE-OF-THE ART: TEXTILE RE-INDUSTRIALIZATION IN THE VALENCIAN REGION AND SOME SUCCESFUL CASES.

2. ELECTROSPINNING TECHNOLOGY AND PRODUCTION OF BIO-RESPONSIVE ELECTROSPUN MATS

3. RESULTS COMING FROM PRE-CLINICAL TRIALS.


4. CLOSING REMARKS AND NEXT STEPS.

1. GMP STATE-OF-THE ART: TEXTILE RE-INDUSTRIALIZATION IN THE VALENCIAN REGION AND SOME SUCCESFUL CASES

Situation of the Spanish and Valencian textile industry last 10 years:

Some **funding instruments** are available for national/Valencian textile companies, in order **to improve machinery**, to promote **diversification** of the production and **to reduce lacks in terms of technology level**: REINDUS -national- and CREATEC -Valencia- programmes (co-funded by ERDF EU funds) or the Industrial Modernization Plan -Valencia-.

1. GMP STATE-OF-THE ART: TEXTILE RE-INDUSTRIALIZATION IN THE VALENCIAN REGION AND SOME SUCCESFUL CASES

Some companies and entities are doing R&D, manufacturing and investing on new technologies and new ways of production:

Clean technologies for textile finishing (JEANOLOGIA, S.L.)

FUN2GARMENT project - New functional and sustainable finishings for fabrics and garments (AITEX)

Development of electrospinning technology (BIOINICIA, S.L.)

STENT-NET project - Development of drug eluting stents using biocompatible nanofiber meshes obtined by electrospinning (AITEX/IIS La Fe)

Oil-enriched new wound dressings for treatment of chronic ulcers and burn skin injuries (AITEX/Solutex/IIS La Fe)

4th RESET Seminar on "Smart textiles and new ways of production" Chemnitz, 20th June 2017

Ø

1. GMP STATE-OF-THE ART: TEXTILE RE-INDUSTRIALIZATION IN THE VALENCIAN REGION AND SOME SUCCESFUL CASES

They are also developing **'classical' smart-textiles, wearables, printed electronics** and promoting the concept **'Industry 4.0**':

SPORT@FUTURE project - New textile and footwear solutions to improve safety, protection, comfort, efficiency and health of the sportive people (partnership: 7 companies)

INSTINTO II project - Smart system based on sensors and actuators integrated into textiles for the purposes of preventing, detecting and protecting against a fall by an elderly wearer (AITEX)

SCREENTEX II - Printed electronics on flexible substrates (AITEX)

DIGITALIZA-T project: Industry 4.0 Textile sector (AITEX)

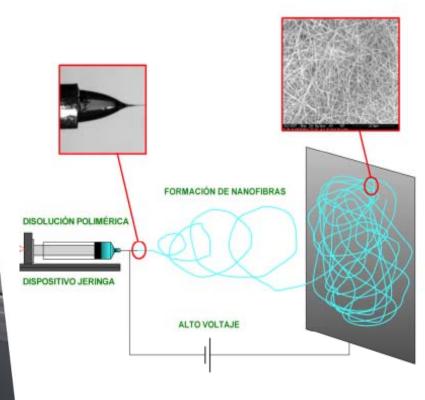
 "Proyecto cofinanciado por los Fondos dentro del Programa Operativo FEDER de la Comunitat Valenciana 2014 - 202

iTEX4HOTEL - Implantation of RFID technology in textile items for the hotel industry (RESUINSA EXPERIENCES S.L.)

