

Project co-financed by the European Regional Development Fund

MED Greenhouses "Green Growth through the capitalization of innovative Greenhouses"

Gap Analysis & Policy recommendations

University of Thessaly

1

Project Details:

Programme: Interreg MED 2014-2020

Priority Axis: **1. Promoting Mediterranean innovation capacities to develop smart and sustainable growth**

Objective: **1.1. To increase transnational activity of innovative clusters and networks of key sectors of the MED area**

Project Title: **Green Growth through the capitalization of innovative Greenhouses** Project Acronym: **MED Greenhouses**

Reference No: 3082

Lead Partner: University of Thessaly

Total Budget: **1,171,400 €**

Time Frame: 01/02/2018 - 31.12.2019

Deliverable Details

WP: 3 - Capitalising

Activity: 3.1 – State of Play in Policies, Financing, Technologies & Stakeholders

Deliverable Title: 3.1.5 - Gap Analysis & Policy Recommendations

Responsible Partner: University of Thessaly

Involved Partners: All

Date & Place of delivery: 30-08-2019

Contents

Introductior	٦	8
1. Gaps a	nd obstacles recorded regarding technologies of innovative g	reenhouses
in the regio	n	9
1.1 Ov	erview of the State of play	9
1.1.1	Albania	9
1.1.2	Cyprus	11
1.1.3	France	12
1.1.4	Greece	14
1.1.5	Italy	16
1.1.6	Spain	18
1.2 Ga	ps	18
1.2.1	Albania	18
1.2.2	Cyprus	19
1.2.3	France	20
1.2.4	Greece	20
1.2.5	Italy	21
1.2.6	Spain	22
1.3 Ob	ostacles	22
1.3.1	Albania	22
1.3.2	Cyprus	23
1.3.3	France	24
1.3.4	Greece	24
1.3.5	Italy	25
1.3.6	Spain	26
2. Stakeho	olders and key players of the greenhouse sector	27
2.1 Ov	erview of the state of play	27
2.1.1	Albania	27
2.1.2	Cyprus	28
2.1.3	France	29
2.1.4	Greece	32
2.1.5	Italy	35
2.1.6	Spain	
2.2 Ga	ps	
2.2.1	Albania	
2.2.2	Cyprus	37
2.2.3	France	
2.2.4	Greece	

2.2.5	Italy	
2.2.6	Spain	
2.3 Ob	stacles	40
2.3.1	Albania	40
2.3.2	Cyprus	40
2.3.3	France	41
2.3.4	Greece	41
2.3.5	Italy	42
2.3.6	Spain	42
3. Financia	I Channels for eco-innovative technologies	43
3.1 Ove	erview of the state of play	43
3.1.1	Albania	43
3.1.2	Cyprus	44
3.1.3	France	44
3.1.4	Greece	46
3.1.5	Italy	49
3.1.6	Spain	50
3.2 Ga	DS	51
3.2.1	Albania	51
3.2.2	Cyprus	52
3.2.3	France	52
3.2.4	Greece	52
3.2.5	Italy	52
3.2.6	Spain	53
3.3 Ob	stacles	53
3.3.1	Albania	53
3.3.2	Cyprus	54
3.3.3	France	54
3.3.4	Greece	55
3.3.5	Italy	56
3.3.6	Spain	56
4. Policies	and frameworks promoting eco-innovation	57
4.1 Ove	erview of the state of play	57
4.1.1	Albania	57
4.1.2	Cyprus	58
4.1.3	France	59
4.1.4	Greece	61
4.1.5	Italy	63
4.1.6	Spain	64

4.	2 Gap)S	65
	4.2.1	Albania	65
	4.2.2	Cyprus	66
	4.2.3	France	66
	4.2.4	Greece	67
	4.2.5	Italy	68
	4.2.6	Spain	68
4.	3 Obs	stacles	69
	4.3.1	Albania	69
	4.3.2	Cyprus	70
	4.3.3	France	70
	4.3.4	Greece	71
	4.3.5	Italy	72
	4.3.6	Spain	72
5.	Policy Re	ecommendations favouring the establishment of innovative g	reenhouses
	74		
	5.1.1	Albania	74
	5.1.2	Cyprus	
	5.1.3	France	
	5.1.4	Greece	
	5.1.5	Italy	
	5.1.6	Spain	

List of Tables

Table 1 – Identified gaps in innovative technologies in Region the Berat (Albania) Table 2 – Identified gaps in innovative technologies in Cyprus	18 19
Table 3 – Identified gaps in innovative technologies in PACA region (France)	20
Table 4 – Identifiedgaps in innovative technologies in the Region of Thessaly(Gre	ece)
	20
Table 5 – Identifiedgaps in innovative technologies in Molise Region (Italy)	21
Table 6 – Identifiedgaps in innovative technologies in the Region of Murcia (Spair	າ).22
Table 7 – Identified obstacles for the promotion of innovative technologies in	the
Region of Berat (Albania)	22
Table 8 – Identified obstacles for the promotion of innovative technologies in Cy	prus
	23
Table 9 – Identified obstacles for the promotion of innovative technologies in P	ACA
region (France)	24

Table 10 – Identified obstacles for the promotion of innovative technologies in Greece
Table 11 – Identified obstacles for the promotion of innovative technologies in Molise
Region (Italy)
Table 12 – Identified obstacles for the promotion of innovative technologies in the
Region of Murcia (Spain)
Table 13 – Identified key stakeholders in the Region of Berat (Albania)
Table 14 – Identified key stakeholders in Cyprus
Table 15 – Identified key stakeholders in PACA Region (France)
Table 16 – Identified key stakeholders in PACA region (France)
Table 17 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in the Region of Berat (Albania)
Table 18 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in Cyprus
Table 19 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in PACA region (France)
Table 20 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in Greece
Table 21 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in Molise Region (Italy)
Table 22 – Identified gaps regarding stakeholders and key players of the greenhouse
sector in the Region of Murcia (Spain)
Table 23 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in the Region of Berat (Albania)40
Table 24 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in Cyprus40
Table 25 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in PACA region (France)41
Table 26 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in the Region of Thessaly (Greece)41
Table 27 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in Molise Region (Italy)42
Table 28 – Identified obstacles for the stakeholders and key players of the greenhouse
sector in the Region of Murcia (Spain)42
Table 29 – Lack of financial models in the Region of Berat (Albania)
Table 30 – Lack of financial models in Cyprus52
Table 31 – Lack of financial models in PACA region (France)52
Table 32 – Lack of financial models in the Region of Thessaly (Greece)
Table 33 – Lack of financial models in Molise Region (Italy)

HELLENIC REPUBLIC REGION OF THESSALY

Agricultural Research Institute 🎉

any in

Table 34 – Lack of financial models in the Region of Murcia (Spain)
Table 35 – Identified obstacles for the use of the existing financial channels in the
Region of Berat (Albania)53
Table 36 – Identified obstacles for the use of the existing financial channels in Cyprus
Table 37 – Identified obstacles for the use of the existing financial channels in PACA
Region (France)
Table 38 – Identified obstacles for the use of the existing financial channels in the
Region of Thessaly (Greece)
Table 39 – Identified obstacles for the use of the existing financial channels in Molise
Region (Italy)
Table 40 – Identified obstacles for the use of the existing financial channels in the
Region of Murcia (Spain)
Table 41 – Lack of Policies and frameworks favouring eco-innovation in the Region of
Berat (Albania)
Table 42 – Lack of Policies and frameworks favouring eco-innovation in Cyprus66
Table 43 – Lack of Policies and frameworks favouring eco-innovation in PACA region
(France)
Table 44 – Lack of Policies and frameworks favouring eco-innovation in the Region of
Thessaly (Greece)
Table 45 – Lack of Policies and frameworks favouring eco-innovation in the Molise
Region (Italy)
Table 46 – Lack of Policies and frameworks favouring eco-innovation in the Region of
Murcia (Spain)
Table 47 – Identified obstacles for the adoption/development of frameworks/policies
favouring eco-innovation in the region of Berat Albania
Table 48 – Identified obstacles for the adoption/development of frameworks/policies
favouring eco-innovation in Cyprus
Table 49 – Indentified obstacles for the adoption/development of frameworks/policies
favouringeco-innovation in PACA Region (France)70
Table 50 – Identified obstacles for the adoption/development of frameworks/policies
favouring eco-innovation in the Region of Thessaly (Greece)
Table 51 – Identified obstacles for the adoption/development of frameworks/policies
favouring eco-innovation in Molise Region (Italy)72
Table 52 – Identified obstacles for the adoption/development of frameworks/policies
tavouring eco-innovation in the Region of Murcia (Spain)
Table 53 – Policy recommendation for the Region of Berat (Albania)
Table 54 – Policy recommendation for Cyprus Σφάλμα! Δεν έχει οριστεί

σελιδοδείκτης.

