

REGIONAL DEVELOPMENT

Webinar about R-Mode for the Baltic **Sea Region**

Medium Frequency (MF) R-Mode Stefan Gewies, Lars Grundhöfer, Filippo Giacomo Rizzi, Niklas Hehenkamp

German Aerospace Center (DLR) at a glance

- DLR is the Federal Republic of Germany's research centre for aeronautics and space
- Research and development activities in the fields of aeronautics, space, energy, transport, security and digitalization
- German Space Agency at DLR plans and implements the national space programme on behalf of the federal government
- DLR: 55 research institutes and facilities & approx. 10,000 employees
- DLR mission: explore Earth and space and develop technologies for a sustainable future

Outlook

- Overview Medium Frequency (MF) R-Mode
- Theoretical performance of MF R-Mode testbed in the Baltic
- MF R-Mode experiments
- MF R-Mode hardware
- Summary and conclusions
- Live demonstration MF R-Mode receiver (Lars Grundhöfer)

Medium Frequency (MF) R-Mode principle

- Modification of radio beacon signal
 - Two aided carriers (CW)
 225Hz beside beacon carrier
 - Well known phase of CW
- Ranging
 - Measure phase of CWs
 - Solve ambiguities of CW with beat signal of both CW
 - Track signal
- Positioning
 - Use 3 received signals to estimate longitude, latitude and time

MF R-Mode propagation error sources

- Sky-wave
 - Multipath effect
 - Night-time ionosphere reflection
 - Neglectable at short distances
- Suppression of the fading is under investigation
- Ground propagation
 - Ground conductivity depended propagation speed
 - · Delay has to be considered
- Possible approaches to mitigate path related phase delay:
 - Work with phase correction maps
 - Measure phase delay for known position and keep it
 - Differential R-Mode

Phase delay of Groß Mohrdorf signal (ground-wave) compared to vacuum propagation

Challenge R-Mode transmitter

- Current radio beacon transmitter chain optimized for MSK modulated signal
- Problems identified
 - Jumps and drifts in CW phases
 - Intermodulations (class D amplifier)
- Each transmitter has to be analysed separately
 - Signal distortions and delays
 - Static and dynamic calibration necessary
- R-Mode Baltic and R-Mode Baltic 2 developed concepts
- At the moment not clearly defined signals are transmitted in the Baltic testbed

Source: Swedish Maritime Administration

MF R-Mode navigation information

- Essential information defined
 - Status
 - Provide position of transmitter
 - Provide corrections
 - Interoperability of systems
 - In accordance with VDES R-Mode
- Ongoing design of RTCM2 messages
- Transmission together with DGNSS messages planned
- MF R-Mode navigation information are not provided by transmitters in the testbed

IALA Guideline on Implementation of R-Mode on MF and VHF frequencies (Draft)

Parameter Defi	nition					Bits	Scale factor	Unit
A Con	stant terr	n of po	lynomial			32'	2 ⁻³⁰	s
A1 1st c	st order term of polynomial					24	2'50	s/s
Δt _{is} Leap	Leap Second count before leap second adjustment					8	1	5
t _a UTC	data refe	erence	Time of Week	c		8	3600	\$
WN _{bs} UTC	data refe	erence	Week Numbe	R.		8	1	Week
WN _{Lsr} Wee	k Numbe	r of le	ap second adj	ustment		8	1	Week
DN Day	Day Number at the end of which a leap second					3	1	Day
adju	idjustment becomes effective							
Δt _{us} Leap	Second	counta	after leap seco	ond adjus	tment	8	1	S
CLOCK AND DELAY O The clock of the base to the RMST. The clo parameters CO and O	ORRECT station ck error CU are d	TONS provi is give efined	des offset of en by an offs 1 in Table	transmi et (CO) a	ssion of VE Ind its unc	DE ranging me ertainty (CU)	issage, and other as 1σ confidence	delays as o level. The
Parameter	unit	Bits	scale	range min	range max	Notice		
Clock offset (CO)	ns	9	1/3	-85.33	85.0	Offset of local clock to RMST (0.1m = 3*10^8 m/s * 1/3 ns)		
Clock uncertainty (CU)	ns	5	exponentia	10	1008.74	Uncertainty u=k^n-1 and k=1.25 in ns (series: 0, 0.25, 0.56, 0.95,, 1008.74) u = 0 means out of range		
Delay CW (low)	ns	14	1/3	0	5461	delay of lower CW		
Delay CW (high)	ns	14	1/3	0	5461	delay of higher CW		
Delay MSK	ns	14	1/3	0	5461	delay of MSK component (limited to one period)		
Phase of MSK signal	π rad	2	0.5	0	2	phase of the MSK signal component at the beginning of message (preamble); possibility values are 0, $1/2 \pi$, π , $3/2 \pi$		

