

European Good Practices in Eco-creativity, natural fibres, short value chains

ECO CREATION WITH DESIGN THINKING

Thierry LE BLAN CETI

5th RESET Seminar on "Eco-creativity, natural fibres, short value chains" Lodz, 17th October 20

Development Fund

European Center for Textile Innovation

An unique location in the North of France & Europe

Inside a true hub dedicated to innovation ...

- Research and development team
- Cluster
- Business incubator
- Professional federations and nurturing structures
- Organization of Textile event

CETI

Technological & digital platform

To produce together innovative textile solutions for **tomorrow's uses**

PRESENTING

CETI is dedicated to research and innovation through 3 kinds of activities :

• OWN RESEARCH

Investigation of innovative concepts while developing knowledge and pluridisciplinarity skills.

COLLABORATIVE RESEARCH

Contribution to collaborative R&D research programs thanks to its skilled staff and pilot equipment. Funding as partner or subcontractor.

PRIVATE RESEARCH

Participation in private R&D programs on customers' request.

ACTIVITIES

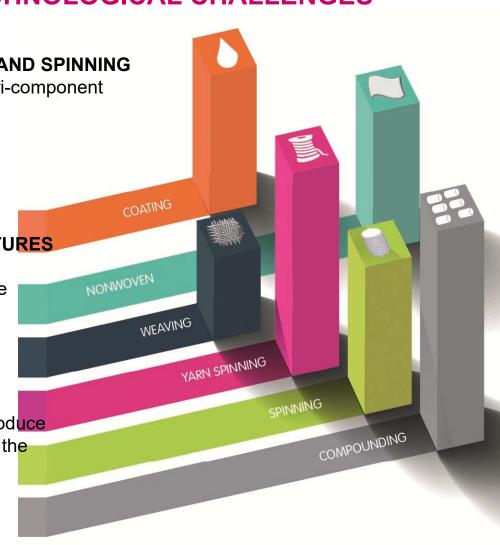
Innovation Design R&D Products and Processes Prototyping Sampling Transfer

PROOF OF INNOVATION

A complete pilot offer to take on **TECHNOLOGICAL CHALLENGES**

TO CREATE NEW MATERIALS : COMPOUNDING AND SPINNING

The CETI owns one of the world's five platforms for tri-component spinning.


- · Test spinnability of new polymers,
- Create functionalized filaments
- · Create fine filaments and fibres
- Combine polymers in a filament or in fabrics

TO PROTOTYPE TRADITIONAL TEXTILE STRUCTURES

CETI's spinning, weaving and coating units offer the possibility for industrial prototyping of traditional textile structures.

TO CREATE NEW TEXTILE STRUCTURES FOR NONWOVENS

Thanks to the flexible configuration of its "drylaid" & "spunlaid" pilot lines, the CETI has a capacity to produce demonstrators for textile composites that is unique in the world. **Over 100 possible combinations.**

ECO-DESIGN

What's behind: BIO-BASED FIBERS OR BIO-SOURCED FIBERS Natural fibers

Man made fibers, synthetic fibers, bio-based polymers

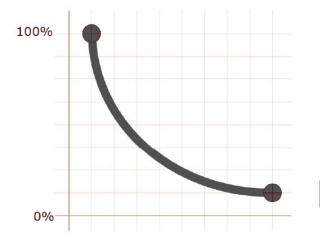
Bio-based carbon content: fraction of carbon derived from biomass in a product (EN 16575 Bio-based products – Vocabulary)

Polyethylene	PE	100%	Glucose
Polyhydroxyalkanoates	PHA	100%	Oil plant
Polylactic acid	PLA	100%	Glucose
Polyamid 11	PA	40% to 100%	Oil plant

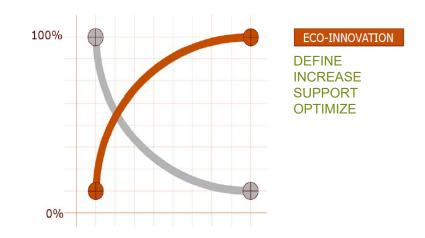
BUSINESS CASE

The eco-design of a bio-based, biodegradable WIPE using a "design thinking" process.

