

Nowe regulacje w żegludze morskiej w zakresie ochrony środowiska – wyzwania, technologie, możliwości

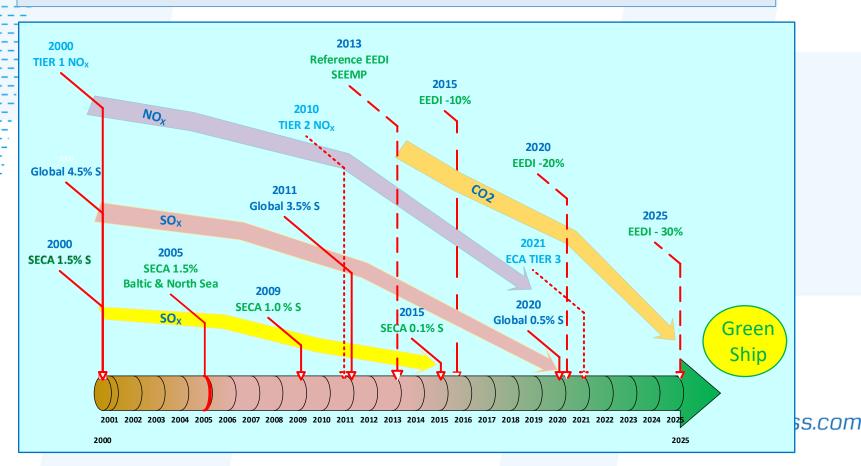
New environmental regulations in maritime shipping - challenges, technologies, opportunities

Tadeusz Borkowski

Maritime University of Szczecin

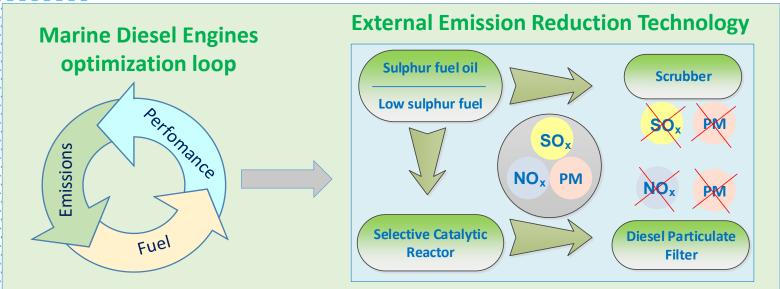
Contents:

- 1. Air pollution actual environmental legislation
- 2. Marine diesel engine emission and reduction technology outlook
- 3. Fuel oil prices and freight rates effects in shipping
- 4. Emission Control Areas existing and potential in future
- 5. Fuels as a basic method of SECA regulation compliance
- 6. Exhaust Gas Cleaning System as an alternative SECA requirements
- 7. EGCS installations in service
- 8. List of EGCS manufacturers
- 9. Regulatory requirements and principle of operations
- 10. EGCS comparison and estimated costs
- 11. Fuel versus EGCS development predictions
- 12. Conclusions


MGM'ŻŚ 📅

MARITIME CONGRESS bundation

Environmental legislation programs


1. International Maritime Organization adopted MARPOL 73/78 Annex IV:

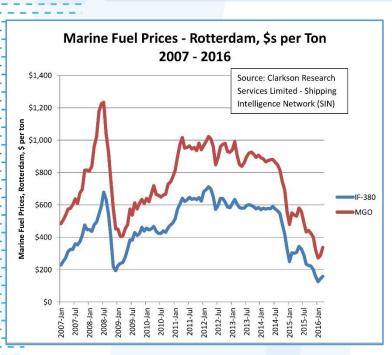
- Regulation 13 Nitrogen Oxides NO_X
- Regulation 14 Sulphur Oxides SO_x and Particulate Matter PM
- RESOLUTION MEPC.203(62): Energy efficiency for ships CO₂
- 2. EU Directive EU 2005/33/EC, 2005 for ships moored in EU ports SO_X

Marine diesel engine emission and reduction technology outlook

SO_x emission control means may be divided into methods termed:

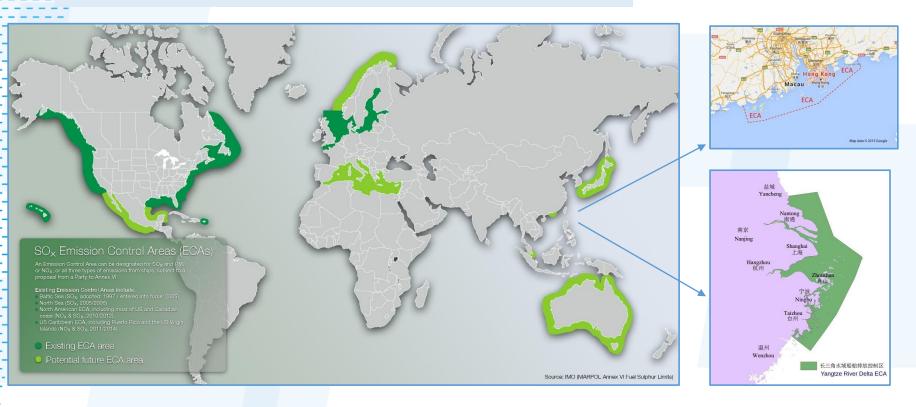
- **Primary** formation of the pollutant is avoided (ultra-low sulphur or alternative fuels)
- **Secondary** pollutant is formed but removed, prior to discharge to the atmosphere (scrubbers).

NO_x reduction technologies can be divided into three basic categories:


- **pre-treatment** lowering the combustion temperatures by external treatment or use of alternative fuels,
- internal measures altering the engine configuration to modify the combustion process (EGR),
- **after-treatment** systems fitted externally to the engine and are applied directly to the exhaust gases (SCR, EGR).

Ships' speed changes influenced by fuel oil prices and freight rates

Ship Type	Size, Iower	Size, upper	Units	Design Speed	2007 Speed	2012 Speed	2016 Speed
Bulk Carrier	60,000	99,999	dwt	15.3	13.0	11.9	11.7
Bulk Carrier	100,000	199,999	dwt	15.3	12.8	11.7	11.6
Bulk Carrier	200,000		dwt	15.7	11.5	12.2	118
Container	3,000	4,999	TEU	24.1	18.6	16.1	16.4
Container	5,000	7,999	TEU	25.1	20.6	16.3	17.5
Container	8,000	11,999	TEU	25.5	21.3	16.3	17.7
Container	12,000	14,499	TEU	28.9	20.6	16.1	18.5
Container	14,500		TEU	25.0		14.8	19.7
Oil Tanker	80,000	119,999	dwt	15.3	13.3	11.6	12.7
Oil Tanker	120,000	199,999	dwt	16.0	13.7	11.7	12.9
Oil Tanker	200,000		dwt	16.0	14.6	12.5	12.8



naritimecongress.com

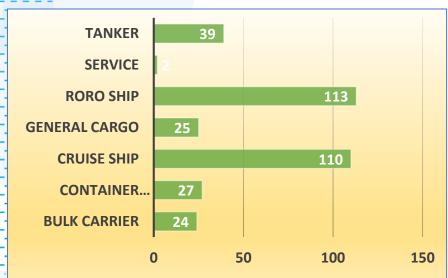
Emission Control Areas existing and potential in future

Global 0.50% m/m on and after 1 January 2020 or 2025, depending the outcome of a review to be completed by 2018 to determine availability of fuel oil to comply with the fuel oil standard.

Marine common fuels facing current and future requirements

Marine Typical Fuel Grades									
WORLD Model Grade	ISO8217 Grade	Key Specifications Employed							
		density @ 15C - max	wt % sulphur - max	flash point degC - min	viscosity @ 40C (mm2/s) - max	viscosity @ 50C - (mm2/s) - max	pour point Summer / Winter average (degC) - max	cetane index - min	micro carbon residue (%m/m) - max
Marine Distillate Fuels									
'Traditional' MGO	DMA	890	1.5/0.5	60	6		0/-6 = -3	40	
ECA MGO	DMA	890	0.1	60	6		0/-6 = -3	40	
Global MDO	DMB	900	0.5	60	11		6/0 = 3	35	0.3
IFO Fuels									
HS IFO180	RMG	0.991	3.5	60		180	30		18
HS IFO380	RMG	0.991	3.5	60		380	30		18
Global IFO 80 / 'Hybrid'	RMD	0.975	0.5	60		80	30		14
Global IFO 380	RMG	0.991	0.5	60		380	30		18