7

Table 55 – Policy recommendation for PACA Region (France) Σφάλμα! Δ	νз	έχει
οριστεί σελιδοδείκτης.		
Table 56 – Policy recommendation for the Region of Thessaly (Greece)Σφάλ	\μα!	Δεν
έχει οριστεί σελιδοδείκτης.		
Table 57 – Policy recommendation for Molise Region (Italy) Σ_{0}	51)	ćvci

Table 57 – Policy recommendation for Molise Region (Italy)Σφάλμα!Δενέχειοριστεί σελιδοδείκτης.

Table 58 – Policy recommendation for Region of Murcia (Spain)**Σφάλμα!** Δεν έχει οριστεί σελιδοδείκτης.

List of Figures

Figure 1 – Total area of vegetables under greenhouses (1998-2017)
Figure 2 – Regional share of greenhouses and new greenhouses (1998-2017)10
Figure 3 - Greenhouses production in PACA region (Provence Alpes côted'azur)
(DRAAF PACA 2010)
Figure 4. Mean daily solar radiation and air temperature during the year for the region
of Athens and Thessaloniki. The different climate regions presented in each graph
indicate (a) air temperature $<8^{\circ}$ C and solar radiation < 8 MJ m ⁻² day ⁻¹ : daytime and
nighttime heating and lightening; (b) 8°C < air temperature < 18°C: nighttime heating
and daytime ventilation; (c) $18^{\circ}C$ < air temperature, and solar radiation > 20 MJ m ⁻² day ⁻¹
¹ cooling and shading. The dashed line indicates the average solar radiation and air
temperature for the different months of the year16
Figure 5 - Type of 4-helix actors (key identified actors)
Figure 6 - Stakeholders/beneficiaries of Greenhouse industry
Figure 7 - Level of Impact of Stakeholders/beneficiaries of Greenhouse industry 32

Introduction

The overall objective of the "MED Greenhouses" project is to improve eco-innovation capacities of public & private actors in the greenhouse/agriculture sector, through stronger transnational cooperation, knowledge transfer and better collaborative networks. The main beneficiaries will be Greenhouse Farmers, Businesses specialized in Agro-food and Greenhouse industry, Policy Makers - Unions of Agricultural Cooperatives, Research &Technology Institutes, etc.

This deliverable (Del 3.1.5) is elaborated in the context of the Activity 3.1 - State of Play in Policies, Financing, Technologies & Stakeholders and WP3.

WP3 "Capitalising", aims at improving the existing innovative framework conditions in the MED area, providing tailored recommendations to stakeholders and favouring ecoinnovative investments in the agricultural sector, and ii) creating synergies and cooperation mechanisms strengthening innovative clusters and networks.

The Activity 3.1 aims to identify record & present the state of play in policies, frameworks, financing channels, technologies of innovative greenhouses and the stakeholders/ key players of agriculture/greenhouse sector.

Deliverable 3.1.5 aims to identify the missing links & develop tailored policy recommendations for the establishment of innovative greenhouses.

For this reason, based on the research conducted by the partners for the elaboration of the deliverables 3.1.1, 3.1.2, 3.1.3 and 3.1.4, this report identifies the **gaps** and **obstacles** at Regional and National level in the following sectors:

- Technologies of innovative greenhouses
- Stakeholders and key players of the greenhouse sector
- Financial Channels for eco-innovative technologies
- Policies and frameworks promoting eco-innovation

After assessing and analyzing the above findings, 3 policy recommendations are designed and presented by each partner aiming to facilitate the policy makers to enhance the existing investment conditions promoting innovative greenhouses at regional/national level. The report is structured at partner's country level :

- Region of Berat / Albania
- Nicosia / Cyprus
- PACA region / France
- Region of Thessaly / Greece
- Molise Region / Italy
- Region of Murcia / Spain

Molise

Based on the findings of the Del. 3.1.1"Joint Report on technologies of innovative greenhouses in the involved MED regions", this section presents important gaps and barriers that have been identified at national / regional level, regarding technologies of innovative greenhouses. The lack of knowledge and the gaps of information of the stakeholders regarding existing innovative technologies of the greenhouse sector is also a subject of study.

1.1 Overview of the State of play

1.1.1 Albania

The Albanian greenhouse market has grown steadily in the last decades. The area occupied by protected cultivations and the production of vegetables produced in greenhouses increased substantively. According with the data reported by the Albanian National Institute of Statistics in December 2017, the total area under greenhouse production was 1,540.000 ha. This figure shows an increase from the previous year, when the greenhouses' production area was roughly 1,405.000 ha (December 2016). The area has grown about 5 times from 1998, when it was around 309,000 ha, and it has more than doubled in the last ten years.

The graph above shows the steady increase in the total area of vegetables under greenhouses. Along with the area of cultivation under cover even the total production has witnessed a substantial increase. The general tendency is to build low cost non-heated greenhouses covered by plastic, commonly called Mediterranean greenhouses.

In fact, the construction of heated greenhouses progressively decreased during the last decade. This tendency can be explained by the high heating costs that make these kinds of greenhouses unaffordable. In fact, the high costs of energy and the lack of sustainable technologies to create a favorable microclimate for the indoor cultivations make the construction of heated greenhouses a non viable alternative. For these reasons often low-cost greenhouses are preferred by Albanian farmers.

This general increase in greenhouse vegetable production is particularly evident in some areas such as Berat. The region's climate conditions, in fact, are extremely favorable for the protected cultivations. As a result, in the last decade the number of greenhouses in the area sharply increased.

Figure 2 – Regional share of greenhouses and new greenhouses (1998-2017)

Sources: MAFCP, 2011; INSTAT, 2012/ European Union, 2015 (Guri et al. 2015)

However, despite the growth of this market segment there are still many issues that have to be addressed.

The system of protected cultivations in Albania, as commonly happens in the Mediterranean area, is characterized by a low level of energy input. The consequence is that the microclimate conditions are not satisfactory for cultivations for a large part of the year. The effects of this technological inadequacy strongly affect the yield and quality of the produced crop. Therefore, growers cannot exploit the high level of radiations in late spring and summer because of the lack of climate control technologies that allow to lower the temperature and to regulate the vapor pressure inside greenhouses. For this reason, plants inside greenhouses are continuously subjected to crop infestations and diseases, problems that are commonly addressed with a massive pesticides' usage. The yield and the plants' growth are strongly affected by the outside fluctuations of climate conditions. Although low cost greenhouses are widespread in Albania, there is a general positive trend in the construction of better equipped greenhouses.

Despite the large opportunities offered by the greenhouse market in Albania, there are some problems that affect the overall production that have to be addressed. The country should exploit better its comparative advantage with neighboring countries in terms of good environmental conditions and low labor cost. Modern design greenhouses are a solution to tackle the problem of the climate control and can allow farmers to extend the production period even during winter and summer. Cuttingedge technologies in greenhouses that rely on alternative sources of energy can replace common heated greenhouses and have a positive effect on the vegetable production and on the overall sector growth.

