

Guidelines for manure sampling and analysis (WP2)

Åsa Myrbeck and Lena Rodhe, WP-leader, RISE Åsa Myrbeck, Activity leader (2.1), RISE Tapio Salo, Activity leader (2.2), LUKE Beata Jurga, Activity leader (2.3), IUNG-PIP

HELCOM Manure Standards policy workshop 6 November 2018 Warsaw, Poland

> Åsa Myrbeck RISE, Research Institutes of Sweden

© Canva

Main activities in WP2

- Finding suitable **pilot farms**, planning and carrying out manure sampling.
- Writing Instructions for manure sampling
- **▶** Writing Instructions for manure analysis
- ➤ Making Templates for collecting of manure and farm data
- Putting up a Data base with analysis results
- Putting up a Data base with farm data
- Creating an Instruction film on manure sampling
- Synthesizing above into a Short guideline for manure sampling and analysing, including templates for manure and farm data.
- Water flow measurements at 5 Swedish pilot farms.

Solid manure sampling in Latvia

> PILOT FARMS

 Main criteria was that chosen farms should represent the country production and have simple nutrient flows which could easily be followed from animal to storage.

Country	▼ No of farms
Denmark	11
Estonia	6
Finland	7
Germany	5
Latvia	26
Lithuania	6
Poland	5
Russia	11
Sweden	5
Sum	82

Antal av Manure type	Kolumnetikett					
Radetiketter	Deep litter	Dung + urine	Semi-Solid manure	Slurry	solid manure	Totalsumma
■ Denmark				10	1	11
Broilers					1	1
Dairy Cattle				1		1
Fattening pigs				7		7
Fur animals				1		1
Pigs Integrated				1		1
■ Estonia				2	4	6
Beef cattle					2	2
Broilers					1	1
Dairy Cattle				2		2
Laying hens					1	1
⊟ Finland	2	1		3	1	7
Beef cattle	1			1		2
Broilers	1					1
Dairy Cattle		1		1		2
Fattening pigs				1		1
Fur animals					1	1
■ Germany			1	8	2	11
Beef cattle				1		1
Dairy Cattle				5	1	6
Fattening pigs				2	1	3
Laying hens			1			1
■ Latvia			_	23	20	43
Beef cattle				2	10	12
Dairy Cattle				15	8	23
Fattening pigs				3	J	3
Pigs Integrated				3		3
Sheep					2	2
■ Lithuania	3	2		1	_	6
Beef cattle	1					1
Broilers	1					1
Dairy Cattle		1		1		2
Horse		1				1
Sheep	1					1
■ Poland	2		1	2		5
Beef cattle	1					1
Broilers	1		1			1
			1	1		1
Dairy Cattle Fattening pigs				1		1
Sheep	1			1		1
⊟ Russia	1		2	7	1	11
	1		2	6	1	9
Dairy Cattle	1			1		1
Fattening pigs				1	1	1
Laying hens	2			3	1	5
⊟ Sweden Broilers	1			3		1
	1			2		2
Dairy Cattle						
Fattening pigs				1		1
Pigs Integrated	1				20	1
Totalsumma	10	3	4	59	29	105

Number of farms: 82

Number of manure lines: 96

Total number of samples: 890

Country	(Alla)					
Antal av Manure type	Kolumnetiketter					
Radetiketter	Deep litter	Dung + urine	Semi-Solid manure	Slurry	solid manure	Totalsumma
Beef cattle	6			3	5	14
Broilers	4		1		1	6
Dairy Cattle	2	2	2	32	10	48
Fattening pigs				14	1	15
Fur animals				1	1	2
Horse		1				1
Laying hens			1		2	3
Pigs Integrated	1			1		2
Sheep	3			1		4
Sows				1		1
Totalsumma	16	3	4	53	20	96

Produced to be used at the pilot farms –a lot of discussions on how careful the instructions should be (number of sub samples)

