

European Best Practices in Water consumption, Energy saving and Sustainable Company Organisation

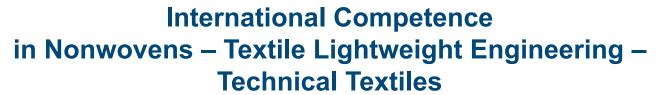
UV-LED curable coatings for technical textiles

Ralf Lungwitz / Romy Naumann (Saxon Textile Research Institute)

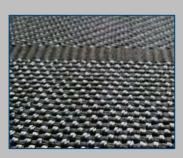
iTechStyle Summit - 1st International Conference of Textile and Clothing 2nd RESET Seminar on "Water consumption & energy saving" Porto/Matosinhos, 14th February 2017

RESET Interreg Europe

stfi


Saxon Textile Research Institute (STFI)

Affiliated institute of Chemnitz University of Technology



Saxon Textile Research Institute (STFI)

Affiliated institute of Chemnitz University of Technology

- non-profit, founded in 1992
- since 2006 associated to Chemnitz University of Technology
- about 150 employees
 (researchers, laboratory assistants and technicians)
- more than **100 R&D projects** on regional, and national level are carried out each year (BMWi, BMBF, AiF, SMWA, SMWK, ...)
- 5 to 10 patent applications are submitted per year
- member of TEXTRANET, EDANA, European Technology Platform, Euro Textile Region, standardisation working groups, etc.

Interreg Europe

Center of Excellence in Nonwovens

- Fibre nonwovens
- Extrusion nonwovens
- Textile recycling

Center for Textile Lightweight Engineering

- Processing of glass, carbon, aramid, basalt
- Manufacturing of composites and pre-forms
- carbon recycling

Innovation Center of Technical Textiles

- Technical Woven & Knitted Fabrics/Reinforcing Structures
- Finishing/Coating/Lamination / Ecology
- Development of materials and testing methods

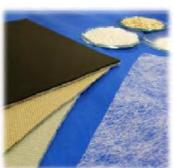
Services

- Accredited Test Laboratory
- Certification Department for PPF
- Certification Body Geosynthetics

C€ 0516

Transfer Center

- Communication and process management
- International cooperation



Innovation Center of Technical Textiles Finishing / Coating / Laminating and Ecology

- textile functionalisation by finishing, coating, printing
- yarn finishing and coating
- composites from textile and non-textile materials
- hotmelt technology; compounding and coating
- ecology and environmental protection
- chemical analysis

RESET – 2nd Thematic Seminar

"Water consumption and energy saving" Presentation of Good Practice (GP)

UV-LED curable coatings for technical textiles

Ralf Lungwitz / Romy Naumann (Saxon Textile Research Institute)

Ralf Lungwitz
E-mail: ralf.lungwitz@stfi.de
Porto/Matosinhos, 14th February 2017

Background for the implementation of the GP

State of the art – textile coating with thermal drying

- solvent based systems (org., DMF, MEK, toluene)
- water based systems
- high-solid systems (80 100 % solid)
- thermoplastic polyurethanes

Background for the implementation of the GP

State of the art – textile coating with thermal drying

- solvent based systems (org., DMF, MEK, toluene)
- water based systems
- high-solid systems (80 100 % solid)
- thermoplastic polyurethanes

- explosion protected plants (org. solvents)
- solvent residues (DMF REACH)
- exhaust air treatment (org. solvents)
- application of the valuable resource water as solvents
- high drying and application temperatures → energy intensive
- high and long plants → high space requirement

Background for the implementation of the GP

State of the art – textile coating with thermal drying

- solvent based systems (org., DMF, MEK, toluene)
- water based systems
- high-solid systems (80 100 % solid)
- thermoplastic polyurethanes

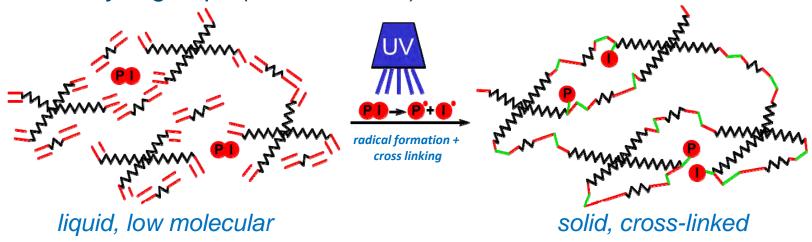
increasing energy costs and a growing environmental awareness demand modern, ecological, watersaving, energy and cost efficient methods