1.1.2 Cyprus

Interreg

Mediterranean

The agricultural sector in Cyprus contributes in 2,4% of the national GD, with a total gross output comes up to€698 million in 2015, compared to €666 million in 2014 which was decreased at 4.9% in relation to €701 million in 2013. The main reason of the reduction is attributed to unfavorable weather conditions, especially the water scarcity problem, which resulted in the decrease of the volume of crop production, mainly to cereals, straw and green fodder that decreased by 85.8%, 92.0% and 73.8% respectively. Crop production contributes in 35% of the total added value in agriculture and livestock contributes in 50% respectively. The main cultivated crops are fodder crops, cereals and olives, while the main exporting crop products are potatoes, citrus, leafy vegetables and Halloumi cheese.

Cyprus is a small producer of fruit and vegetables, accounting for less than 1% of the total EU production. Greenhouse crop production is considered to be the most intensive and energy consuming horticultural system. Greenhouses occupy 436 hectares corresponding to (approximately) 0,5% of the total cultivated area on the island. The main crops cultivated in greenhouses are vegetables and flowers.

Greenhouses infrastructure and equipment varies within the country: Approximately 50% of greenhouses are high and low tunnels. Another 50% of the greenhouses covered area is equipped with heating systems and an estimated 10% concerns hydroponic cultivation systems. An estimation of 10% refers to the greenhouses covered area which is equipped with cooling systems

Greenhouse cultivation has not transformed drastically in the recent two decades in Cyprus into a more advanced and productive sector. However, there are still specific difficulties that need to be tackled for the sector to become more modern, productive and efficient. These difficulties may be summarized in the following (not exclusive) list:

- Increased raw material prices (fertilizers, pesticides, etc.).
- Water shortage.
- Loss of good agricultural land in other activities (residential, tourist development).
- Increased energy price (oil, electricity).
- Increased production pressure from pests and crop diseases.
- Increased Purchase Needs in Product Quality (ie Need to Use New Technology).
- Increased Market Competition.
- Increased Market and EU requirements for environmental protection (reduction of emissions, pollutants, etc.)
- Requirement for Improved Working Conditions (Young Farmers)
- Difficulty finding initial capital for new businesses due to the financial crisis.
- Significant reduction of yields, product quality and unbalanced food chain market's supply.

Therefore, it should be noted that there is an important need for reduction of operational cost mainly derived from the tremendous increase of fossil fuel prices. In addition efforts and research should be focused on minimizing the use of energy and water consumption in greenhouse cultivation, through the introduction of new methods and innovative automated technologies.

1.1.3 France

In France, the area dedicated to greenhouses production represents about 10.000 ha, 2/3 of which is devoted to vegetable crops and 1/3 to ornamental products.

According to the database of the French Ministry of Agriculture and Food "AGRESTE", the number of Greenhouses and high shelters for vegetables or flowers in France is 13.842 whereas the number of Greenhouses for permanent crops is 1.163 which represents a total number of 15.005 (2010).

Provence-Alpes-Côte d'Azur "PACA" region (now called "Région Sud") is one of the most important French agriculture regions, it has the highest number of greenhouses in France. The region ranks as the first region for the production of fruits, fresh vegetables and flowers. In PACA there is 1.700 farms who produce vegetables under shelter on 2.166 ha (CTIFL 2010)

The map below shows the distribution of agricultural production based on greenhouses in PACA region:

Figure 3 - Greenhouses production in PACA region (Provence Alpes côted'azur) (DRAAF PACA 2010)

In PACA region, while the greenhouse vegetable area grew by 7% between 1988 and 2000, it lost 13% over the last ten years.

The number of farmers having greenhouses, has decreased by -20% in the south of France between 2011 and 2016 (most shelters were built before the 2000s for market gardening and before 1990 for horticulture)

- Electricity consumption in agriculture sector in France is mainly absorbed by livestock buildings while natural gas consumed on farms is mainly used to heat greenhouses.
- According to the "Study of geothermal potential in the Provence-Alpes-Côte d'Azur region" made by the BRGM in 2013, the PACA region has 1.211.852.521 MWH / year of available energy, of which 66,724,446 MWh / year represents the potential of mobilizable energy.
- French vegetable producers want to give a boost to their sector, and to this end, they are betting on the development and modernization of their greenhouses, with investments totaling over 300 million Euro in the period from 2017 to 2020 on equipment and moderation.

While greenhouse agriculture is reducing some **innovative technologies have been introduced in recent years in France:**

- *Energy Storage Greenhouse*: possible energy savings range from 12 to 40 % through testing a doublethermal screen; a greenhouse with inflatable double walls.
- *Photovoltaic greenhouses in Bouches du Rhone*: Renewable electricity generation/ Economic opportunity through the sale of electricity, but agriculture practices need to be adapted compare to traditional greenhouses.
- *GROOF Greenhouses to Reduce CO2 on Roofs*: an innovative cross-sectoral approach to reduce CO2 emissions in the construction and agricultural sectors by combining energy sharing and local food production
- *Geothermal energy in the horticultural sector*: Savings in water, energy, increased production compared to the conventional greenhouses.

1.1.4 Greece

Horticulture in Greece seems to be one of the more promising sectors of economic activity and employment of the country. It contributes about 4.1% of gross domestic product. Greenhouses cover about 150.000 ha (Eurostat, 2014) in the Mediterranean region while the greenhouse covered area in Greece is estimated to about 6000 ha. Presently, according to ELSTAT data, greenhouse vegetable production accounts for around 9% of the total vegetable cultivated fields in Greece. The greenhouse covered area increased about 13% from 2012 to 2017. The region that is now emerging in a rising production area is that of Western Greece, where greenhouse areas almost tripled in the three-year period 2012-2015). The crisis seems to be launching new data and new production expertise in greenhouses.

The greenhouses are scattered throughout the country, of which the majority, about 40% are located in the Crete Island, mostly in lerapetra and Messara plain and another 25% is located in Peloponnese area. The recently intense financial crisis of Greece, however, has had a considerable impact to the greenhouse section growth.

Today's growers are confronted with the challenges of lasting changes in new entrepreneurship and the need to keep up with developments in technology, seeking solutions that match the needs of the Greek producer.

The estimated current situation of the greenhouse sector, however, is defined by family operated companies or small-scale growers that invest in low-cost and low level constructions. In this sense, the greenhouses are low tech and simple frame covered with plastic, suffering of high transportation costs, and lack of organization and specialized training skills. Totally, 8340 greenhouse units are spread throughout the Greece.

Many small farmers do not have the desire or the resources to invest. Still there is a large number of growers who are looking to innovate and improve. These are often the larger greenhouse companies, whose products are (partly) sold abroad.

The majority of greenhouses in Greece are generally characterized by their low technological level of the equipment used. Restrictions in the technology applied result in lower than expected agricultural practices, which in turn result in lower yields. Hitech greenhouses for instance (even in the lowest possible yield) outperform the yields of the other types of greenhouses. The fact is that due to the mild winter climate, the greenhouses in Crete and in Peloponnese area can produce during the period from mid-August to mid-May with the implementation of a few technologies: in these regions, the mean lower temperature observed during the winter is above 5°C, thus a greenhouse equipped with a ventilation and irrigation system will be capable to produce with low investment cost.

However, the greenhouses in these regions are not designed and equipped to produce during the summer period, while their production during the rest of the year always depends on the outside climate conditions. In addition to the unstable quantity of production, the quality of the production is also unstable.

Furthermore, due to the uncontrolled environment inside the greenhouse, the humidity levels (and in general the climate conditions) observed in these greenhouses are favourable for the development of diseases and insects, something that makes the need for pesticides use necessary.