MARITIME CONGRESS Foundation


New fuel arrival

New "hybrid" fuel products containing a maximum of 0.10% m/m sulphur as an alternative to using distillates in order to meet the MARPOL Annex VI requirements

								SK ULSFO	BP 0.1	
			HDME 50	Fuel Oil	DMB	Fuel Oil	ULSFO	(SK	RMD	Eco Marine
Characteristics	Unit	Limit	(EXXONMOBIL)	(Chemoil)	(Chemoil)	(Chemoil)2	(Shell)	Energy)	(BP)	Fuel (Lukoil
Kinematic viscosity at 50 °C	mm2/s	min/max	25 to 45	16.84	10.5	26.3	10-60	30~40	6-13	65
Density at 15 °C	kg/m3	max	895 to 915	0.8589	0.885	0.896	790-910	0.928	850-890	0.91
Cetane index	_	min			40					
CCAI	_		795 to 810			795	800	790~800	760-820	860
Sulphur	mass %	max	0.1	0.084	0.085	<0.1	<0.1	<0.1	0.10	0.095
Flash point	°C	min	70	>60	70	>60	>60	70	60	60
Hydrogen sulfide	mg/kg	max	1		0.1		<2		2	2
Acid number	mg KOH/	g max	0.1		0.1	2.35	<0.5		2.5	2.5
Total sediment existent	mass %	max	0.01	0.01	0.05	0	0.01-0.05	0.02	_	
Total sediment aged	mass %	max	0.01	0.01		0.01	0.01-0.05	0.02	0.07	0.1
Oxidation stability	g/m3	max	0.01				_			
Carbon residue: micro method	mass %	max	0.3	<0.10	0.1	3.8	2	6	4	14
Cloud point	°C	max	_				_		_	
Pour point (upper) W	°C	max	9 to 15	-20	-4	-6	18	20~25	+27	20
	S °C	max	9 to 15							
Appearance	-	_	brown/ green - opaque	Not Clear and bright	ot Clear and brig	Not Clear and brigh	t _	Black	_	
Water	volume %	6 max	0.05		0.05		0.05	0.2	0.3	0.1
Ash	mass %	max	0.01	0.003	0.005	0.06	0.01	0.05	0.04	0.07
Lubricity, (wsd 1,4) at 60 °C	μm	max	320		310				_	
Vanadium	mg/kg	max	1			<1	2	0.7	50	2
Sodium	mg/kg	max	1	4		1	10	2	50	2
Al & Si	mg/kg	max	3	<3		<10	12-20	10~20	25	17
Calcium	mg/kg	max	1	13		175	free of ULO	5		free of ULO
Phosphorus	1			7		<1	free of ULO			free of ULO
Zinc	mg/kg	max	1	2		<1	free of ULO	1		free of ULO
Calc. Gross Specific Energy	mg/kg								45.2	

Actual EGCS installations

Ships equipped with EGCS

Estimated number of scrubber units onboard				
In Service	843			
Keel laid	13			
Launched	16			
On order and not commenced	21			
Under construction	2			
Total	895			

ORGANISERS:

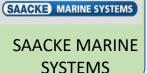
Scrubber units in service

www.maritimecongress.com

List of EGCS manufacturers

AEC MARITIME

ORGANISERS:


PURETEQ

DUPONT BELCO CLEAN AIR

MUNTERS

mecd

Wet and Dry Scrubbing – current approach

Wet scrubbers principle

Exhaust

outlet

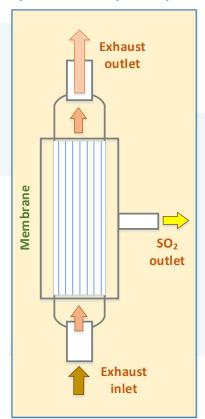
Washwater

outlet

Cyclonic

Exhaust inlet

Venturi


Venturi

Washwater

inlet

Washwater inlet Exhaust outlet Exhaust inlet

Dry scrubber principle

Membrane

Washwater outlet

EGCS Regulatory requirements

IMO Resolutions: MEPC.130(53), MEPC.170(57) and MEPC.184(59) 2009; Guidelines for Exhaust Gas Cleaning Systems, adopted on 17 July 2009

Exhaust emissions compliance limits

For EGC systems operating on conventional fuel oils, exhaust emission compliance with the equivalent fuel oil sulphur content is verified from the measured **SO2/CO2** concentration ratio