Table of contents

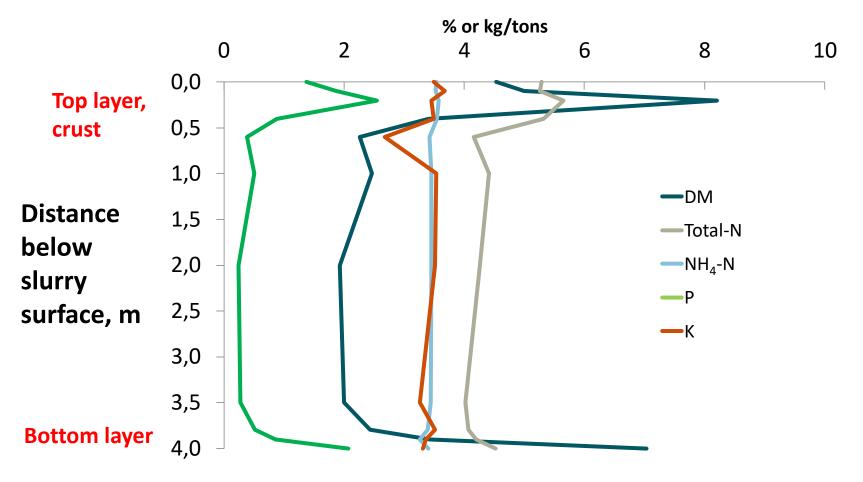
PREFACE	3
MANURE DEFINITIONS (KTBL, 2011) TO BE USED WITHIN MANURE STANDARDS	3
1. BACKGROUND	4
2. AIMS	4
3. WHERE TO SAMPLE? (from Sindhöj et al., 2013)	4
4. HOW TO SAMPLE?	6
4.1. Overall information	6
4.2.1. Sampling procedures – Ex housing	7
4.3. Solid or semi-solid manure	9
5. HANDLING AND TRANSPORT TO LABORATORY	12
6. UNDERSTANDING THE MANURE TEST REPORT	13
6. LITTERATURE	14

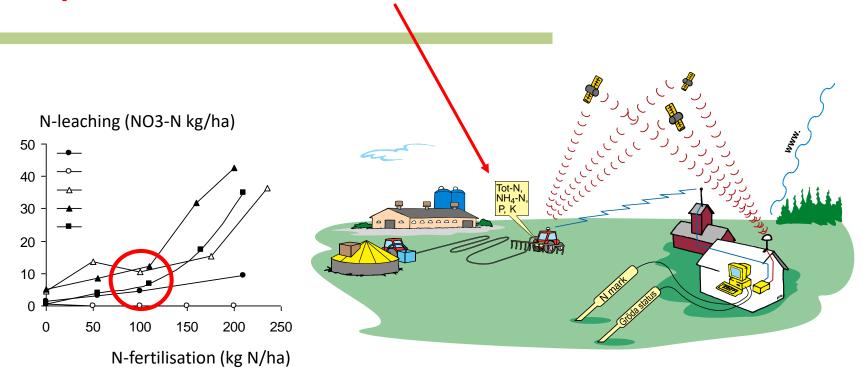
Sampling - Challenges

- Sampling mostly went well.
- Getting representative samples can be very laborious, especially from solid manure storages.
- Accuracy against practical feasibility. It was concluded instructions are too laborious for being practiced by farmers.
- Slurry tanks are seldom enough mixed.
- Farmers are often stressed at this time of the year.
- Farmers are reluctant to mix the slurry at other times than before spreading – the time window is only a couple of hours.

Sampling device

Reflections


All slurry tanks are different – but taking a representative manure sample is always challenging – and sometimes impossible.



Concentrations of nutrients in a un-mixed slurry tank

Reduced losses of nutrients require precision agriculture Important to know the nutrient content

Importance of adjusting fertilization rates to the crop need

Considering plant uptake and soil delivery

However precision fertilisation requires also enough land and storage capacity!

> TEMPLATES - Simple survey form

to be filled in at sampling and sent to the laboratory together with the sample

Data on:

- Animal species
- Manure type
- Location of manure sampling
- The scope of analysis

This work had a step stone in existing templates from e.g. Estonia, Sweden and the Netherlands.

Simple survey form

Sample name/identification	number	
Date		7
Person to contact		
Email		7
Mobile		
NUTS-2 Region		
BACKGROUND INFORMATION	DN	
Animal species	Bedding material	Manure type
cattle	beddingless	solid manure
_ pig	straw	semi-solid manure
horse	peat	liquid manure
poultry	sawdust	slurry
sheep	other	compost
	other	= '
goat		other
other		
LOCATION OF MANURE SAI	MPLING	
open tank	slurry	channel
covered tank	tank u	under manure pad
barrel	manu	re pad
barn	heap	on the ground
random stack	other	·
canopy cover prism	=	·
THE SCOPE OF ANALYSIS		
Dry matter	Magn	esium
Total nitrogen	Calciu	
Soluble nitrogen	Zinc	
Total phosphorus		anese
Soluble phosphorus	∐ Iron	
Total potassium	Сорре	er
Total carbon	Na Na	

TEMPLATES – Extended survey form

Indata to the modelling in WP3 and WP4

- Three templates:
 - Dairy farms (also for suckler cows, beef cattle, horses etc.)
 - 2. Swine
 - 3. Poultry
- Developed hand in hand with the calculation tool to cover data needs

Questionnaire 1	for dairv	farms
-----------------	-----------	-------

(also for suckler cows, beef cattle and horses e.t.c.)

