

StoRES

Promotion of higher penetration of Distributed PV through storage for all

Priority Axis 2: Fostering low-carbon strategies and energy efficiency in specificMED territories: cities, islands and remote areas2.2: To increase the share of renewable local energy sources in energy mixstrategies and plans in specific MED territories

Deliverable n°:3.8.1Deliverable Name:Online Storage Optimization Tool

Disclaimer: This document reflects only the authors' view and the ERDF is not responsible for its contents or any use or exploitation of the information it contains.

1. Document info

Project Name	Promotion of higher penetration of Distributed PV through storage for all (StoRES)
Funding Scheme	ERDF
Work Package Number	WP3
Name of Work Package	Testing
Number	D3.8.1
Title	Online Storage Optimization Tool
Dissemination Level	Confidential
Date	28/3/2019
Authors	Angelos Nousdilis, Georgios Barzekar-Ntovom, Ioanna Pasiopoulou
Contributors / Reviewers	Georgios C. Christoforidis, Grigoris Papagiannis
Status	Final

2. Document History

Date	Author	Action	Status
28.02.2019	Angelos Nousdilis	1 st draft report	Draft
29.03.2019	Georgios C. Christoforidis	Final version	Final

3. Contents

1.	Document info 2
2.	Document History 2
3.	Contents 3
4.	Executive Summary 4
5.	Introduction to Deliverable 3.8.1 5
6.	Description of the Tool 5
6.1	PV System Data 6
6.2	Consumption Data 9
6.3	Electricity Costs11
6.4	Storage System12
6.5	Policy13
6.6	Financial13
6.7	Validate Inputs14
6.8	Getting the Results15

4. Executive Summary

The project addresses the development of an optimal policy for the effective integration of Renewable Energy Sources (RES) and Energy Storage Systems (ESS). The primary challenge is to achieve increased penetration of RES and predominantly photovoltaics (PV), in the energy mix of islands and rural areas in the Mediterranean (MED) region without compromising grid stability. The main objective of StoRES is to boost selfconsumption in the MED region with the integration of optimal storage solutions. Testing coupled PV-ESS solutions in different pilot sites and taking into account local particularities for optimization, current barriers concerning grid reliability with higher RES deployment will be eliminated. In addition to this, the development and integration of the proposed solution at both residential and community levels and applying different policy scenarios will lift the barriers related to the gird integration of ESS and extend the practical knowledge about this technology. It is expected that all the shortcomings regarding the intermittent nature of PV energy for increased penetration into the energy mix will be addressed whilst maintaining smooth operation of the grid.

The project started on 1st of November 2016 and is expected to be completed within 30 months.

5. Introduction to Deliverable 3.8.1

This report deals with the development of an online optimization tool related to PV systems with storage. The goal of the tool is to provide relevant information to interested stakeholders, investors and researchers about the optimal sizing of both PV and storage systems based on several parameters. The developed tool has been constructed based on specifications commonly agreed by all partners of the StoRES project and ensuring that it is as user-friendly as possible.

Although the current version of the tool focuses on the countries of the StoRES consortium (i.e. Cyprus, France, Greece, Italy, Portugal, Slovenia, Spain) by having in-built average consumption profiles, it can be easily used for any other country/region as well. The only requirement is to upload sample average consumption profiles to be used in the calculations. In terms of the measurements of PV output power, these can either be provided by the user using a specific template, or the user can select an arbitrary location on the map and the tool will communicate with the PVGIS database to obtain the necessary climatic data for the estimation of the PV output power.

The tool can be assessed at the following address:

http://storestool.eu/

The rest of the document contains a detailed description of the online optimization tool with relevant pictures.

6. Description of the Tool

PV and Storage Optimization Tool has been built in the framework of *"Promotion of higher penetration of Distributed PV through storage for all - StoRES"* project. The objective of StoRES is to boost PV self-consumption in the MED region through an optimal residential storage solution. The approach is to test coupled solutions for the consumer in different pilot sites taking into account local parameters for optimization and using efficiency measures. StoRES is expected to change the current situation concerning grid reliability with higher Renewable Energy Sources deployment in islands/rural areas, giving a cost-effective option to the public on more affordable and sustainable energy supply.

The tool aims at calculating the optimal size of a hybrid PV+storage system in terms of net present value of the investment. The tool requires as inputs: electrical consumption, solar irradiation, PV and battery size,

and electricity costs. A financial analysis is undertaken for a period of 20 years, taking into consideration technical and financial parameters and various options of energy policies. The tool can be used by both professionals and non-professionals users.

This document is a short manual, providing the user with simple instructions. The procedure that should be followed to get the desired results is divided into 8 separate steps:

- Step 1: PV System Data
- Step 2: Consumption Data
- Step 3: Electricity Costs
- Step 4: Storage System
- Step 5: Policy
- Step 6: Financial
- Step 7: Validate Inputs
- Step 8: Getting the results

These steps are further analyzed in the remaining document.