Based on the climograph of Athens and Thessaloniki (Figure 4), it can be seen that for a year round cultivation, heating during day and night time is needed in Thessaloniki, from mid-November to February, since the average monthly air temperature in Thessaloniki during these months is lower than 8°C. In addition, it appears that natural ventilation is insufficient to meet the climate needs for a large period of the year but cooling is needed from May to September, something that is also applicable for Athens. Winter cultivation in unheated greenhouses is possible only in Athens compared to Thessaloniki.

Project co-financed by the European Regional Development Fund

Figure 4. Mean daily solar radiation and air temperature during the year for the region of Athens and Thessaloniki. The different climate regions presented in each graph indicate (a) air temperature <8°C and solar radiation < 8 MJ m⁻² day⁻¹: daytime and nighttime heating and lightening; (b) 8°C<air temperature <18°C: nighttime heating and daytime ventilation; (c) 18°C<air temperature, and solar radiation > 20 MJ m⁻² day⁻¹ cooling and shading. The dashed line indicates the average solar radiation and air temperature for the different months of the year.

Thus, it is absolutely necessary to follow the trend towards the application of a more advanced technology for better climate control and a lesser use of water and agrochemicals. Integrated management of pest and diseases, soilless cultivations, drip irrigation and fertigation systems are easily spread in most of the greenhouses of the Mediterranean zone. Cultivation of vegetables, flowers and other crops in greenhouses can easily, also, be performed by utilisation of geothermal energy as a heat source. Additionally, cogeneration or combined heat and power can be seen as an important technology to reduce carbon emissions resulting from energy production in Mediterranean greenhouses.

1.1.5 Italy

Interreg

Mediterranean

MED Greenhouses

The diffusion of greenhouses in Italy in the agricultural sector has registered a constant increase that coincided with an increase in horticultural productions, which have consequently become the engine of development of the greenhouses market themselves. Cultivation in a protected environment represents, in terms of surface, a small fraction of the total area used, but for some sectors (horticulture, floriculture, nursery) is particularly important. The intended area to protected horticultural crops hovers in Italy around 37,000 ha (Istat, 2013) with a total surface of about 10% of the totally invested in vegetables (Inea, 2010). The total surfaces involved in horticultural crops is about 30000 hectares instead of about 7000 for floriculture activities.

Nowadays the number of farmers involved in greenhouses industries are 25829 (ISTAT, 2013). In the horticultural greenhouse sector are involved 14400 farmers, with about the 42% of farmers involved in tomato cultivation. In the floriculture sector are involved 9699 farmers.

Greenhouse production is usually based on small-size farms (less than 1 ha) which are owned and operated by families. Protected crops are scattered all over the country, but the most representative areas are located, moving from the north to the south, in Campania, Lazio, Lombardia, Veneto, Liguria, Toscana, Sicilia and Sardegna. Greenhouses are particularly widespread along the sea coast which has a mild winter climate. The main vegetables grown in the greenhouse are tomato, pepper, zucchini, lettuce, strawberry. While in the floriculture the species grown in the greenhouse belong mainly to the (pink, pink, gladiolus, chrysanthemum, aralia asparagus spp) and green and flowering plants from within and flowering fronds.

Different types of greenhouses and protection structures can be found, ranging from wooden structures covered with plastic film to glasshouses fully equipped for automatic climatic control and internal plant transportation. Most greenhouses are covered with plastic films (PE, EVA) with an emergency heating system or lacking heating altogether. Strawberry, vegetables and some flower crops (carnation) are usually cultivated in very simple greenhouses, whereas other flower crops and pot plants are grown in more sophisticated glasshouses. The favorable climatic conditions in the southern region make it possible to use simple and cheap structures also for winter cropping of warm-season species such as solanaceae and cucurbitaceae: these structures includes greenhouses made with wood and plastic films and walk-in or low plastic tunnels. Early vegetables are produced also in small row-covers, which are set-up at the beginning of growing season, and maintained for 1–2 months. In Italy protected cultivation of tree fruits is also used for earlier ripening of table grape, peach, nectarine, and plum, and for delayed harvesting of table grapes.

Greenhouses in Italy generally consist of a metal construction with plastic covering. Loose tunnels are often used for fruit and vegetable production. Multi-tunnel greenhouses are used for fruit and vegetable cultivation but also for the production of leafy vegetables that are packed on location, ready-to-use for the consumer. Greenhouses with a higher level of technology are mostly used for the cultivation of flowers and herbs and to grow cuttings. 20% of the greenhouses, mainly in the flower industry, are equipped with a heating system and 10% of greenhouse cultivation is done on substrate, particularly in tomato cultivation.

The economic dimension of the sector has a decisive impact, with a gross salable production of horticultural products exceeding 3 billion euros and a turnover of at least 2 billion in terms of components, systems and materials.

Requirements and investment

Many small farmers do not have the desire or the resources to invest. Still there is a large number of growers who are looking to innovate and improve. These are often the larger greenhouse companies, whose products are (partly) sold abroad.

In northern Italy there are opportunities in flower cultivation for technology and automation. In the south, Lazio and Sicily, substrate cultivation is expanding. In Campania the production of leafy vegetables is quickly developing, investments are being made in mechanization.

To act as a watershed between "active", or technologically advanced, greenhouses and "passive" greenhouses, which are more technologically obsolete, it is above all the question Energy. Hi-tech greenhouses require a very high energy input.

1.1.6 Spain

Production capacity of Greenhouses and their contribution in Agriculture:

The horticultural sector in the greenhouse occupies a position of unquestionable leadership in Europe. This is demonstrated by its figures: 43,400 hectares of land dedicated to the cultivation of the main fruit and vegetable products (pepper, tomato, zucchini, eggplant, cucumber, melon, watermelon and green beans), more than 5,000 million euros in turnover and 5 million tons of products that supply more than 60% of national consumption and more than 30% of European markets, reaching levels higher than 80% during the winter months.

Presentation of Greenhouse manufacturers:

Around 600 companies produce and / or commercialize greenhouses in Spain, with more than half of them located in Andalucía (250) and Murcia (67).

Predictions for the next 10 years (or more) – Demand & Supply:

According to the consulting company "Research And Markets.com's" report, the commercial greenhouse market was valued at US\$19.982 billion in 2017 and is projected to expand at a CAGR of 7.14% over the forecast period to reach US\$30.224 billion by 2023.

The global commercial greenhouse demand is expected to witness boost in sales over the forecast period owing to various factors such as reducing arable land for cultivation of crops, and rising trend of roof top and vertical farming.

Higher adoption of greenhouses commercially is vastly aided by the benefits of application of greenhouses for cultivation. The demand for commercial implementation of greenhouses is highly augmented by the decrease in arable land per capita, unfavorable conditions in the traditional agriculture, and higher output in comparison to the traditional techniques.

1.2 Gaps

1.2.1 Albania

Table 1 – Identified gaps in innovative technologies in Region the Berat (Albania)

Ν	Lack of Technology	Short Description - justification
---	--------------------	-----------------------------------

Agricultural Research Institute

1	Lack of heating systems	The lack of heating systems has been mostly
		due to the high costs connected to the
		construction and management of this kind of
		greenhouses.
2	Lack of climate control	The lack of sensors that can regulate the
	system	moisture, the vapor pressure inside
		greenhouses and the temperature level
		during winter and during summer seriously
		affect the crop life cycle and enhance the
		parasites infestations and diseases.
3	Lack of infrastructures	The lack of infrastructures negatively affects
		the entire greenhouses vegetable market
		because especially at local level the rural
		areas are poor connected with market places.
4	Lack of renewable	The heated greenhouses on the Albanian
	technologies used to fuel	territory are fueled with energy produced by
	greenhouses	fossil fuels that makes them unsustainable
		from the environmental and economic point
		of view considering the energy prices in the
		country.