Site information

Farm name:	
Manager:	
Location:	
Date:	01-01-2018

- 1. Livestock register for the season spring 2017/spring 2018
- 1.1. Livestock numbers and specifics

Livestock	Total livestock number	Livestock acquisition	Livestock sale	Livestock loss
Milking cows				
Dry cows				
Nursing cows				
Heifers (recruitment %)				
Pregnant heifers				
Calves				
Young bulls				
Bulls				

Average lactation period

Average dry period

Average lactations per cow

Templates - Challenges

- Difficult to make a template that suits all farms. Amount of and the form of data available differs very much between countries and farms.
- Farmers might not understand the questions.
- Units commonly used differs between countries.
 Recalculation is often needed.
- Free units desirable. The modeler, not the farmer should carry out the recalculations.
- We are behind time table within the project.

Manure Standards

CURRENT ANALYSIS METHODS

- Current methods in country laboratories were collected.
- Methods and standards differ a lot between laboratories, also within the same country.
- Chemists at LUKE (FI) will help out with how to proceed.
- Laboratories in some countries are very slow, might take months, which is not acceptable. The objective must be a week.

Country	Laboratory	<u> </u>	Ntot	NH4-N	Nsol	Ptot	Psol	Ktot	Dry matter	Volume weight	Microelements	Carbon	pH	Sample volume	Storage ¹	Quality control	No.of analyses for nitre	ro Preparation for analysis
			'							'				'	1 '	1		
								LVS EN	'	1				'	1 '	1		
						LVS EN		13650:2003	'	1				'	1 '	1		
						13650:2003		Digestion: 1 g		1		LVS EN	LVS	'	1 '	1		
			LVS EN 13654-1:2003			Digestion: 1 g of		of sample is	'	1				,	1 '	1		
			Digestion: 1 g of sample			sample is		digested with	'	1		Sample is dry		,	1 '	1		
			is digested with mixture			digested with			LVS EN	1		ashed at	sample is	'	1 '	1		
			of salicylic acid, sulfuric			aqua regia		Determination:		1		450±25 °C	extracted	'	1 '	1		
4				with water at 1:5		Determination:			Sample is dried	1		Results are	with water at	. '	1 '	1		
4				volume ratio		spectrophotomet		spectrometry		1			1:5 volume	,	1 '	1		LVS EN 13040:2008
4			copper sulfate catalyst			ry			Results expressed			matter	ratio at 22±3	,		Every anlysis for		Samples are milled to 2 mm,
4		SPPS,	Determination: Kjeldahl	Kjeldahl		Results expressed	1		as water content	1		expressed to		'				pH and NH4 are determined
4		Agrochemical		Results expressed to		to dry or raw			or dry matter	1	1	dry or raw	Detreminatio					st before drying, samples are
Latvia		1 Laboratory	dry or raw sample	raw or dry sample	-	sample as P2O5	-	sample as K2O	content		<u> </u>	sample	n: pH meter	At least 2 L	weeks	2 times	2 times	dried at 103±2 °C
	4		A = 7			A = 7					4	4	4	/		4		4
	4		A = 7	4		4		Digestion: 1 g	/		4	4	4	/	1	4		4
	4		A = 7	4		4		of sample is	/		4	4	4	/	1	4		4
	4		A = 7	4		Digestion: 1 g of		digested with	/		4	4	4	/	1	4		4
	4		A = 7	4		sample is		mixture of	/		4	4	4	/	1	4		A = 0
			A = 1	4		digested with		salicylic acid	4		4	A = -7		/	1	4		A
			A = 1	4		mixture of		and sulfuric	4		4	A = -7		/	1	4		A
			A = 7	4		salicylic acid and	4	acid			4		4	/		4		
	4			4	4	sulfuric acid	4	Determination:	4	4	4	4	4	/	4 /	4	4	A
	4			4	4	Determination:	4	flame emission	/	4	4	4	4	/	4 /	4	4	4
	4			4	4	spectrophotomet	i	spectrometry	/	4	4	4	4	/	4 /	4	4	4
	4			4	4	ry	4	Results	/	4	4	4	4	/	4 /	4	4	4
	4	SPPS,		4	4	Results expressed	1	expressed to	/	4	4	4	4	/	4 /	4	4	A
	4	Agrochemical		4	4	to dry or raw	4	dry or raw	/	4	4	4	4	/	4 /	4	4	A
Latvia	4 7	1 Laboratory		4-	4-	sample as P2O5	-	sample as K2O	/-	4-	-	4-	4-	/- /	4-	1-	4-	4-
4						Mineralization		Mineralization						,	1			7
4			· ·			with sulphuric		with sulphuric	'	1				,	1 '	1		
4			· ·			acid and		acid and	'	1				,	1 '	1		
4			· ·			subsequent		subsequent	'	1				,	1 '	1		113
			· ·			colorimetric		flame	'	1		LST EN 1313"	7-potentiomet		1 '	1		manual mixing, dried samples
Lithuania		1 Agrolab	Kjeldahl	-		determination.	-	photometry.	105 C	1 litre, EN 13040		2002	ric	? '	1 '	1		milled
Lithuania	-	2											1	,				, , , , , , , , , , , , , , , , , , ,