How to proceed to create NEW BIO-BASED BIODEGRADABLE WIPES ?

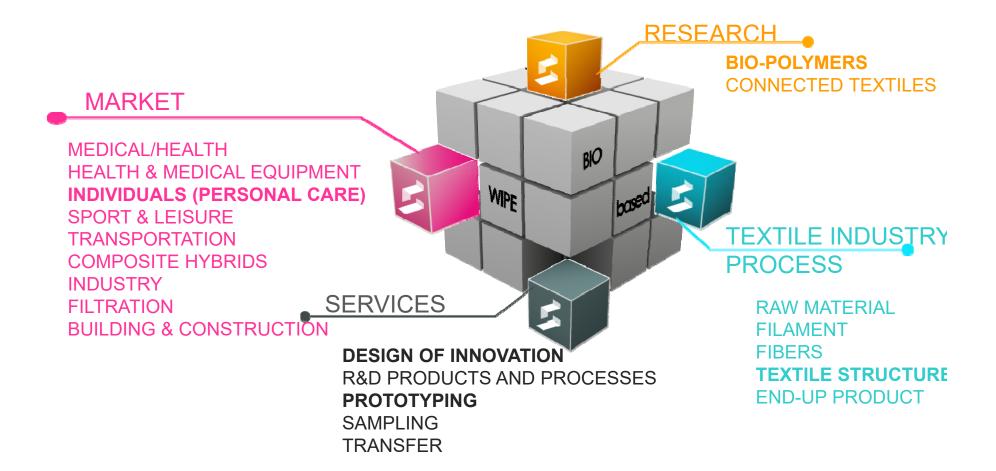

2 SYSTEMATIC APPROACHES

From cradle to grave

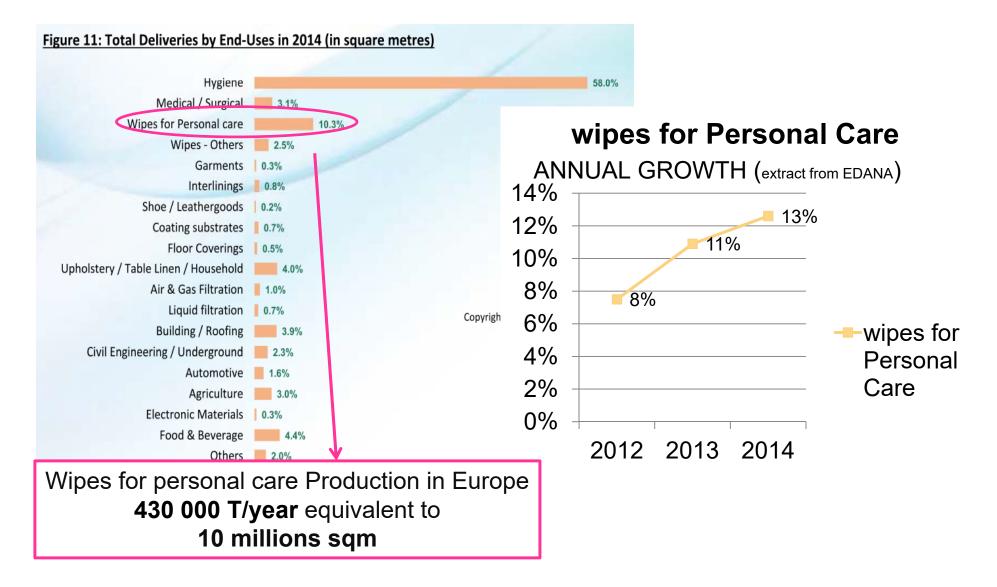

Reduce environmental impact and anticipate health risks

From Cradle to Cradle

Create products that can be indefinitely recycled, either biologically or technically