DLR R-Mode receiver

- SDR based receiver platform
- GPS stabilized Rubidium atomic clock for accurate timing
- Maximum likelihood approach for estimation of Time Of Arrival
- All in view receiver
- Least Square Single Point Positioning
- Calibration in the testbed based on known GNSS position
 - Estimates: clock biases, phase correction propagation path, delays and signal distortions transmitter chain

MF R-Mode receiver for static and dynamic measurements

Prediction of MF R-Mode positioning performance of Baltic testbed

Assumptions

- Considers beacon range of IALA list
- ITU models for noise and propagation attenuation
- Clock accuracy 10 ns
- Perfect signals transmitted
- No phase error from propagation path
- Ambiguities of CW were solved

➤10 m positioning accuracy theoretical achievable between the R-Mode beacons

Day-time

Prediction of MF R-Mode positioning performance of Baltic testbed

Assumptions

- Skywave interferes with certain probability and signal strength,
 [1]
- Different models for skywave interference exists
- Research has to show, how to describe best performance degradation in the night

Clear degradation compared to day-time: for good geometry error few 10 m

[1] MF/VDES R-Mode Coverage Prediction and Accuracy Estimation, GRAD, RPT-39-JSa-20, December 2020.

Night-time

Dynamic day-time measurement in the Baltic testbed

- Use only nearest MF R-Mode transmitters
- Here less impact of change of propagation path on ranging

Experiment slightly lower performance than theory

Dynamic night-time measurement in the Baltic testbed

- Use only nearest MF R-Mode transmitters
- Here less impact of change of propagation path on ranging

Experiment in agreement with theory

Dynamic day-time measurement with compensation of propagation path

- Phase Corrections Maps (PCM) based on ground conductivity map of Germany (ITU)
- Signal instabilities at two transmitter sites
- Positioning performance
 - Uncorrected (95%): 31 m
 - Corrected (95%): 22 m
- Compensation of propagation delay is crucial
- Increase performance
 - Static: better PCM
 - Dynamic: D-R-Mode

R-Mode hardware developments

Saab TransponderTech: MF concept prototype receiver

Gutec AB, navXperience GmbH: MF + VHF concept prototype receiver

MF R-Mode modulator from Novator (before R-Mode Baltic projects)

Unit

Summary and conclusions MF R-Mode

- R-Mode performance depends on
 - measurements process of the phase of a carrier,
 - on propagation path effects and
 - signal distortions at transmitter site.
- Theory predict for the Baltic testbed for defined signals an MF R-Mode positioning performance
 - Day-time: 10 m accuracy between transmitter sites
 - Night-time: better than 100 m accuracy possible
- Experiments support theory for good conditions.
- MF R-Mode performance can be increased with improve quality of the transmitted signal and better phase correction maps.
- R-Mode capable hardware is available to perform monitoring, dynamic measurements, and application development.

Life demonstration R-Mode receiver

• R-Mode dynamic measurement with Fyrbyggaren

EUROPEAN REGIONAL DEVELOPMENT FUND

Contact

Stefan Gewies Project Manager DLR Institute of Communications and Navigation Phone: +49 3981 480187 E-mail: Stefan.Gewies@dlr.de https://www.r-mode-baltic.eu

Project partner

HYDROGRAPHIE

WSV.de Wasserstraßen- und Schifffahrtsverwaltung des Bundes

Gutec AB

KONGSBERG