Example of differences between laboratories

Total-N:

Most laboratories use Kjeldahl titration for Tot-N.

However, one laboratory in Sweden (slurry and solid manure) and two in Germany (slurry) use dry combustion. Measuring on dry samples with Dumas method (Leco). Total N is then calculated as: $NH_4-N + N$ measured with Dumas method

+ Dumas method Easier getting a representative sample

Dumas method
 N might be overestimated in case not all NH₄

disappear during combustion.

Plant available N:

Generally laboratories analyse for ammonia (NH₄) However, all Finnish laboratories analyse for soluble N Russia do not analyse for plant available N

+ Soulable N Plants may to some extent take up also organically

bound N.

- Soulable N Result strongly dependent on mesh size used and

extraction solvent. Probably difficult to standardize.

Analysis methods will be further discussed during reporting period 3 and recommendations will be presented in the final project output.

ANALYSIS RESULT DATABASE

ex housing

ex storage

ex housing

ex storage

ex housing

(kg/ton) (kg/ton) (kg/ton)

professional

professional

professional

professional

(g/ton)

farmer

3

3

3

3

3

(g/ton)

(g/ton)

- Sorting functions for grouping of data.
- Results are still coming in a lot of data processing remains.

1slurryc

1solidp

1solidc

1solidh

2slurrvcn

(kg/ton) (kg/ton) (kg/ton) (kg/ton)

07.05.2018

07.05.2018

07.05.2018

07.05.2018

07.05.2018

				Report the result	ts on wet (fresh)	basis - conversion	formula (if needed)	in "FILL IN INSTRUCTION	IS"-sheet				
					` '								
				Additional paran	neters - Please add	I columns (to the righ	nt) for parameters wh	nich are missing.					
Mani	LEO CE	andards		Column F-J is filled	d in by selecting the	best suitable option	from the in-cell drop	down menu.					
Maiil	ure Sta	anuarus		Manure types marked * - only to be used for farms with manure processing.									
Analysis Re	esults			Sorting function	- is locked at this s	heet but can be used	in the "SORTING OP	TIONS"-sheet or by copy	ing data to new she	eet.			
				More instructions on how to fill in results you find in the "FILL IN INSTRUCTIONS"-sheet below.									
Background in	nformation												
		_	_	(dd.mm.yyyy)	_		_	_					
Result No 🖵	Country	Country Farm number	Manure line ID	Sampling Date	Animal group	Manure type	Sampling time	Sampling spot	Sampler	Country laboratory number			
1	Sweden	4	4deeplitter	25.4.2018	pigs integrated	deep litter	spring	ex storage	professional	1			
2	Sweden	4	4slurry	22.4.2018	pigs integrated	slurry	spring	ex storage	professional	1			
3	Sweden	4	4deeplitter	25.4.2018	pigs integrated	deep litter	spring	ex storage	professional	2			

dairy cows

dairy cows

laying hens

dairy cows

fattening pigs

slurry

solid

solid

solid

slurry

(%)

spring

spring

spring

spring

spring

Analysis results

(%)