Background for the implementation of the GP

State of the art – textile coating with thermal drying

- solvent based systems (org., DMF, MEK, toluene)
- water based systems
- high-solid systems (80 100 % solid)
- thermoplastic polyurethanes

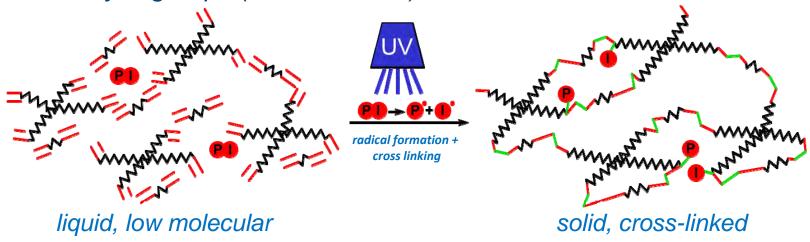
increasing energy costs and a growing environmental awareness demand modern, ecological, watersaving, energy and cost efficient methods

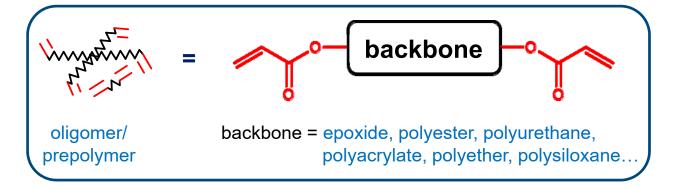


Background for the implementation of the GP

General principle of UV-curing

 based on photo-initiated radical cross-linking/polymerisation of acrylic groups (double bonds)

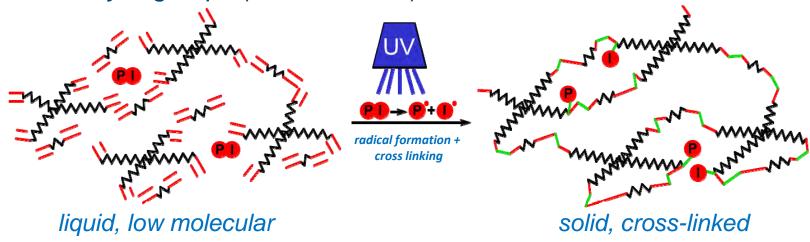




Background for the implementation of the GP

General principle of UV-curing

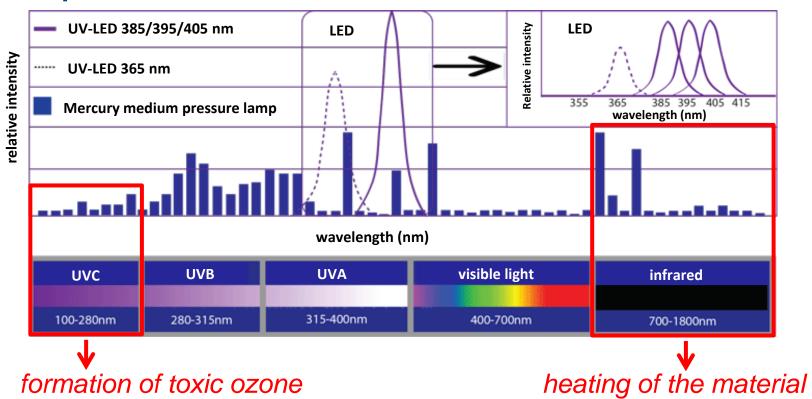
 based on photo-initiated radical cross-linking/polymerisation of acrylic groups (double bonds)



Background for the implementation of the GP

General principle of UV-curing

 based on photo-initiated radical cross-linking/polymerisation of acrylic groups (double bonds)



Background for the implementation of the GP

Comparison of UV-sources

Further drawbacks of UV-Hg-lamps:

- contains mercury → Disposal and safety at work

Background for the implementation of the GP

Advantages of the UV-LED-curing

- eco-friendly 100 % formulations
- low energy consumption → energy saving up to 75 %
- low space requirement → 1 2 m instead of up to 150 m
- short curing time operating speed up to 90 m/min (wood coating) and 900 m/min (printing)