1.2.2 Cyprus

Table 2 - Identified gaps in innovative technologies in Cyprus

Ν	Lack of Technology	Short Description - justification
1	Developing new agricultural	Greenhouse agriculture is more resilient to
	practices and introducing	the impact of climate change but at the
	crops (with high market	same time climate change is bringing new
	value) adapted to	opportunities for growing new crops and
	greenhouses	require new management practices
2	Introducing new business	Small market, limited interest in the market
	models considering the	
	positive impact on the	
	environment and jobs	
3	Automations in greenhouse	Most of the greenhouses do not implement
	climate control	automations for the greenhouse climate and
		irrigation control. Application of such
		technologies could lead to higher efficiency
		of resources in greenhouses

1.2.3 France

Table 3 - Identified gaps in innovative technologies in PACA region (France)

Ν	Lack of Technology	Short Description - justification
1	Development of	France has among the most expensive
	mechanization and	workforce in Europe. To be competitive
	automation in greenhouses	more automatization must be introduced
	sector	
2	Optimizing climate, energy,	South of France has specific Mediterranean
	fertilizers, water	climate (Valorization of solar energy- no
	management and	need for the heated greenhouses in some
	phytosanitary treatment	cases but rather refreshing or regulating
		climate, need for shelter to protect corps
		from the sun)
3	Developing new agricultural	Greenhouse agriculture is more resilient to
	practices and introducing	the impact of climate change but at the
	crops (with high market	same time climate change is bringing new
	value) adapted to	opportunities for growing new crops and
	greenhouses	require new management practices
4	Introducing new business	Economic case studies are necessary to
	models considering also the	convince public authority to invest in this
	positive impact on the	sector, boost innovation and provide
	environment and jobs	incentives to farmers, research and
		technology providers

1.2.4 Greece

Table 4 - Identifiedgaps in innovative technologies in the Region of Thessaly(Greece)

Ν	Lack of Technology	Short Description - justification
1	Heating system	The greenhouses Greece located southern
		from Athens, in most of the cases do not
		have a heating systems. This leads to
		insufficient climate control. Thus, a heating
		systems for greenhouse air and crop heating
		is needed. This will lead to higher yield and
		quality and reductions of the needs for
		pesticide applications.

H

OO

2	Energy saving systems	Most of the greenhouses in Greece are not
		equipped by energy saving systems. A
		simple energy saving system is the use of
		double cover for greenhouse covering or the
		use of a thermal screen. Utilisation of the
		above techniques may lead to an energy
		saving in heated greenhouses of 40-50%.
3	Utilization of geothermal	Several regions in Greece have low enthalpy
	energy	geothermal fields that can be utilized for
		greenhouse heating. The hot water can be
		pumped from relatively low levels, used for
		greenhouses heating and return to the
		geothermal field.
4	Cooling system	To cultivate during summer in most of the
		regions in Greece, a cooling systems is
		needed. Evaporative cooling systems seem
		quite efficient for regions with low outside
		air relative humidity during summer.
5	Soilless cultivations	It is estimated that less than 10% of the
		cultivated greenhouses areas in Greece are
		done soilless. This leads to low water and
		fertilisers use efficiency and production.
		Application of substrate based soilless
		cultivations in closed loop systems could
		result in a high increase of the
		abovementioned indices.
6	Automations in greenhouse	Most of the greenhouses in Greece do not
	climate control	implement automations for the greenhouse
		climate and irrigation control. Application of
		such technologies could lead to higher
		efficiency of resources in greenhouses

1.2.5 Italy

Table 5 - Identifiedgaps in innovative technologies in Molise Region (Italy)

Ν	Lack of Technology	Short Description - justification
1	No lack	Italy is a great producer of new technologies,
		in Italy there are also all the big companies

	involved in the sector (farmers are easily
	contacted with companies)

1.2.6 Spain

Table 6 - Identifiedgaps in innovative technologies in the Region of Murcia (Spain)

Ν	Lack of Technology	Short Description - justification
1	Need to improve wastewater	The need of innovative projects in order to
	purification technology	save in water, energy will increase
		production compared to the conventional
		greenhouses
2	Lack of knowledge transfer.	Encouraging scientists to continue their work
		beyond their basic research projects and
		even to participate in the application of its
		results , ensuring generational change in the
		sector.

1.3 Obstacles

1.3.1 Albania

Table 7 – Identified obstacles for the promotion of innovative technologies in the Region of Berat (Albania)

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	Lack of knowledge transfer	In the country there is a poor transfer of technologies and knowledge among farmers, despite in the agricultural policies adopted in recent years a big emphasis has been given to the creation of advisory and training
		systems, actually these initiatives have never
		been undertaken because of lack of funds.
2	Lack of education	As it can be easily deduced from the Instat web site the rural population is not well educated. The business activities are run relying on traditional and empirical knowledge. For this reason for example the parasites infestations inside greenhouses are tackled with a massive pesticides usage that

SEMIDE

Agricultural Research Institute

Г

		lead to the production of poor quality
		products.
3	High investments costs	Normally low costs greenhouses are
		preferred to cutting-edge technologies
		greenhouses because of the high start-up
		costs that make the low cost non-heated
		greenhouses a viable alternative.
4	Massive presence of	The presence of small and medium
	smallholders	enterprises make the investments needed to
		build technologically advances greenhouses
		unaffordable for farmers.
5	Poor government incentives	During the last decades the first sector
	to agriculture	output has grown steadily however the
		governmental incentives to agriculture were
		scarce or inexistent.

1.3.2 Cyprus

Table 8 - Identified obstacles for the promotion of innovative technologies in Cyprus

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	Difficulty finding initial	Due to the financial crisis
	capital for new businesses	
2	Lack of knowledge transfer –	More intensive exchanges between
	researchers - farmers	researchers and farmers are required
		focusing on economic and agronomic
		performances
3	Limited cooperation	The quadruple helix cooperation method
	between stakeholders	suggested through the S3CY should be
		encouraged more.
4	High cost of investment and	The cost for installing high tech heating
	high running costs	systems especially in small greenhouses is
		high.
5	Water scarcity	The increase of greenhouse production is
		increasing the need of water, which is scarce
		in the production areas.
6	Energy consumption	The cost of energy in greenhouses is high. It
		could be improved by a more extensive use
		of renewable energy resources such as solar
		energy.

1.3.3 France

Identified Obstacles Ν Short Description of the obstacle justification 1 High level of investment Payback period is perceived as very long by required for greenhouse farmers and therefore very risky 2 Lack of knowledge transfer -More intensive exchanges between researchers - farmers researchers and farmers are required focusing on economic and agronomic performances 3 Political decision to promote The use of geothermal resources to warm the use of geothermal and cool greenhouses is an opportunity and requires improvement and political energy involvement in the PACA region and in France in general

Table 9 – Identified obstacles for the promotion of innovative technologies in PACA region (France)

1.3.4 Greece

Table 10 - Identified obstacles for the promotion of innovative technologies in Greece

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	High cost of investment and	The cost for the installation of a high tech
	high running costs	heating systems especially in small
		greenhouses is high. In addition, during the
		recent years, the cost of the energy source
		for the heating system is very high and
		biomass seems to be the only sustainable
		solution for greenhouses heating
2	High investment cos, lack of	The growers are not aware of the
	knowledge transfer	advantages of an energy saving systems and
		taking into account the high cost for
		investment do not install energy saving
		systems in their greenhouses.
3	High investment cost	The cost for the drillings is high for small
		greenhouses
4	Investment cost, need for	The investment cost for the installation of
	good quality water	the systems is one of the barriers. An

		important also obstacle is the need for high quantities of water and in the case of fog or mist systems a reverse osmosis system needs to be used to produce high quality water.
5	Lack of knowledge transfer	The majority of the growers cannot operate
	and performance indices	a soilless cultivation system due to lack of
		knowledge on how to operate it and control
		it. Greenhouse production is usually based
		on small-size farms (less than 0.5 ha), often
		family-run, with a lack of specialized
		personnel (staff only laborers). In addition,
		the growers have not information on the
		performance that their greenhouse will have
		to obtain, and there are no strict
		environmental restrictions in relation to the
		footprint that a greenhouse has.
6	Lack of knowledge transfer,	The cost of the system for a small
	high cost of investment of	greenhouse is high and the growers are not
	small greenhouses	aware of the advantages that a greenhouse
		climate and irrigation control system can
		offer. Greenhouse production is usually
		based on small-size farms (less than 0.5 ha),
		often family-run, with a lack of specialized
		personnel.