6.1 PV System Data

- i. The "*PV production profile*" is essential for the tool calculations. The user should select one of the following two options:
 - a) If PV power measurements of a specific installation are available, the user can import these data in a *.csv* file and upload it by clicking *"Upload"*. The data should be entered using the sample template that can be downloaded from the corresponding button. Next, user should enter the PV capacity (in kWp) of the measured PV installation.
 - b) If no PV power measurements are available, the user can indicate the coordinates of the installation position and the orientation of the panels (slope and azimuth). The tool then communicates with the PVGIS platform¹ of the JRC and obtains the necessary climatic data for the specific location in order to estimate the PV power output. The calculation procedure is described in detail in a relevant publication².

¹ http://re.jrc.ec.europa.eu/PVGIS5-release.html (Assessed March 2019)

². G. C. Christoforidis, I. P. Panapakidis, T. A. Papadopoulos, G. K. Papagiannis, I. Koumparou, M. Hadjipanayi and G. E. Georghiou, "A Model for the Assessment of Different Net-Metering Policies", Energies, 2016, 9(4), 262; doi:10.3390/en9040262.

Online Storage Optimization Tool | StoRES Project

PV System	Consumption Data	Electricity Costs	Storage System	Policy	Financial
PV Pro	duction Profile				
I want t	to use my measurements				
Brow	No file selected.	i Dow	nload a sample temp	olate	
	e your measurements clic				
To show	w your saved measureme	ents click Show My	Measurements		
Installe	ed PV capacity [kWp] 1				
		OR			
I want t	to indicate PV System pos	ition			
Latitu	ide 40.322005	Congitude 2	1.790739	×	
Addre	ess Search for location				
Google	Konitsa Kovitoa Zones P1, F4 P2,P3,P4	d Ptolemaida Ptolemaida 29 Κα ani Κατάνη eyeva eggevá Olympos	Katerini Katepiyn Paralia TapaAla		F - fy - pu - pu
	e Slope (deg)			[0 - 90]	
Azim	uth (deg)	•	- 0	[-180 - 180]	

The next image is an overview of the .csv template file. Power should be imported in kW, considering a 15-min time interval.

_	A	B	C .	D	E	F	G	н.		J	K	L	M	N
1	Time Insta		January		March	April	May	June	July	August	Septembe		Novembe	
2	1	0:00		0	0	0	0		0		0	0		
3	2	0:15		0	0	0	0		0		0	0	0	
4	3	0:30	0	0	0	0	0	0	0		0	0	0	
5	4	0:45	0	0	0	0	0	0	0	-	0	0	-	
6 7	6		0	-	0	-	0	-	-	-	0	0	-	
/ 8	7	1:15	0	0	0	0	0		0		0	0		
8 9	8	1:30	0		0		0		0		0	0		
	8	1:45	0	0	0	0	0	0	0		0	0	0	
0	-	2:00	-	-	-	-		0	-	-	-	-	-	
1	10	2:15	0	0	0	0	0	0	0		0	0	0	(
2	11	2:30	0	0	0	0	0		0		0	0		
3	12	2:45	0	0	0	0	0		0		0	0		
4	13	3:00	0	0	0	0	0	0	0		0	0	0	
5	14	3:15	0	0	0	0	0	0	0	-	0	0	0	
6	15	3:30	0	0	0	0	0	0	0		0	0	0	
7	16	3:45	0	0	0	0	0	0	0		0	0	0	
8	17	4:00	0	0	0	0	0	0	0		0	0	0	
9	18	4:15	0	0	0	0	0	-	0	-	0	0	-	
20	19	4:30	0	0	0	0	0	0	0		0	0		
21	20	4:45	0	0	0	0	0		0		0	0		
22	21	5:00	0	0	0	0			0.010327	0	0	0		
23	22	5:15	0	0	0	0			0.022116		0	0	0	
24	23	5:30	0	0	0	0	0.045242		0.032984		0	0	0	
25	24	5:45	0	0	0	0.019205	0.066868				0	0	0	(
26	25	6:00	0	0	0	0.033309	0.09239			0.043193		0		
27	26	6:15	0	0		0.057302					0.024975	0	-	(
28	27	6:30	0	0	0.029777	0.084524	0.151786					0	0	(
29	28	6:45	0	0		0.114044			0.158803		0.076692	0		
80	29	7:00	0	0.01716		0.145874	0.21686			0.170291			0	(
81	30	7:15	0				0.250162		0.229642		0.141155		0.012531	
32	31	7:30					0.283393			0.247355				
33	32	7:45				0.246031			0.304204					
4	33	8:00		0.144632		0.278772				0.323984			0.103696	
85	34	8:15					0.379009			0.361788	0.2808		0.133269	0.10324
86	35	8:30			0.28547		0.408605			0.398366			0.163539	
87	36	8:45		0.239237			0.43728			0.433165			0.192027	
88	37	9:00		0.268394		0.400271				0.466479			0.218743	
9	38	9:15	0.218686	0.295613	0.373535	0.426752	0.488013	0.489886	0.507939	0.498085	0.405665	0.293155	0.244655	0.21055

ii. In the same Tab, the *"PV System characteristics"* – degradation and inverter efficiency have to be introduced.