4

5

6

7

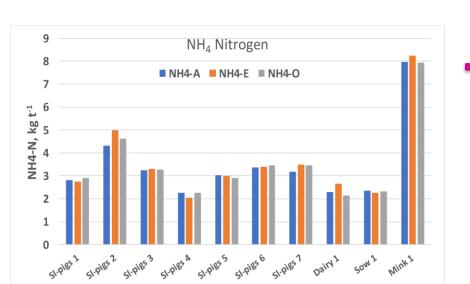
8

Germany

Germany

Germany

Germany

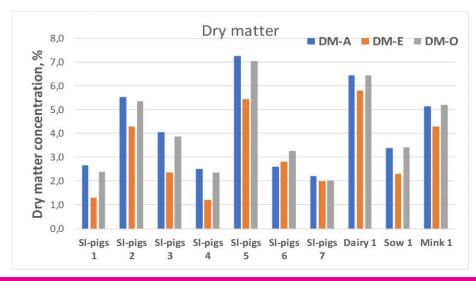

Germany

1

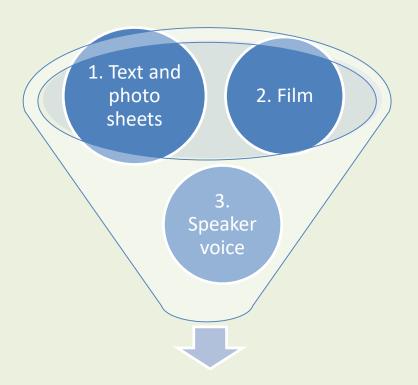
1

1

Dry matter/Total so 🕶	Tot-N ▼	NH4-N ▼	Tot-P ▼	K -	Tot-C ▼	pH ▼	C/N -	Ashes -	S	Mg ▼	Na ▼	Ca ▼	Cu	▼ Mr	1 •	Zn	~
21,3	7,01	1,3	3,2	8,5		8,51	11	5,4	1,5	2,1	0,92						
5,3		3,7				6,71			0,51								
21,6	6,3	0,4	2,16	4,33	87,4	7,2	13,9		1,3	1,33	0,91	4,33					
9,94	3,66	0,78	0,84	4,74	40,95	7,2	11,19		0,61	0,49		1,29					
22,08	5,95	0,93	3,61	3,47	88,24	8,2	14,83	2,65	1,11	3,05		5,32					
27,11	6,23	0,14	1,27	10,37	108,52	9,3	17,42	3,94	1,34	0,87		2,72					
32,41	23,6	8,02	4,54	7,49	117	7,9	4,96	4,7	1,42	1,69		19,3					
8.06	4.16	1.34	0.7	3.59	31.5	7	7.57		0.44	0.6		2.1					



Manure Standards


Results from Danish pilot farms show that accredited and experienced laboratories find similar results - especially regarding the water-soluble nutrients NH₄ and K. Some variations are found for P and dry matter content (figures by SEGES).

INSTRUCTION FILM – Components for film making

- Filming was made during sampling season.
- Work proceeds with editing, adding text and voice.
- Low budget no professional camera man and we filmed some sequences ourselves.
- Latvia is producing a national film on the theme.

Manure, the Movie (max 10 minutes)

WATER FLOW MEASUREMENTS

In Baltic Manure, it was noticed that the manure quantity and quality changed a lot through dilution from identified and diffuse water sources. Therefore, special attention is given to collection of this data.

- 5 farms
- Drinking (indoor, outdoor)
- Milkroom (dishing etc)
- Washing (stable, field equipment)
- Feeding
- Staff areas
- Total consumption

Output

- Currently the sampling instruction and the templates are being finalized, after being tested and discussed among partners. Analysis results are being processed.
- The work with the final output is taking on
 - An easy-to-read, clear guideline for sampling and analyzing manure on typical BSR animal farms with different animal species and manure types, including templates for collection of farm data.
 - An Instruction film, showing shortly the sampling process. In addition, Latvia is producing a national film.

Manure analysis advantages and drawbacks

(-) Manure data – not in time!!

Sampling at spreading will not provide data in time for being used at the current occasion. Solid manure sampling can easily be done in advance. Slurry however, is generally sampled after mixing, before filling the spreading tankers, and farmers generally do not want/have time to mix one extra time. On line measurements is desirable. The technique is however still too unprecise.

(-) Difficulties getting representative values!

Slurry tanks and especially lagoons are often not enough mixed to facilitate a representative manure sampling. Solid manure piles are inhomogeneous.

(+) Complex nutrient flows!

Striving against a "circular economy" creates complex nutrient flows on farms, making mass balance calculations more difficult. Farmers often collaborate with surrounding society for example by sending manure for digestion or combustion, getting rest products back into manure storage. Or by receiving other rest products as ammonium sulphate from steel industry or whey from cheese production.

EUROPEAN REGIONAL DEVELOPMENT FUND