Background for the implementation of the GP

Advantages of the UV-LED-curing

- eco-friendly 100 % formulations
- low energy consumption → energy saving up to 75 %
- low space requirement → 1 2 m instead of up to 150 m
- short curing time operating speed up to 90 m/min (wood coating) and 900 m/min (printing)

Advantages of the LED as an UV-source

- narrow band and intensive emission spectrum in the UV-A range (315 400 nm) → no formation of toxic ozone
- no emission of IR-radiation → very gentle to the material
- long operating life (> 50000 h)
- no power-up time → on-off operation
- contains no toxic mercury
- small size and variable in form

Background for the implementation of the GP Legal framework

Directive 2008/1/EC of European Parliament and Council

about Integrated Pollution Prevention and Control (IPPC)

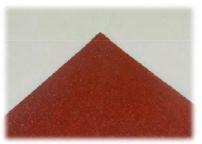
Directive 2010/75/EC "Industrial Emissions Directive – IED"

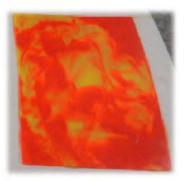
- measures for prevention and reduction of emissions and waste for different industrial sectors
- use of the Best Available Techniques (BAT)

Trail "Reduction of Mercury Emission" incorporated into the United Nations Environment Programme (UNEP) was concluded in 2013

aim → replacement of mercury containing products

Further legislation to be taken into consideration


- waste disposal and occupational safety of mercury
- occupational safety concerning UV-radiation


UV-LED curing at STFI

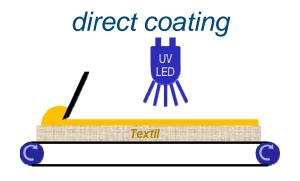
Functional coating of technical textiles

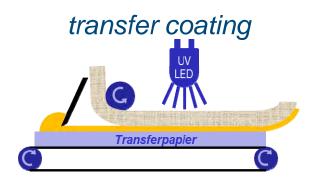
3D printing on textiles

Composites in lightweight engineering

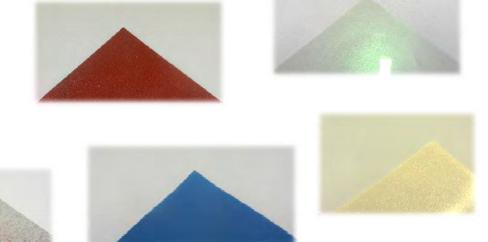
UV-LED curable coatings **UV-LED curing at STFI - machinery**

- UV-Hg-unit (with various lamps)
- UV-LED-lamp (395 nm)
- both integrated into a lab-scale coating plant
- UV-LED-lamp (385 nm) @ 3D printer
- 50 cm working width
- direct and transfer coating
- foulard
- reverse-roll-coater
- slot die
- jetronica print head
- corona pre-treatment
- *N*₂-inertisation chamber





UV-LED curing at STFI – functional textile coating


Binder: polyurethane- and siliconacrylate

Functionalities

- non-fade/UV-protection
- flame retardant
- abrasion resistance
- anti microbial
- colouration

UV-LED curing at STFI – functional textile coating

Transferability of GP - Success factors

- from a technological point of view, the described GP is transferable to other regions provided that the requested investment for machinery is available
- development of innovative products (technical textiles)

• development of processes with high economic efficiency (*material*,

water, and energy saving)
reduced energy costs

Impact on "Water consumption and energy saving, sustainable company organisation"

Increasing energy costs (2007 - 2013 electricity ~ 42 %, oil ~ 80 %, gas ~ 28 %)*

- energy saving:
 - short processing time
 - using UV-LED-source (75 % energy saving vs. thermal curing)
- water consumption:
 - water and solvent free 100 % formulations
- space saving (~ 2 % space requirement vs. stender frame)
- reputation as an ecological technology

Good Practice value added at regional and transregional (EU) levels

- Gaining expertise in a specialized technological field
- Establishing innovative technologies
- Industrial up-scaling of energy-efficient technologies
- Gaining innovative products with improved functionalities
- Saving energy and processing time
- Improvement and adaption of machinery and equipment for worldwide applications
- Transferability of Good Practice to other regions

GP Contact

Name of person	Ralf Lungwitz / Renate Bochmann
Name of organisation	Sächsisches Textilforschungsinstitut e.V. (STFI)
E-mail	ralf.lungwitz@stfi.de
Phone	+49 371 5274 248
Website	www.stfi.de

Thank you!