1.3.5 Italy

Table 11 – Identified obstacles for the promotion of innovative technologies in Molise Region (Italy)

Ν	Identified Obstacles	Short Description of the obstacle - justification
1	price of new technologies	Greenhouse production is usually based on small-size farms (less than 1 ha)
2	Little need to implement new technologies	The favorable climatic conditions in the southern region make it possible to use simple and cheap structures also for winter cropping of warm-season species such as solanaceae and cucurbitaceae

CEBAS-CSIC

Agricultural Research Institute

3	some technologies have a	Greenhouse production is usually based on
	high degree of complexity	small-size farms (less than 1 ha), often
	for management	family-run, with a lack of specialized
		personnel (staff only laborers)
4	Lack of knowledge transfer,	Greenhouse production is usually based on
	information etc.	small-size farms (less than 1 ha)

1.3.6 Spain

Table 12 - Identified obstacles for the promotion of innovative technologies in the Region of Murcia

	(Spain)										
Ν	Identified Obstacles	Short Description of the obstacle -									
		justification									
1	Little public funding	Public funding for innovative technologies									
		applied to greenhouses are not enough to									
		incentivize farmers to invest in technology									
2	Water scarcity	Most greenhouses in Spain are located in areas									
		of water scarcity due to the fact that water and									
		nutrients are more easily controlled in a									
		protected system. However, the increase of									
		greenhouse production is increasing the need									
		of water, which is scarce in the production									
		areas.									
3	Energy consumption	The cost of energy in greenhouses is high. It									
		could be improved by a more extensive use of									
		renewable energy resources such as solar									
		energy.									

2. Stakeholders and key players of the greenhouse sector

Based on the findings of the Del. 3.1.2 "Development of Stakeholders & Beneficiaries database", the partners present important gaps that have been recorded at national / regional level regarding stakeholders as well as key players of the sector. The section also presents the missing type of key actors that could strengthen the greenhouse sector at regional level.

2.1 Overview of the state of play

2.1.1 Albania

MED Greenhouses

iterrec

Mediterranean

The stakeholders' analysis has shown a wide and composite number of subjects, entities and potential partners, private and public that can play an important role in the implementation of the MED greenhouse project.

		Pu	blic	Priv	vate	0	ther						ns	
Тур e	Total No	No	% (of total)	No	% (of total)	No	% (of total)	SMEs	Large Companies	Clusters/ Associations	Manufactures	Farmers	Research centres/institutio	Service providers
Enterprises	14	0	0	13	92,86	1	7,14	9	4			22		1
Academia	8	5	62,5	3	37,5	0	0						5	3
Government	16	16	100	0	0	0	0							16
Civil Society	19	1	5,26	9	47,37	9	47,37			6			1	3
Total	57	22	38,6	25	43,85	10	17,54	9	4	6		22	6	23

Table 13 - Identified key stakeholders in the Region of Berat (Albania)

According with the table above considering the type of stakeholders / beneficiaries there is a total of 57 stakeholders, out of which 14 (or 25%) come from enterprises

EBAS-CSIC

Agricultural Research Institute

HELLENIC REPUBLIC

(farmers are not included); 16 (or 28%) are governmental institutions, 8 (or 14%) are part of the academic world and research institutions and 19 (or 33%) are actors coming from the civil society and nonprofit organization, as shown in Diagram 1. Moreover, around 44% of all beneficiaries are private institution, whereas 39% are public institutions and 17% are nonprofit organizations.

Figure 5 - Type of 4-helix actors (key identified actors)

2.1.2 Cyprus

The greenhouse sector in Cyprus includes several stakeholders representing the quadruple helix. The current research shows that in the private sector, civil society and academia are included stakeholders or beneficiaries that are directly engaged and occupied in the sector of greenhouse; therefore they would have the opportunity to benefit the most out of the project's activities and outputs.

Another important point that derives from the outcomes of the research is the centralization of power in regards to the policy making in the greenhouse sector. The most important stakeholders in reference to decision making for policy development are the governmental institutions. Academia and the civil society has also an important role, however the private sector is not so powerful when it comes to impacting policy formulation.

The table below gives an overview of the stakeholders identified in Del. 3.1.2.

		Pu	blic	Priv	Private		Other						ns	
Туре	Tot al No	No	% (of total)	No	% (of total)	N	% (of total)	SMEs	Large Companies	Clusters/ Associations	Manufactures	Farmers	Research centres/institutio	Service providers
Enterprises	10			10	10 0			10			2	7		1
Academia	5	2	40	1	20	2	40						5	
Governme	4	4	10											
nt			0											
Civil	5					5	100			5				
Society														
Total	24	6	25	11	46	7	29	10		5	2	7	5	1

Table 14 – Identified key stakeholders in Cyprus

2.1.3 France

40 French key stakeholders have expressed an interest to know more about Med Greenhouses project and to be part of the project cluster.SEMIDE made a state of play of regional and national stakeholders that could be included to the project data base. The most important categories of stakeholders identified in the region are in the table below.

Table 15 – Identified key stakeholders in PACA Region (France)

Category	Key actors	Key actors Main Interest						
category			/ deployment					
Public	Territorial authorities	Maintaining green	Availability of lands					
	(municipalities, province,	areas,	dedicated to agriculture					
	region)	Quality of life of	Incentives					
		citizens						
		Job creation						
Public	Agricultural chambers	Improving the	Promotion of greenhouse					
		economic, social	innovation					
		and environmental						

		performance of							
		farmers							
Public	CTIFL Technical Center	Improve the	Technical support of						
	serving the Fruit and	expertise of the	professional actors in						
	Vegetable Sector	various trades in	strategic development.						
		the sector and							
		increase the							
		competitiveness of							
		companies							
Public	Ministry of agriculture	Management of	Support for Local food						
		agriculture sector	systems initiatives						
		Ensure economic							
		sustainability of the							
		sector							
Research	INRA- National Institute of	Integrate research	Research development						
	Agronomic Research	knowledge in the							
		development of							
		innovative							
		agronomic							
		strategies							
Education	Horticultural Universities	Research	Trainings on innovation in						
		Training	greenhouses sector						
Education	Horticultural high school	Training	Trainings on innovation in						
		Local production	greenhouses sector						
Private	Farmers	New technologies	Application of new						
		New innovations	technologies and						
		Financial channels	innovation						
Private	Greenhouse technology	Product	Demonstration of new						
	providers	development and	technologies						
		technical							
		acclimatization							
private	Insurance companies	Extending	Knowledge provision						
		greenhouse market							
		segment							
		Less incidents							
		linked to							
		greenhouses (e.g.							
		agricultural losses)							

Association	Terre de lien	Various	Provision	of
	Farmers solidarity		funds/lands/know how f	or
	Agri bio PACA		farmers	

The table and figures below give an overview of the stakeholders identified in Del. 3.1.2.