iii. The last option of this step refers to the "*Type of Analysis*". The option to choose between a single PV size and various PV sizes is given and the user is able to switch accordingly to his proper installation.

Type of Analysis			
Single PV size	Select PV size [kWp] for the analysis	•	[1 - 500]
O Parametric - various PV sizes	Select minimum PV size [kWp]	A V	[1 - 500]
	Select maximum PV size [kWp]	A V	[1 - 500]

6.2 Consumption Data

The consumption of the installation should be inserted here. In this case, the user can either use a predefined country-specific consumption profile by introducing his monthly or yearly consumption, or upload a customized profile of the installation.

i. Monthly Consumption Data: Select the country of the installation under study and insert the energy consumption of each month over a year, in *kWh*.

← Previous	→	Next				
PV System Consu	mption Data	Electricity Cost	s Storage	System	Policy	Financial
Monthly Yearl	y Customiz	ed Profiles				
Select Country	Greece	-				
January	January con	sumptior 🖨	February	⁻ ebrua	ry consum	ptio 🖨
March	March consu	umption 🖹	April	April co	onsumptior	n 🖨
May	May consum	nption 🛓	June	June co	onsumptio	n 🗘
July	July consum	ption 😫	August	August	consumpt	ion 🖨
September	September o	onsump' 🚔	October	Octobe	r consump	tion
November	November c	onsumpt 🖨	December	Jecem	ber consur	npti 🜩
*values in kWh						

ii. Yearly Consumption Data: Select the country of the installation under study and insert the total energy consumption over a year, in *kWh*.

+ Prev	/ious	→	Next			
PV System	Const	umption Data	Electricity Costs	Storage System	Policy	Financial
Monthly	Year	ly Customi	zed Profiles			
Select Cou	untry Gro	eece	-			
Yearly	Ye	arly consumpt	ion 🔹 *values	in kWh		

iii. Customized Profiles: The user has the option to upload own consumption by means of a *.csv* file using the provided template. The template can be downloaded by clicking the corresponding button.

← Prev	vious	→	Next			
PV System	Consumpt	tion Data	Electricity Cost	s Storage System	Policy	Financial
Monthly	Yearly	Customi	zed Profiles			
Browse.	No file s	elected.	i Dow	nload a sample templat	e	

The next image is an overview of the .csv template file. Power should be imported in kW, considering a 15-min time interval. Consumption should be inserted in the specified columns per month, taking into consideration a classification between working and non-working days.