MATCH POINT WITH OUR SKILLS



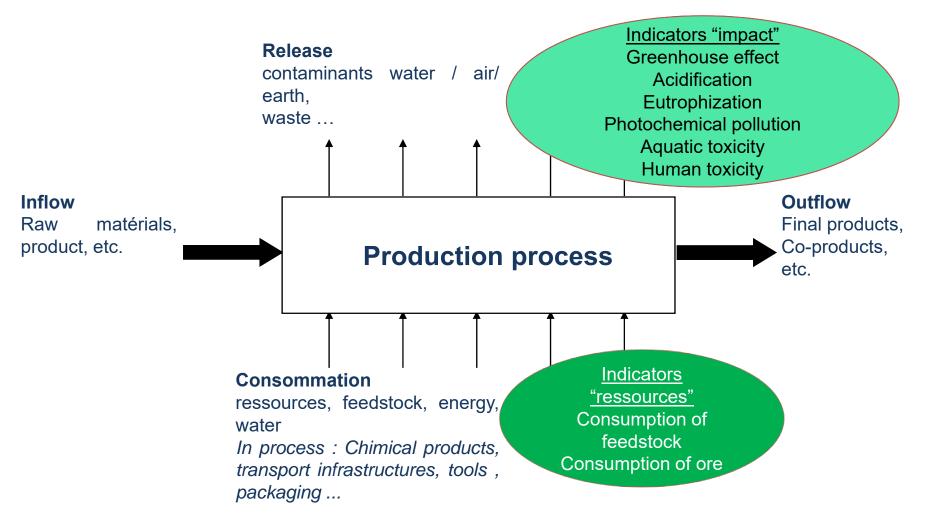
ECO-DESIGN OF A BIO-BASED BIODEGRADABLE WIPE

MARKET RESEARCH ON THE WIPES

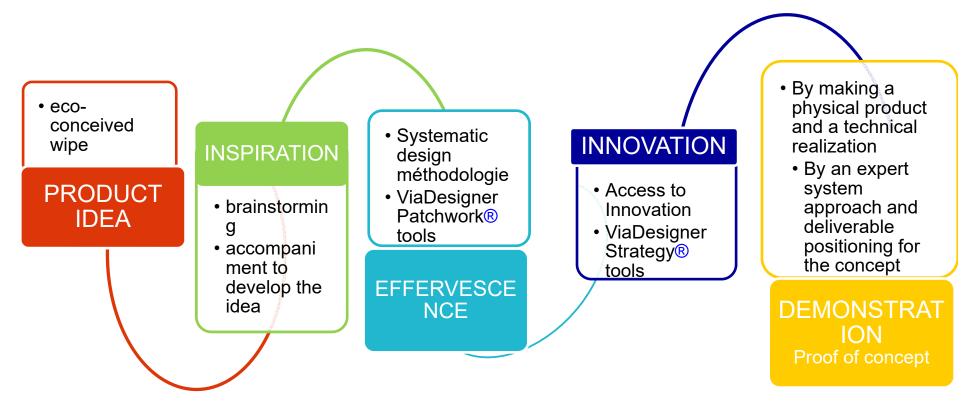
RAW MATERIAL SELECTION


Polylactic acid (PLA) is 100% bio-based and biodegradable. PLA is industrially compostable.

	ТҮРЕ	ORIGINE	BIO SOURCED		NNEMENTAL MPACT	BIO DEGRADABI	COMPOSTABL	Elecyclable	CLEANLINESS
	viscose ®	cellulose		olluting	manufacturing	g yes			Soft
				rocedure					
	tencel ®	cellulose	S	trong carbo	n footprint	yes			soft, resistant, waterproof
<	PLA	starch	yes			yes	yes (58°C and humidity)	transparent, h yes	eat-resistant as of 60°C
	Gaïalène®	starch	yes			no		yes	shock-resistant, soft, easy to dye
	Bioplast GF®	potato starch	yes			yes	yes (less th days)	an 180	gas-proof (O2 CO2)
	NatureFlex®	Wood pulp	·	ptimization eduction	method fo	r yes	yes		
	viloft®	Wood pulp	yes			yes			soft, flexible, absorbing
	Green™ Polyethylene	Sugar cane	yes			no		yes	identical to polyethylene
	Flax	Flax	yes			yes	yes	yes	UV filter
	Hemp	hemp	yes			yes	no		anti-bacterial, filters radiation
	Jute	Jute cellulose	yes			yes	no	yes	
	Ramie	nettle	yes			no	no		anti-bacterial, resistant
	РНА/РНВ/РНВV	bacterial origin (starch and sugar)	yes			yes	yes	yes	rigid polymer, resistant