		Pub	Public I		Private (Other						S	
Туре	Total No	No	% (of total)	N o	% (of total)	Zo	% (of total)	SMEs	Large Companies	Clusters/ Associations	ารายครามการครามการที่	Farmers	Research centres/institution	Service providers
Enterprises	10	1	10	9	90			1	8	1				
Academia	10	9	90	1	10	0	0	0	0	0	0		10	
Government	10	10	100											
Civil Society	10	2	20	8	80					10				
Total	40	22		18				1	8	11			10	

Figure 6 - Stakeholders/beneficiaries of Greenhouse industry

MED Greenhouses

Interree

Figure 7 - Level of Impact of Stakeholders/beneficiaries of Greenhouse industry

2.1.4 Greece

Several high tech greenhouses have been built during the last decade for vegetable (tomato, cucumber and pepper, e.g. Agritex SA, Drama Greenhouses, Wonderplant, Thrace Greenhouses and other) and seedlings (e.g. Agris SA, Plantas SA and other) production. For the development of the above mentioned greenhouse areas, several companies have been established and operate around the country, dealing with the design, building and equipment of greenhouses, as well as with their operation and control, up to accessories for greenhouses, greenhouse coverings for mulching, and automations for greenhouses.

The greenhouse sector includes several suppliers of products or services, some of which are listed below:

-Technical suppliers. The government's plan for financial support of large investments created several years ago resulted in the establishment of high-tech greenhouses and equipment originating either from Greece or from North Europe and especially from France and The Netherlands. After that, several companies invested in agents and dealers to supply sales and after sales service. In the meantime most of the Greek competitors developed; the low tech greenhouses have also improved.

- Input suppliers. Basic inputs like chemicals, fertilisers and crop protection, different types of substrates and other are supplied by Greek companies. Products, like rockwool and peat are imported. Biological crop protection agents and bumble bees, which used to be supplied by foreign companies, can these days be also provided by a local companies.

- Suppliers of nursery materials: Some very important and large seedlings supplying companies have been developed during the recent years and the need for imported seedlings material is eliminated.

- Suppliers of knowledge; research, education and extension. Several research units have been developed, established either at Universities and Research Centres or in private companies. Experiments are executed with several vegetable and flower crops and optimal crop growth conditions are investigated. Education and training is also supported mainly by University Departments dedicated to agriculture vegetable crop production.

An analysis of the distribution of the different type of stakeholders/beneficiaries presented in the report 3.1.2 developed by the University of Thessaly is shown in Table 16.

		P	ublic	Pri	ivate	C	ther						v	
Type	Total No	No	% (of total)	No	% (of total)	No	% (of total) SMEs		Large Companies	Clusters/ Associations	Manufactures	Farmers	Research	Service providers
Enterpr ises	23	0	0	23	100	0	0	16	5	2	10	9	0	7
Acade mia	10	10	100	0	0%	0	0	0	0	0	0	0	10	10
Governm ent	10	7	70	3	30	0	0	3	0	0	0	0	0	3
Civil Societv	10	0	0	0	0%	10	100	0	0	0	0	0	0	10
Total	53		17		26		10		19	5	2	10	9	10

Table 16 – Identified key stakeholders in PACA region (France)

The greenhouse sector in Greece incorporates several stakeholders from the quadratic helix. From the research carried out to sample and list the stakeholders presented in

CEBAS-CSIC

Agricultural Research Institute

this report, it is considered that the Enterprises and Academia have stakeholders that are directly devoted to the greenhouse sector and thus the project may have high impact on them.

The analysis of stakeholders presented a great variability and a different lacks among the actors. It can be seen that about 40% of the presented stakeholders belong to the enterprises sector while the Academia, Governmental and NGOs equally share the rest 57%. Both SMEs and Large Companies rarely have relations with other actors in the supply chain, such as universities, civil society, etc. Their reference is the buyer; in most cases, they are not involved in clusters.

Innovative Start up purposes is the production of innovative services with high technological value, related to energy systems for air conditioning with renewable energy sources, geothermal systems with vertical (closed circuit) or ground water (open circuit) probes, more generally in innovative solutions.

The Academic actors of the greenhouse industry presented are mainly University Laboratories and Research Centre Departments or Divisions from all over Greece. The contribution of academic actors to novelty has only lately become one of their main missions. At a national level, both universities and research centers are strongly committed to developing innovative greenhouse technologies. However, they are not connected in clusters and only recently participate in SME driven research and development projects.

Local authorities, Regions, Municipalities, Ministries, Chambers etc. are involved in projects with the aim to develop and innovate the agricultural and agro-industrial system. However, the performance of these projects is not always high. There is no strong territorial collaboration in projects involving several municipalities, regions, chambers of commerce, local action groups and regional or national research centers. In addition, there is a lack of projects aiming to promote the dissemination and exchange of know-how (transfer knowledge), develop new systems (research activities), innovative methodologies and technologies for monitoring, control and increase the efficiency of the greenhouses system (rational use of resources: fertilizers, energy, water).

There is a high need for consulting in innovative greenhouse systems development and operation. In most of the cases, when the high cost of investment is not the main barrier, lack of knowledge on the management of innovative greenhouse systems is a significant obstacle.

The Governmental bodies presented belong to different sectors, and may be public or private. Finally, as actors from civil society are reported several NGOs that are related to Agriculture, rural development and the environment.

It was also found that not many Governmental organisations/stakeholders are solely devoted to the greenhouse sector while in addition, there are no Civil Society

organisations directly involved or connected with the greenhouse sector in Greece. Involving the citizens in the development of an innovation can lead to more successful, user oriented innovations. The end users will be more likely to accept and use the innovation. It will also have a greater social benefit at a lower cost and improve empowerment of the citizens, who will increasingly experience trust towards the innovators and become an active part of the innovation system.

2.1.5 Italy

The analysis of the stakeholders and key players of the sector has been performed on the actors of 4-helix (Enterprises, Academia, Government, Civil Society) of the Greenhouse Industry at national level. The analysis of stakeholders showed a great variability and a different gaps and lack among the actors. Using the Quadruple Helix and involving the citizens in the development of an innovation can lead to more successful, user oriented innovations. The end users will be more likely to accept and use the innovation. It will also have a greater social benefit at a lower cost and improve empowerment of the citizens, who will increasingly experience trust towards the innovators and become an active part of the innovation system.

The SMEs usually offers products and services related to the greenhouses sectors, starting from the design and installation of greenhouses, the equipment and systems for the automatic control of greenhouses and related air conditioning systems, up to accessories for greenhouses, greenhouse coverings for mulching, automatisms for greenhouses.

Large companies are involved in the production of greenhouses for horticultural and floricultural productions, warehouse greenhouses, farm greenhouses, photovoltaic greenhouses, garden center greenhouses and greenhouses for any other use and coverage. Are also involved in the production of a wide range of control units for the greenhouses management, such as irrigation fertigation and climate control.

Both SMEs and Large Company rarely have relations with other actors in the supply chain, such as universities, civil society, etc. Their reference is the buyer; in most cases, they are not involved in cluster.

Innovative Start-up purposes is the production of innovative services with high technological value, related to energy systems for air conditioning with renewable energy sources, geothermal systems with vertical (closed circuit) or ground water (open circuit) probes, more generally in innovative solutions.

Universities and Research Institutes contribution to innovation has only recently become one of the main missions of the University sphere, creation of knowledge has always been a fundamental goal of the Higher Education Institutions (HEIs).

At a national level, both universities and research centers are strongly committed to developing innovative greenhouse technologies. They are often present in clusters and participate in projects with national and international partners.

Regions, Municipalities, Ministries, Chambers etc. are involved in projects with the aim to develop and innovate the agricultural and agro-industrial system. Actors are involved at international level, national level and regional level.

Usually there is strong territorial collaboration in projects involving several municipalities, regions, chambers of commerce, local action groups and regional or national research centers. The projects aim is to promotes the dissemination and exchange of know-how(transfer knowledge), develop new systems (research activities), innovative methodologies and technologies for monitoring, control and increase the efficiency of the greenhouses system (rational use of resources: fertilizers, energy, water).

Initiatives Civil Society: NGOs, Associations, Clusters, fosters the aggregation of companies, universities and research centers that collaborate to increase and improve technological development and innovations in the agri-food sector.