	A	в	С	D	Е	F	G	н	1	J	к	L	м	N	0	Р	Q	R	s	т	U	V	V	х	Y	Z	AA	AB A
1			January		February		March		April		May		June		July		August		Septembe	er	October		November	r	Decembe	r		
2	Time Insta	Time	w	NW	w	NW	w	NW	w	NW	w	NW	w	NW	w	NW	w	NW	w	NW	W	NW	w	NW	W	NW	values in kV	Vh
3	1	0:00	0.82128	0.89848	0.79808	0.7596	0.68799	0.75101	0.53307	0.56815	0.42852	0.46679	0.40296	0.36425	0.45815	0.53232	0.57635	0.5414	0.58035	0.65811	0.86	0.74469	0.70488	0.73768	1.01191	0.95701	W: Working	days
4	2	0:15	0.82128	0.89848	0.79808	0.7596	0.68799	0.75101	0.53307	0.56815	0.42852	0.46679	0.40296	0.36425	0.45815	0.53232	0.57635	0.5414	0.58035	0.65811	0.86	0.74469	0.70488	0.73768	1.01191	0.95701	NW: Non-W	orking days
5	3	0:30	0.82128	0.89848	0.79808	0.7596	0.68799	0.75101	0.53307	0.56815	0.42852	0.46679	0.40296	0.36425	0.45815	0.53232	0.57635	0.5414	0.58035	0.65811	0.86	0.74469	0.70488	0.73768	1.01191	0.95701		
6	4	0:45	0.82128	0.89848	0.79808	0.7596	0.68799	0.75101	0.53307	0.56815	0.42852	0.46679	0.40296	0.36425	0.45815	0.53232	0.57635	0.5414	0.58035	0.65811	0.86	0.74469	0.70488	0.73768	1.01191	0.95701		
7	5	1:00	0.63596	0.71306	0.64923	0.6745	0.57308	0.68837	0.45227	0.47213	0.32558	0.38753	0.40782	0.36568	0.49521	0.587	0.69077	0.78918	0.49273	0.58728	0.58711	0.55672	0.52181	0.55253	0.76502	0.78159		
8	6	1:15	0.63596	0.71306	0.64923	0.6745	0.57308	0.68837	0.45227	0.47213	0.32558	0.38753	0.40782	0.36568	0.49521	0.587	0.69077	0.78918	0.49273	0.58728	0.58711	0.55672	0.52181	0.55253	0.76502	0.78159		
9	7	1:30	0.63596	0.71306	0.64923	0.6745	0.57308	0.68837	0.45227	0.47213	0.32558	0.38753	0.40782	0.36568	0.49521	0.587	0.69077	0.78918	0.49273	0.58728	0.58711	0.55672	0.52181	0.55253	0.76502	0.78159		
10	8	1:45	0.63596	0.71306	0.64923	0.6745	0.57308	0.68837	0.45227	0.47213	0.32558	0.38753	0.40782	0.36568	0.49521	0.587	0.69077	0.78918	0.49273	0.58728	0.58711	0.55672	0.52181	0.55253	0.76502	0.78159		
11	9	2:00	0.55183	0.65138	0.57536	0.60667	0.553	0.64194	0.45689	0.4387	0.28157	0.32687	0.4608	0.35754	0.52807	0.65465	0.78535	0.9812	0.47525	0.59233	0.57844	0.53941	0.48005	0.47764	0.69961	0.7102		
12	10	2:15	0.55183	0.65138	0.57536	0.60667	0.553	0.64194	0.45689	0.4387	0.28157	0.32687	0.4608	0.35754	0.52807	0.65465	0.78535	0.9812	0.47525	0.59233	0.57844	0.53941	0.48005	0.47764	0.69961	0.7102		
13	11	2:30	0.55183	0.65138	0.57536	0.60667	0.553	0.64194	0.45689	0.4387	0.28157	0.32687	0.4608	0.35754	0.52807	0.65465	0.78535	0.9812	0.47525	0.59233	0.57844	0.53941	0.48005	0.47764	0.69961	0.7102		
14	12	2:45	0.55183	0.65138	0.57536	0.60667	0.553	0.64194	0.45689	0.4387	0.28157	0.32687	0.4608	0.35754	0.52807	0.65465	0.78535	0.9812	0.47525	0.59233	0.57844	0.53941	0.48005	0.47764	0.69961	0.7102		
15	13	3:00	0.58556	0.68122	0.55978	0.69675	0.60592	0.65155	0.50074	0.39884	0.25898	0.31696	0.37763	0.35284	0.53481	0.5971	0.79773	1.04757	0.43437	0.49728	0.54499	0.44108	0.50775	0.56783	0.77358	0.73924		
16	14	3:15	0.58556	0.68122	0.55978	0.69675	0.60592	0.65155	0.50074	0.39884	0.25898	0.31696	0.37763	0.35284	0.53481	0.5971	0.79773	1.04757	0.43437	0.49728	0.54499	0.44108	0.50775	0.56783	0.77358	0.73924		
17	15	3:30	0.58556	0.68122	0.55978	0.69675	0.60592	0.65155	0.50074	0.39884	0.25898	0.31696	0.37763	0.35284	0.53481	0.5971	0.79773	1.04757	0.43437	0.49728	0.54499	0.44108	0.50775	0.56783	0.77358	0.73924		
18	16	3:45	0.58556	0.68122	0.55978	0.69675	0.60592	0.65155	0.50074	0.39884	0.25898	0.31696	0.37763	0.35284	0.53481	0.5971	0.79773	1.04757	0.43437	0.49728	0.54499	0.44108	0.50775	0.56783	0.77358	0.73924		