THE LCA APPROACH

Study of environmental problems at each step of a product's conception



LCA Indicators

Flows involved in elementary production process

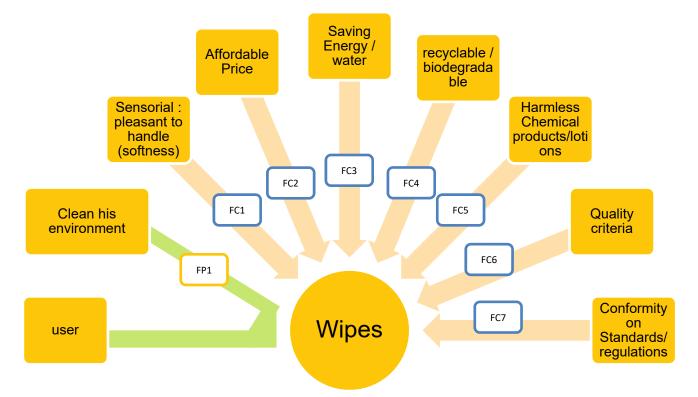
The eco-design of a product consists of a reflective approach revolving around **the final user** beginning with an **idea** and **identifying the need** and all the way to **prototype the product**.

Strategy®

A way to integrate each important variable of an innovative project:

1/ Describing the context and the role of innovation

2/ Analyzing the key needs and functions anticipated by targeted users


3/ Listing each solution proposed

4/ Defining the players involved

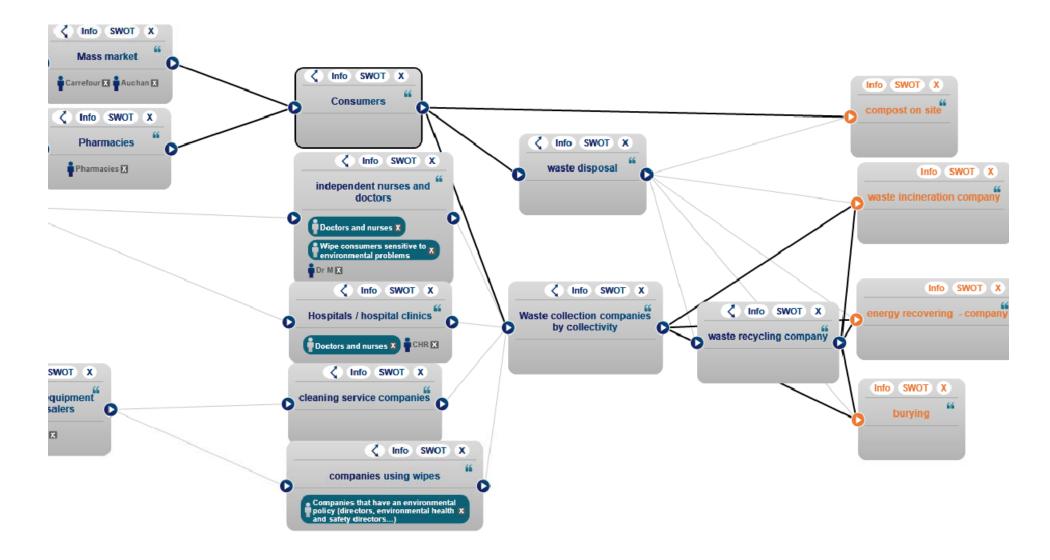
5/ Positioning the offer based on different market segments

6/ Analyzing the pertinence of each offer

FOCUS ON WIPES functionality (uses/needs)

- •FP1 : allows the user to clean his environment
- •FC1 : is pleasant to handle (softness)
- •FC2 : is FC3 : consumes little energy and water when manufactured and used
- •FC4 : is recyclable / biodegradable
- •FC5 : is healthy and without danger for the user
- •FC6 : has qualitative criteria that validates the product and facilitates its use
- •FC7 : respects environmental and security standards

RESET Interreg Europe


Consumer Profil

Profil type WOMAN Aged between 20-45 years old Sensitive to environnmental issues (72% vs 38% men) Run the house