Fuel Oil Sulfur Content	Emission Ratio
(% _{m/m})	SO ₂ (ppm)/CO ₂ (% _{v/v})
0.10	4.3

Washwater discharge and limits

1. pH criteria

The pH of the discharged wash water from the scrubbing process should be no lower than 6.5 units

2. PAH* concentration

The washwater maximum continuous PAH concentration is not to be greater than $50 \mu g/Ltr$ above inlet water PAH concentration

3. Turbidity

The turbidity of the EGC unit washwater should not exceed **25** NTU above the inlet water turbidity

^{*}Polycyclic Aromatic Hydrocarbons

EGCS in open loop mode – operation and compliance monitoring

ORGANISERS:

Engine sulphur combustion chemistry:

$$S + O2 \rightarrow SO2 \sim 95\%$$

 $SO2 + 1/2O2 \rightarrow SO3 \sim 5\%$

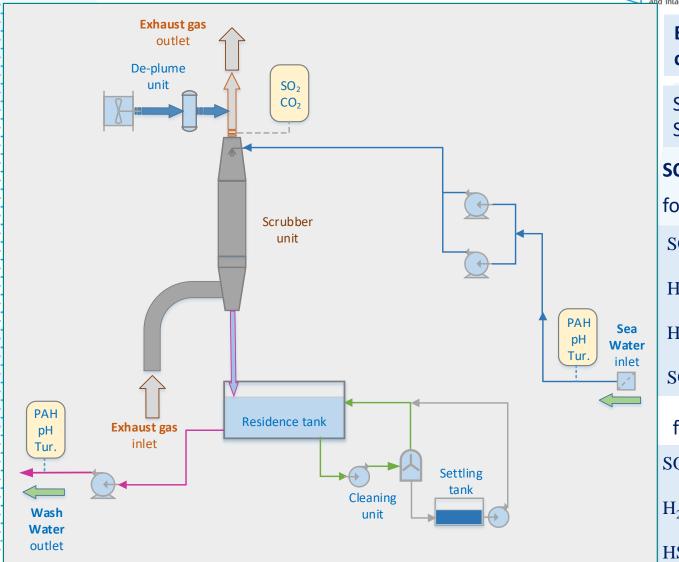
SO_x reactions in Open Loop:

for SO₂

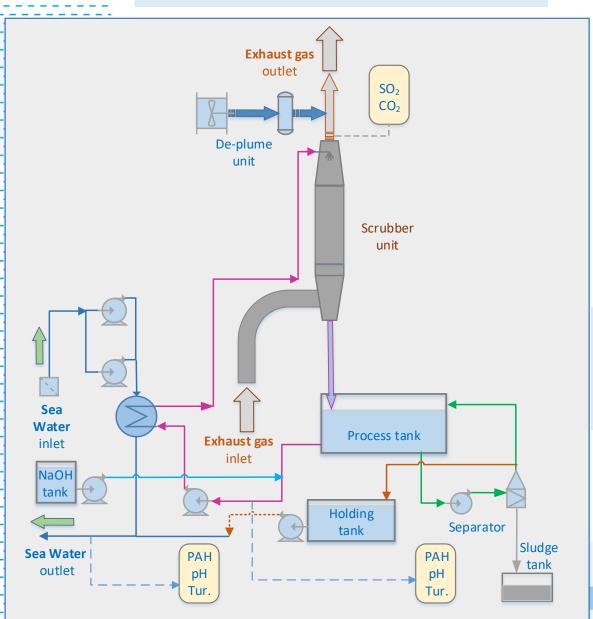
$$SO_2 + H_2O \rightarrow H_2SO_3$$

$$H_2SO_3 \rightarrow H^+ + HSO_3^-$$

$$HSO_{3}^{-} \rightarrow H^{+} + SO_{3}^{2-}$$


$$SO_3^{2-} + 0.5 O_2 \rightarrow SO_4^{2-}$$

for SO₃


$$SO_3 + H_2O \rightarrow H_2SO_4$$

$$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$$

$$HSO_4 - H_2O \rightarrow SO_4^2 + H_3O^+$$

EGCS in closed loop mode – operation and compliance monitoring

ORGANISERS:

SO_x reactions in Closed Loop:

for **SO**₂

$$Na^+ + OH^- + SO_2 \rightarrow NaHSO_3$$

$$2Na^{+} + 2OH^{-} + SO^{2} \rightarrow Na_{2}SO_{3} + H_{2}O$$

$$2Na^{+} + 2OH^{-} + SO_{2} + 1/2 O_{2} \rightarrow Na_{2}SO_{4} + H_{2}O$$

for SO₃

$$SO_3 + H_2O \rightarrow H_2SO_4$$

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

www.maritimecongress.com

EGCS types comparison

	SWS, open loop	SWS, closed loop	SWS, hybrid	Dry
Operation without discharge to sea	NO	YES (limited time)	YES (limited time)	YES
Weight *	30 ÷ 55 T	30 ÷ 55 T	30 ÷ 55 T	~200 T
Power consumption	1÷2 %	0.5÷1 %	0.5 ÷2 %	0.15 ÷ 0.20 %
Chemical consumable	NO	NaOH	NaOH	Ca(OH) ₂
Compatibility with WHR system	YES	YES	YES	YES
Compatibility with EGR system	YES	YES	YES	YES
Compatibility with SCR system	NO	NO	NO	YES
PM removal	YES	YES	YES	YES

WHR – Waste Heat Recovery

* Typical values for a 20 MW engine SOx scrubber

EGR – Exhaust Gas Recirculation

SWS – Sea Water System

www.maritimecongress.com

SCR – Selective Catalytic Reactor

FWS – Fresh Water system

Actual EGCS costs and installation trends

ORGANISERS:

Estimated Investment (\$): 3 - 8 million (varies with scrubber type and size)

 $CAPEX(\$) = 2.9 \ million + 58 \cdot Engine \ installed \ power \ (in \ kW)$

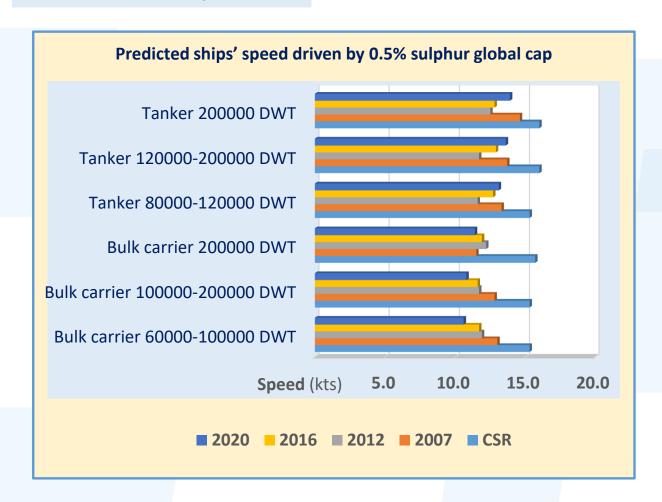
 $OPEX(\$) = 1300 + 0.6 \cdot Engine installed power (in kW) + 0.5\%$ fuel cost

* (%) 23,892 ships candidates for scrubbers (total population of 107,749 - IMO's Supplemental Marine Fuel Availability Study, July 15, 2016)



Marine fuels expectation

Marine fuel demand scenario - 2020							
Fuel tune	No 0.5%	With 0.5%					
Fuel type	Mtons/year						
High Sulphur Fuel HFO	253	48					
Ultra Low Sulfur ECA + Global	88	283					
LNG	11	11					
Total	352	342					



Effects of 0.5% sulphur limit

Conclusions

- Implemented marine environmental programs, gradually bring positive effects improving air quality and decreasing pollution.
- The implementation costs are fairly high investment and operating alike, which in turn increases transport costs, making maritime transport less competitive.
- Planned final phase of SO_X emissions reduction in 2020 (0.5% Sulphur), on a global scale and for all ships, once again force the ship owners on a difficult choice to meet this limit.
- New ships construction already ordered, does not indicate a significant increase of EGCS due to their high investment and operating costs.
- The current EGCS technologies, despite proven long-term efficiency and reliability in land applications, are in the process of evolving and improving their quality of operation, which is also one of the reasons for a large reserve of ship owners to use them.
- It is therefore quite likely the 2020 0.5% sulfur scenario, which predicts a strong increase in demand for low sulfur fuels will result in an increase price difference of these fuels relative to high sulfur residual fuels.

THANK YOU FOR YOUR ATTENTION

ORGANISERS:

EnviSuM

www.maritimecongress.com