19	17	4:00	0.57952	0.6487	0.58884	0.6111	0.61769	0.63026	0.45676	0.40913	0.2518	0.31519	0.34879	0.31045	0.51773	0.55946	0.7666	0.93763	0.397	0.45559	0.49596	0.39991	0.48425	0.5505	0.71659	0.76839		
20	18	4:15	0.57952	0.6487	0.58884	0.6111	0.61769	0.63026	0.45676	0.40913	0.2518	0.31519	0.34879	0.31045	0.51773	0.55946	0.7666	0.93763	0.397	0.45559	0.49596	0.39991	0.48425	0.5505	0.71659	0.76839		
21	19	4:30	0.57952	0.6487	0.58884	0.6111	0.61769	0.63026	0.45676	0.40913	0.2518	0.31519	0.34879	0.31045	0.51773	0.55946	0.7666	0.93763	0.397	0.45559	0.49596	0.39991	0.48425	0.5505	0.71659	0.76839		
22	20	4:45	0.57952	0.6487	0.58884	0.6111	0.61769	0.63026	0.45676	0.40913	0.2518	0.31519	0.34879	0.31045	0.51773	0.55946	0.7666	0.93763	0.397	0.45559	0.49596	0.39991	0.48425	0.5505	0.71659	0.76839		
23	21	5:00	0.6176	0.6551	0.65345	0.58034	0.72778	0.62721	0.50351	0.4882	0.2496	0.29253	0.37773	0.29673	0.5153	0.49942	0.79586	0.80025	0.4313	0.43616	0.44868	0.43006	0.50016	0.52787	0.78196	0.79314		
24	22	5:15	0.6176	0.6551	0.65345	0.58034	0.72778	0.62721	0.50351	0.4882	0.2496	0.29253	0.37773	0.29673	0.5153	0.49942	0.79586	0.80025	0.4313	0.43616	0.44868	0.43006	0.50016	0.52787	0.78196	0.79314		
25	23	5:30	0.6176	0.6551	0.65345	0.58034	0.72778	0.62721	0.50351	0.4882	0.2496	0.29253	0.37773	0.29673	0.5153	0.49942	0.79586	0.80025	0.4313	0.43616	0.44868	0.43006	0.50016	0.52787	0.78196	0.79314		
26	24	5:45	0.6176	0.6551	0.65345	0.58034	0.72778	0.62721	0.50351	0.4882	0.2496	0.29253	0.37773	0.29673	0.5153	0.49942	0.79586	0.80025	0.4313	0.43616	0.44868	0.43006	0.50016	0.52787	0.78196	0.79314		
27	25	6:00	0.78898	0.70399	0.85183	0.71433	0.96583	0.68023	0.71549	0.58203	0.27412	0.31632	0.43613	0.37946	0.50942	0.42768	0.76202	0.75873	0.41611	0.48944	0.50365	0.43174	0.56168	0.60031	0.91135	0.84104		
28	26	6:15	0.78898	0.70399	0.85183	0.71433	0.96583	0.68023	0.71549	0.58203	0.27412	0.31632	0.43613	0.37946	0.50942	0.42768	0.76202	0.75873	0.41611	0.48944	0.50365	0.43174	0.56168	0.60031	0.91135	0.84104		
29	27	6:30	0.78898	0.70399	0.85183	0.71433	0.96583	0.68023	0.71549	0.58203	0.27412	0.31632	0.43613	0.37946	0.50942	0.42768	0.76202	0.75873	0.41611	0.48944	0.50365	0.43174	0.56168	0.60031	0.91135	0.84104		
30	28	6:45	0.78898	0.70399	0.85183	0.71433	0.96583	0.68023	0.71549	0.58203	0.27412	0.31632	0.43613	0.37946	0.50942	0.42768	0.76202	0.75873	0.41611	0.48944	0.50365	0.43174	0.56168	0.60031	0.91135	0.84104		
31	29	7:00	0.92676	0.6807	1.07923	0.80113	1.06311	0.78035	0.88322	0.78465	0.40347	0.44201	0.58622	0.49813	0.55703	0.46721	0.71117	0.67858	0.46766	0.47405	0.64974	0.59065	0.75983	0.70097	0.96626	0.92094		
32	30	7:15	0.92676	0.6807	1.07923	0.80113	1.06311	0.78035	0.88322	0.78465	0.40347	0.44201	0.58622	0.49813	0.55703	0.46721	0.71117	0.67858	0.46766	0.47405	0.64974	0.59065	0.75983	0.70097	0.96626	0.92094		
33	31	7:30	0.92676	0.6807	1.07923	0.80113	1.06311	0.78035	0.88322	0.78465	0.40347	0.44201	0.58622	0.49813	0.55703	0.46721	0.71117	0.67858	0.46766	0.47405	0.64974	0.59065	0.75983	0.70097	0.96626	0.92094		
34	32	7:45	0.92676	0.6807	1.07923	0.80113	1.06311	0.78035	0.88322	0.78465	0.40347	0.44201	0.58622	0.49813	0.55703	0.46721	0.71117	0.67858	0.46766	0.47405	0.64974	0.59065	0.75983	0.70097	0.96626	0.92094		
35	33	8:00	0.98768	1.07578	1.06063	0.95054	1.06545	0.91825	1.05472	0.75001	0.50495	0.57936	0.59051	0.4918	0.67506	0.39036	0.71904	0.42127	0.51411	0.6314	0.78381	0.85956	0.83116	0.99218	1.10378	1.08117		