VALUE NETWORK

PROOF OF INNOVATION

NONWOVEN PILOT LINE

To combine 2 polymers in a filament or in fabrics

To create new nonwovens structure by the flexibility of the configuration of its lines " spunlaid" and " drylaid " (more than 100 possible combinations) To Produce hybrid webs Web formation and consolidation line Spunbond, Meltblown, Card, Airlay, calander, cross-lapped, hydroentanglement, needle-loom, oven,

PROTOTYPING of A BIODEGRADABLE, BIO-BASED WIPE

3 PROTOTYPED WIPES :

- 100% Viscose
- 70 %Viscose / 30 % PP
- 70 % Viscose / 30 % PLA

With 2 differents Web consolidation

- <u>PROCESS 1</u>: Drylaid process with 1Xhydro entanglement for web consolidation
- PROCESS 2 : Drylaid process with 2Xhydro entanglement for web consolidation

Trial	Compositio n	Process	g/m ²	MD Resistanc e N/5cm	MD Elongatio n %	CD Resistanc e N/5cm	CD Elongatio n %	Permeability 196 Pa I/m²/s	Thickne ss0.5 kPas (mm)	1
1	V 100%	1	50	35	42	18	112	3846	1.25	
2	V/PP 70/30	1	48	30	70	13	148	4204	1.05	
3	V/PLA	1	48	31	45	13	130	4486	1.49	
	70/30									
4	V 100%	2	61	108	15	37	84	2180	0.52	
5	V/PP 70/30	2	65	88	24	36	115	2354	0.65	
6	V/PLA 70/30	2	63	94	23	42	78	2588	0.6	

Compositions made of 100% biodegradable materials (PLA base) have characteristics similar, if not better, to those made with petrochemicals (PP base)

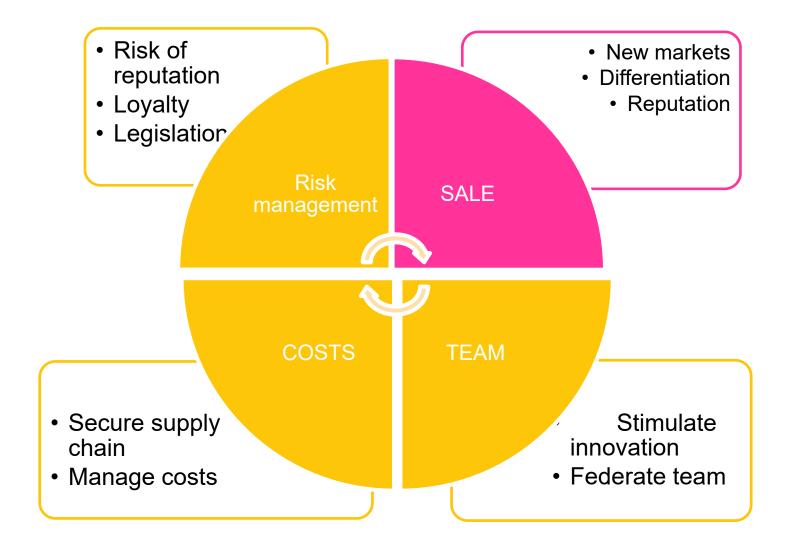
OVERVIEW

STRUCTUR			NG	
 Technolo 		PLACING PRODUC		
choice • Economi	cal choice	 Rationalization of thinking Context of the market Market survey 	 FORMALIZING THE STRATEGIC PROCESS OF ACCESS TO MARKET Systemic approach to innovate Multidisciplinary approach Consumers feedback 	

CONCLUSION OF THE STUDY

DESIGN INNOVATION APPROACH ON THE PRODUCTS MARKETS NTIFYING ⊳ NEE STRUCTURING THE **COLLECTIVE THINKING**

LCA ANALYSIS


- Product impact on the market
- Consumer needs.
- Process validation with procedures optimization
- Environmental Impact
- High value network from raw materials production to end-life product
- Prototype validation on Pilot line equipment ready to transfer on industrial

site.

Wipes for personal care with PLA base fibers meet environmental criteria and satisfies the final user.

ECO-DESIGN ADDED VALUE

European Union European Regional Development Fund

THANKS YOU FOR YOUR ATTENTION

Thierry LE BLAN Thierry.leblan@ceti.com

Project smedia