2. ELECTROSPINNING TECHNOLOGY AND PRODUCTION OF BIO-RESPONSIVE ELECTROSPUN MATS

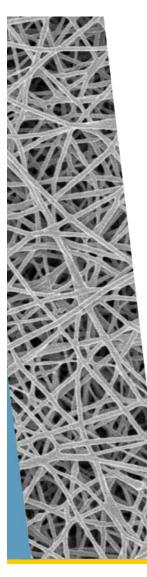
Electrospinning (ES) is a widely used technology **to develop nanofibers and meshes**:

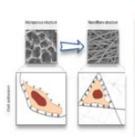
- **Electrospinning** is a fiber production method which uses electric force to draw charged threads of polymer solutions up to nanometrical fibers
- The process does not require the use of coagulation chemistry or high temperatures to produce solid threads from solution.
- This makes the process particularly suited to the production of fibers using large and complex molecules; this method ensures that no <u>solvent</u> can be carried over into the final product.



2. ELECTROSPINNING TECHNOLOGY AND PRODUCTION OF **BIO-RESPONSIVE ELECTROSPUN MATS**

Different electrospinning devices are available in the market: from easy-to-operate needle-based small devices (e.g. biomaterials) to wide formats (production of industrial goods: filtration or acoustic materials, membranes...).




Polymers for bio-responsive applications and biomedicine must be selected from 'medical grades'. Here we focus on the treatment of severe burn injuries using electrospun mats (monoaxial) of bio-compatible poly(D,Llactide-co-glycolide) (DLPLG).

2. ELECTROSPINNING TECHNOLOGY AND PRODUCTION OF BIO-RESPONSIVE ELECTROSPUN MATS

Tissue engineering

 Nanofiber scaffolds with seeded cells can be implanted to patient's body to repair the damaged tissue.

Drug delivery systems

 Nanofibrous membranes are considered as a potential drug carrier, incorporated with drug component can be patched on a wound

Wound dressing

 Electrospun polymer nanofibers are treated as tissue scaffolds which enhance cell growth and proliferation

- Electrospinning technnology allows generation of biomaterials with tailor-made thickness and dimensions.
- Nanofiber webs or mats
 have a specific area and
 porosity controlled by altering
 the weight and density of
 fibers by surface unit allowing
 the adaptation of scaffolds to
 a particular tissue
 engineering application.

3. RESULTS COMING FROM PRE-CLINICAL TRIALS.

Options for treating severe burn injuries:

If burn area is < 50% of total body area

Best option are AUTOLOGOUS SKIN GRAFTS

If burn area is > 50% of total body area

Unique option is AUTOLOGOUS ex vivo EXPANDED DERMAL EQUIVALENT

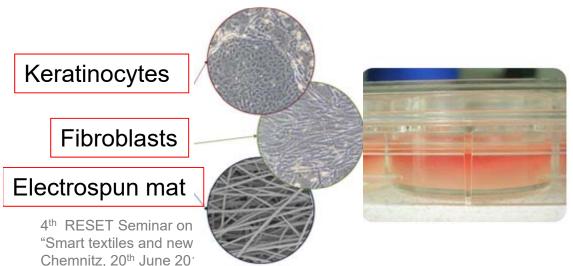
4th RESET Seminar on "Smart textiles and new ways of production" Chemnitz, 20th June 2017

Current dermal equivalents: A healthy skin biopsy is taken from the patient and expanded ex vivo in a GMP cell culture room to obtain artificial skin from the same patient that will be transplated as a definitive cover

Definitive coverage Economic Good results Preparation time Handling Sensitive to infection Irregular

performance

311



3. RESULTS COMING FROM PRE-CLINICAL TRIALS.

The main objective of the nanostructured textiles -scaffolds- is to improve the quality of dermal equivalents and to increase their viability and engraftment.

Electrospun scaffolds must fulfill the following requirements:

- Do not cause cell death or be toxic or teratogenic.
- To promote cell adhesion and proliferation.
- To allow homogeneous and continuous cell growth.
- To be biodegradable and biocompatible.
- Do not induce chronic inflammation
- Be sterilizable and easy to handle.

The product generated in this project consists of a electrospun scaffold combined with a dermal equivalent made of fibroblasts and keratinocytes:

- It provides improved handling of dermal equivalent (DE)
- It improves engraftment of DE.
- It can be functionalized with growth factors, antibiotics or other active principles.