36	34	8:15	0.98768	0.82221	1.06063	0.89805	1.06545	0.99504	1.05472	0.91704	0.50495	0.58419	0.59051	0.3416	0.67506	0.56031	0.71904	0.67803	0.51411	0.60513	0.78381	0.66922	0.83116	0.84149	1.10378	1.02196		
37	35	8:30	0.98768	0.82221	1.06063	0.89805	1.06545	0.99504	1.05472	0.91704	0.50495	0.58419	0.59051	0.3416	0.67506	0.56031	0.71904	0.67803	0.51411	0.60513	0.78381	0.66922	0.83116	0.84149	1.10378	1.02196		
38	36	8:45	0.98768	0.82221	1.06063	0.89805	1.06545	0.99504	1.05472	0.91704	0.50495	0.58419	0.59051	0.3416	0.67506	0.56031	0.71904	0.67803	0.51411	0.60513	0.78381	0.66922	0.83116	0.84149	1.10378	1.02196		
39	37	9:00	0.96803	1.07362	0.97897	1.02509	0.96658	1.18732	1.05072	1.06409	0.40699	0.52182	0.62873	0.5092	0.75419	0.46487	0.66734	0.78408	0.5097	0.62306	0.89047	0.79751	0.8623	1.00525	1.26463	1.05794		
40	38	9:15	0.96803	1.07362	0.97897	1.02509	0.96658	1.18732	1.05072	1.06409	0.40699	0.52182	0.62873	0.5092	0.75419	0.46487	0.66734	0.78408	0.5097	0.62306	0.89047	0.79751	0.8623	1.00525	1.26463	1.05794		
41	39	9:30	0.96803	1.07362	0.97897	1.02509	0.96658	1.18732	1.05072	1.06409	0.40699	0.52182	0.62873	0.5092	0.75419	0.46487	0.66734	0.78408	0.5097	0.62306	0.89047	0.79751	0.8623	1.00525	1.26463	1.05794		
42	40	9:45	0.96803	1.07362	0.97897	1.02509	0.96658	1.18732	1.05072	1.06409	0.40699	0.52182	0.62873	0.5092	0.75419	0.46487	0.66734	0.78408	0.5097	0.62306	0.89047	0.79751	0.8623	1.00525	1.26463	1.05794		
43	41	10:00	1.03667	1.30595	1.0233	1.15392	1.0471	1.37647	0.90545	0.99385	0.55678	0.75662	0.44079	0.43611	0.59566	0.503	0.65371	0.87085	0.57596	0.6899	0.84072	0.80516	0.86651	0.93103	1.18432	1.12324		
44	42	10:15	1.03667	1.30595	1.0233	1.15392	1.0471	1.37647	0.90545	0.99385	0.55678	0.75662	0.44079	0.43611	0.59566	0.503	0.65371	0.87085	0.57596	0.6899	0.84072	0.80516	0.86651	0.93103	1.18432	1.12324		
45	43	10:30	1.03667	1.30595	1.0233	1.15392	1.0471	1.37647	0.90545	0.99385	0.55678	0.75662	0.44079	0.43611	0.59566	0.503	0.65371	0.87085	0.57596	0.6899	0.84072	0.80516	0.86651	0.93103	1.18432	1.12324		
46	44	10:45	1.03667	1.30595	1.0233	1.15392	1.0471	1.37647	0.90545	0.99385	0.55678	0.75662	0.44079	0.43611	0.59566	0.503	0.65371	0.87085	0.57596	0.6899	0.84072	0.80516	0.86651	0.93103	1.18432	1.12324		
47	45	11:00	1.01695	1.49223	0.96989	1.1931	1.02953	1.29719	0.90994	1.19177	0.40242	0.53734	0.54969	0.38685	0.61318	0.68304	0.71972	0.70943	0.69581	0.7203	0.80301	0.8958	0.92206	0.87487	1.16938	1.09696		
48	46	11:15	1.01695	1.49223	0.96989	1.1931	1.02953	1.29719	0.90994	1.19177	0.40242	0.53734	0.54969	0.38685	0.61318	0.68304	0.71972	0.70943	0.69581	0.7203	0.80301	0.8958	0.92206	0.87487	1.16938	1.09696		
49	47	11:30	1.01695	1.49223	0.96989	1.1931	1.02953	1.29719	0.90994	1.19177	0.40242	0.53734	0.54969	0.38685	0.61318	0.68304	0.71972	0.70943	0.69581	0.7203	0.80301	0.8958	0.92206	0.87487	1.16938	1.09696		
50	48	11:45	1.01695	1.49223	0.96989	1.1931	1.02953	1.29719	0.90994	1.19177	0.40242	0.53734	0.54969	0.38685	0.61318	0.68304	0.71972	0.70943	0.69581	0.7203	0.80301	0.8958	0.92206	0.87487	1.16938	1.09696		
51	49	12:00	0.99112	1.29522	0.99256	1.27953	0.94875	1.34548	0.98374	1.22166	0.59394	0.64878	0.47118	0.43983	0.61888	0.51447	0.64863	0.6268	0.64249	0.92662	0.98887	0.68968	0.99412	0.83298	1.14708	1.05824		
52	50				0.99256																			0.83298	1.14708	1.05824		
E0					0.00055		-	1 34543	0.00074	1 00400	0.50304	0.04070		0.43003	0.04000		0.04000	0.0000		0.00000	0.00007	0.00000	0.00440	0.03000		4 05 00 4		
	< >	e	xample	-file-loa	d-templ	ate	(+)																	: [(

6.3 Electricity Costs

This tab consists of two options describing the electricity costs of the installation under study.

User can choose between either a *"flat pricing"* scheme, i.e. constant electricity charges throughout the period of a day, or a *"dynamic pricing"* scheme, where more than one time zones are valid.

← Previous →	Next
PV System Consumption Data	Electricity Costs Storage System Policy Financial
Flat Prici	ing Dynamic Pricing
Cyprus France Greece	Italy Portugal Slovenia Spain
Production Cost (€/kWh)	0.10252
Network Cost (€/kWh)	0.02657
Taxes (€/kWh)	0.02494
VAT (%)	13
Fixed Cost (€/year)	31.15

In the dynamic pricing scheme, user should specify if two or three charge zones exist, by checking accordingly the *"Zone C"* option. The starting hour of each zone should be declared in an ascending order, beginning from Zone A. The ending hour is automatically filled in. Electricity costs should be inserted accordingly. It should be noticed that a dynamic pricing scheme cannot be selected when a *"Partial net-metering"* policy is selected in the *"Policy"* tab.

← Prev	vious 🗧	›	Next						
PV System	Consumption	n Data	Electricity Costs	Storag	e System	Policy	Financ	cial	
	C) Flat Pi	ricing 💽 Dynami	ic Pricing	i				
Cyprus	France	Greece	Italy Portuga	l Slo	venia S _l	pain			
			Zone A		Zone B			Zone C	
Starting	Hour	(07:00	16:00		-	21:30 💌		
Ending	Hour	:	16:00	21:30		-	07:00 👻		
Product	ion Cost (€/kWh) (0.10	0.14		0.08			
Networ	k Cost (€/kWh)		0.02657		0.02657		0.02657		
Taxes (€	/kWh)		0.02494		0.02494			0.02494	
Fixed Co	ost (€/year)	:	31.15						
VAT (%)		·	13						

All values should be entered before VAT. Specifically,

- *"Production cost"* corresponds to the charges per kWh for the generation of electrical energy. It includes supply costs as well.
- "Network cost" corresponds to the costs per kWh that are charged to the prosumer for the use of distribution network and transmission system.
- *"Taxes"* include all other charges that may be applicable.
- *"Fixed cost"* refers to the fixed annual charges.
- *"VAT"* is the VAT that applies to the total electricity cost (sum of the above).

6.4 Storage System

The characteristics of the Battery Energy Storage System (BESS) are defined in this tab. The user is able to perform an analysis for different BESS sizes.

The expected *"overall number of charge/discharge cycles"* should be inserted, as declared by the manufacturer of the BESS. A number of 8000 cycles could be used as a typical value for Li-Ion batteries.

User should also define *"maximum charge/discharge rate"* of the BESS, as a percentage (%) of the nominal battery capacity. For example, if 50% is selected here, a 10 kWh BESS will have a maximum rate of 5 kW.

Finally, user should define the BESS size range to be analyzed by the tool.

🔶 Pre	vious 🔁 🔿	Next					
PV System	Consumption Data	Electricity Costs	Storage System	Policy Fi	nancial		
Battery ener	gy storage system optior	IS					
Overall nu	mber of charge/discharge	e cycles	8000	•			
Maximun ch	arge/discharge rates (% o	of nomimal battery cap	pacity)				
Charge rat	e (%)		67	•	[1 - 100]		
Discharge	rate (%)		67	*	[1 - 100]		
Usable cap	oacity (%)		80	•	[1 - 100]		
Battery rang	e for analysis (kWh)						
Minimum	size		Select minin	num battery	v size [kWh]	• [0 - 500]	
Maximun	size		Select maxir	Select maximum battery size [kWh]			

6.5 Policy

The user is able to choose between 3 policies from the drop-down menu *"Select Policy"*:

- i. The first option refers to the *"Pure self-consumption"* policy, where PV excess energy exported to the grid is not compensated at all.
- ii. The second option refers to the *"Self-consumption"* policy, where PV excess energy exported to the grid is compensated at the price specified in the corresponding box further down.
- iii. The third option is available only under a "Flat Pricing" scheme (this can be chosen in the "Electricity Costs" tab). Specifically, it refers to a "partial net-metering" policy, where prosumer is charged on the net consumed energy by the production cost price, at the end of each billing period. If there is a surplus of produced energy (net consumed energy is zero in this case) over a billing period, this amount of energy is transferred in the form of renewable energy credits to the next billing period. At the end of each year, any renewable energy credits are erased. Prosumer is charged on the imported energy by the network costs and taxes declared in the "Electricity costs" tab.