3. RESULTS COMING FROM PRE-CLINICAL TRIALS.

Testing. In vitro cellular assays and in-vivo (animal, mices) models:

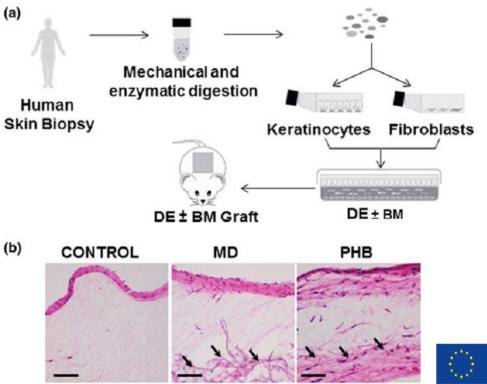
In vitro cellular assays:

Nanofiber web	Culture well	Cells growing on nanofiber web

RESEARCH ARTICLE

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE **RES** J Tissue Eng Regen Med 2017. Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI:** 10.1002/term.2420

Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis

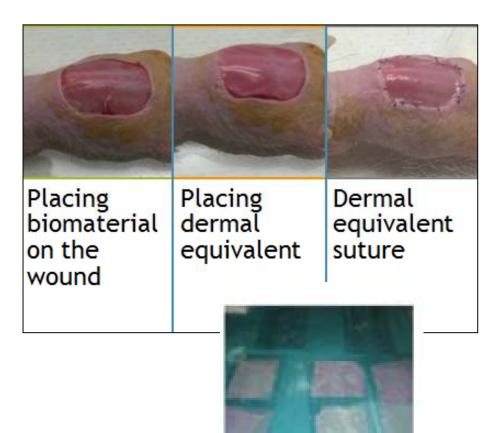

Delia Castellano^{1,2†}, Ana Sanchis^{1†}, María Blanes³, M^a. Dolores Pérez del Caz¹, Amparo Ruiz-Saurí⁴, Marina Piquer-Gil^{1,2}, Beatriz Pelacho⁵, Bruno Marco³, Nahuel Garcia^{1,2}, Imelda Ontoria-Oviedo^{1,2}, Vicente Cambra³, Felipe Prosper⁵ and Pilar Sepúlveda^{1,2*}

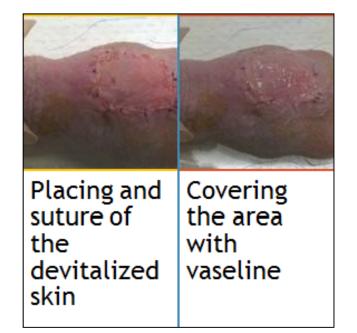
¹Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit, Valencia, Spain

²Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain ³Instituto Tecnológico Textil Aitex, Alcoy, Spain

⁴Departamento de Patología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain

⁵Laboratory of Cell Therapy, Foundation for Applied Medical Research and Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain

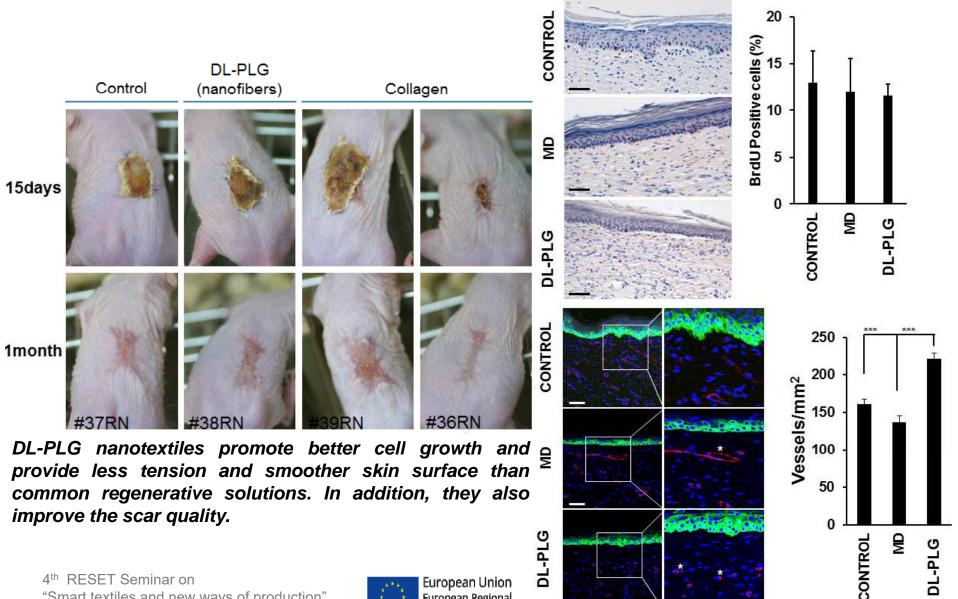




3. RESULTS COMING FROM PRE-CLINICAL TRIALS.

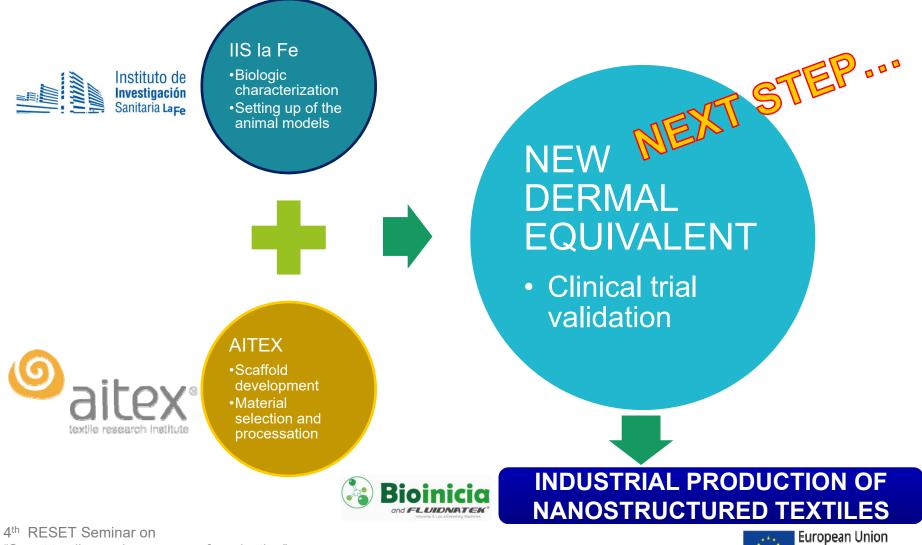
In vitro cellular assays and in-vivo mouse models:

In vivo NOD/SCID mice:



JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE **RESEARCH ARTICLE** *J Tissue Eng Regen Med* 2017. Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI:** 10.1002/term.2420

"Smart textiles and new ways of production" Chemnitz, 20th June 2017


4. CLOSING REMARKS AND NEXT STEPS.

- Biomaterials tyested are biocompatible in terms of controled inflammation and cell growth
- Nanofibers integrate into fibrin matrix and are permeable to nutrients and cells.
- New dermal equivalents with nanofibers are **optimal for clinical** handling.
- New dermal equivalents have angiogenic capacity (promotes formation of new blood vessels).
- They improve scar quality, less tension, smooth surface.
- They could be improved by adding drugs or growing factors.

4. CLOSING REMARKS AND NEXT STEPS.

"Smart textiles and new ways of production" Chemnitz, 20th June 2017

For further information please contact:

Dr. Pilar Sepúlveda, PhD (pilar.sepulveda.sanchis@gmail.com)

Dr. María Blanes (<u>mblanes@aitex.es</u>) Mr. Bruno Marco (<u>bmarco@aitex.es</u>) Mr. Oscar Calvo (<u>ocalvo@aitex.es</u>)

THANK YOU FOR YOUR ATTENTION!!!

http://www.interregeurope.eu/reset