Furthermore, the user can define any added cost or added income that may apply to the prosumers for operating a PV or/and storage system.

← Prev	∕ious →	Next				
PV System	Consumption D	ata Electricity Costs	Storage	System	Policy	Financial
Select Poli	су	Pure self-consu	mption	~ i		
Added cost	t(€/year)	0	•			
Added income(€/year)		0	•			
Price for selling excess energy(€/kWh)		(€/kWh) 0	4 V			

6.6 Financial

User should define the cost of purchasing the equipment, the Operation and Maintenance (O & M) costs of the hybrid PV and storage system, the subsidy as a percentage of the overall system cost, the discount rate, the inflation rate and the electricity inflation rate as shown below.

"PV and inverter cost" includes the cost of PV panels, the hybrid inverter, engineering, administrative and balance of systems costs (per kWp installed), whereas "BESS cost" refers to the battery energy storage system cost (per kWh), and includes only the cost of the battery module.

← Prev	ious	Next			
PV System	Consumption Data	Electricity Costs	Storage System	Policy	Financial
PV system a	and inverter cost [*] (€/kWp)	1600	A V		
BESS cost*	(€/kWh)	200	•		
O & M cost	s (in % of the overall costs)	•		2 🗧	[0 - 100]
Subsidy (in	% of the overall costs)	•	(D ≑	[0 - 100]
Discount ra	te (%)	•		4 🖨	[0 - 100]
Inflation rat	te (%)	•		2 🖨	[0 - 100]
Electricity in	nflation rate (%)	•		2 🖨	[0 - 100]
*VAT included	I				

6.7 Validate Inputs

Once all the data have been inserted, user has to validate them by clicking on *"Validate Inputs"* button. A pop-up window confirms the validity of the inputs. The message indicates where the problem exists, if so, and after solving it, the user has to revalidate the inputs. A soon as the emerged message is the following, the user can close the window.

Previ	ous 🔶	Next					O	Reset	~	Validate In	puts	Click for
V System	Consumption Data	Electricity Costs	Storage System	Policy	Financial	Results						validation
PV system a	ind inverter cost [*] (€/kWp) 1600	[\$]									
BESS cost* ((€/kWh)	StoRES Tool	Velidation					×				\bigcirc
0 & M costs	s (in % of the overall costs		validation									$\left(2\right)$
	s (in % of the overall costs % of the overall costs)	5)	is completed. Please,	close dialo	g and click but	tton 'Calculate						Validation pop-up
	% of the overall costs)	5)		close dialo	g and click but							Validation
Subsidy (in 9	% of the overall costs) te (%)	5)	is completed. Please,		g and click but [0 - 100]		' to get resul					Validation

(1)

6.8 Getting the Results

Once the validation of the inputs is successful and the pop-up window is closed by the user, the tab "*Results*" is activated automatically. No results are depicted yet. The user has to click on "*Calculate*" button so that the tool starts the analysis.

When the analysis is finished, the results will be visualized on this screen. Analysis has a duration of several seconds to 2 minutes, respecting to the user specified options (PV and BESS size range for analysis).

	← Previous →	Next			C	Reset	✓ Validate Inputs	l .
3	PV System Consumption Data	Electricity Costs	Storage System P	licy Financial	Results			(4)
Click to calculate	✓ Calculate			🛓 PVGI	Data to Excel	L Input Data to PDF	Results to PDF	Click to export
the results	Optimal System Parameters		Output				\sim	and download
	Net Present Value of the Investment (€) 0							
	Internal Rate of Return of the Invest	0						
	Simple Payback Period (Years)		0					
	Optimal PV System Size (kWp) 0 Optimal Battery System Size (kWh) 0							
	Net Present Value (€) Charts Various PV Sizes							
	1.0	1 /2						
	0.8							
	(3) 0.6 anpp, tures and the second se							
	npp 0.2							
	te o							
	-0.2 位0.4							
	ž -0.6							
	-0.8							

To export the input data and the results in form of a *.pdf* file, user can click on the proper buttons that appear on the right-top of the page.