2.1.6 Spain

Number of Greenhouses recorded:

Spain, with 70,000 hectares is the second country in the world, after China, in terms of agricultural area dedicated to horticultural production in permanent greenhouse, either with plastic or glass insulation, according to the Rabobank Research Department (Ref.- The research office of Rabobank, map of the wintering horticulture in the world). Of these 70,000 hectares accounted for by the whole of Spain, just over 40,000, that is, more than half of the national total, are located in the region of Andalucía (Source.- Regional Ministry of Agriculture in Andalucía).

Number of Farmers involved in Greenhouse industry:

The contribution to the Spanish economy of Greenhouse industry, including service industry is 40%.

Number of companies involved with Greenhouse industry:

The greenhouse industry in Spain is linked to the vegetable producers and commercial companies of fresh products, of which 25% of the cases are whole sales distributors, 50% are cooperatives and 25% are warehouses- non producers (25%).

2.2 Gaps

2.2.1 Albania

Table 17 – Identified gaps regarding stakeholders and key players of the greenhouse sector in the Region of Berat (Albania)

Ν	Missing Actors / key	Short Description of the type of actor
	players of the greenhouse	required - justification
	sector	

1	Training centers	Most Albanian farmers need tailored training
		schemes on good agricultural
		practices/technologies that does not allow
		them to expand their businesses.
2	Clusters/associations	There are few clusters or association of
		farmers strictly connected to the greenhouse
		market that remains sharply fragmented. The
		creation of a greenhouse producer's cluster
		can help the overall sector selling products in
		new markets.
3	Large companies	Smallholders constitute the greatest part of
		the greenhouse market. From the
		stakeholders analysis appears clear that there
		are solely few large firms that can invest in
		new technologies and infrastructures.
4	Geothermal energy	In the country there are many untapped
	producers	geothermal sources, however from the
		stakeholder analysis it is clear that there are
		no companies directly involved in this market
		that can drive a change in the sustainable
		energy production.
5	Academic linkage with rural	In the country there are many agriculture
	society	faculties and research centers, however the
		academic world that can boost a change and
		improve farmers' educational level seems to
		be poorly or not connected at all with rural
		society.
6	Pesticides usage advisory	There are no authorities that train farmers in
	system	the correct pesticides usage.

2.2.2 Cyprus

Table 18 – Identified gaps regarding stakeholders and key players of the greenhouse sector in Cyprus

Ν	Missing Actors / key players of the greenhouse	Short Description of the type of actor required - justification
	sector	

SEMIDE

 \mathbf{O}

CEBAS-CSIC

Agricultural Research Institute

 \odot

HELLENIC REPUBLIC REGION OF THESSALY

1	Professional education	Innovative technologies should first be
	bodies	introduced to agriculture curricula in order
		to reach a wider range of farmers
2	Academic institutions	Academic institutions do not offer specific
	specializing in the	degrees on greenhouse science that could
	greenhouse sector	boost research and innovation production in
		the sector

2.2.3 France

Table 19 – Identified gaps regarding stakeholders and key players of the greenhouse sector in PACA region (France)

Ν	Missing Actors / key	Short Description of the type of actor
	players of the greenhouse	required - justification
	sector	
1	Funding bodies	SEMIDE tried to invite a funding body, that
		are responsible of special fund for
		greenhouses, to participate at one of the
		consultations organized, but as the fund was
		ended, the body did not accept the
		invitation to the consultation. The
		Implication of the funding body in the
		project is not guarantied
2	Farmers with small	Farmers with small exploitation greenhouses
	exploitation	do not have time to participate in projects
		such as Med-greenhouses
3	Professional education	Innovative technologies should first be
	bodies	introduced to agriculture curricula in order
		to reach a wider range of farmers

2.2.4 Greece

Table 20 – Identified gaps regarding stakeholders and key players of the greenhouse sector in Greece

Ν	Identified Obstacles	Short Description of the obstacle - justification
1	Lack of specialized personnel	There is no experienced personnel for the
		development of actors related to consulting

SEMIDE

Molise

		in greenhouse design, operation and
		management
2	Small greenhouse farms	Most of the greenhouse farms are smaller
		than 0.5 ha and thus the number of farmers
		is very large. Thus, a significant effort is
		needed to reach a large number of
		greenhouses farmers and increase the
		performance of the greenhouse farms
3	Lack of clusters	The growers do not collaborate and do not
		develop clusters with the SMEs and the
		relevant actors of knowledge development.
		Thus, it is very difficult to reach them and
		raise awareness on the advantages that high
		tech greenhouse technologies offer.

2.2.5 Italy

Table 21 – Identified gaps regarding stakeholders and key players of the greenhouse sector in Molise Region (Italy)

N	Missing Actors / key players of the greenhouse sector	Short Description of the type of actor required - justification
1	There are no missing actors	

2.2.6 Spain

Table 22 – Identified gaps regarding stakeholders and key players of the greenhouse sector in the Region of Murcia (Spain)

Ν	Missing Actors / key	Short Description of the type of actor
	players of the greenhouse	required - justification
	sector	
1	Industries of recycled or	One of the most negative effects of
	improved materials for	greenhouse industry is the fact that it
	greenhouses	produces great amounts of residues, in
		particular plastic. This could be avoided by a
		more dynamic sector of the plastic industry
		using biomaterials.
2	Organic producers	Organic products demand is increasing in
		developed countries. Organic production in
		greenhouses is still very little.

3	Pest control companies	Ecologic production in innovative
		greenhouses need the application of
		efficient pest control management.

2.3 Obstacles

2.3.1 Albania

Table 23 – Identified obstacles for the stakeholders and key players of the greenhouse sector in the Region of Berat (Albania)

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	High costs of infrastructures	Universities and research centers do not
	for educational purposes	receive enough funding to build and train
		farmers in greenhouses research centers.
2	Geothermal energy	In the national strategy for renewable energy
	producers' incentives	usage geothermal energy is identified as one
		of the potential renewable energies upon
		which rely to reach the 38% of renewable
		energies usage in 2020. However, in the plan
		there are no specific strategies to boost and
		develop this sector.
3	Pesticides control authority	The pesticides' usage is not regulated at all
		and the over usage can be detrimental for the
		quality of products produced, for the
		environment and for the farmers' health.
		Because of farmers' low education level and
		frequent crops' diseases inside greenhouses
		the pesticides usage is massive and
		uncontrolled.

2.3.2 Cyprus

Table 24 - Identified obstacles for the stakeholders and key players of the greenhouse sector in Cyprus

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	Limited greenhouse owners' involvement	Especially for small exploitations, greenhouse owners have no time for participation into non-productive activities

SEMIDE

2	Cost of greenhouse	Education bodies are lacking lands and funds
	infrastructure for education	to invest in educational greenhouse
	purposes	infrastructures
3	Lack of technology transfer	Technology is still developed in R&D
	offices and tools	institutions but very little of this technology is
		finally applied in the private sector

2.3.3 France

Table 25 – Identified obstacles for the stakeholders and key players of the greenhouse sector in PACA region (France)

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	No priority for greenhouses	There is no more any special fund allocated
	within National / regional	to greenhouses in the new French
	policies	agricultural fund. Therefore, funding
		agencies do not take part in
		activities/consultation related to this topic
2	Lack of farmer'sinvolvement	Especially for small exploitations, farmers
		have no time for participation into non-
		productive activities
3	Cost of greenhouse	Education bodies are lacking lands and
	infrastructure for education	funds to invest in educational greenhouse
	purposes	infrastructures

2.3.4 Greece

Table 26 – Identified obstacles for the stakeholders and key players of the greenhouse sector in the Region of Thessaly (Greece)

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	Lack of specialized personnel	There is no experienced personnel for the
		development of actors related to consulting
		in greenhouse design, operation and
		management
2	Small greenhouse farms	Most of the greenhouse farms are smaller
		than 0.5 ha and thus the number of farmers
		is very large. Thus, a significant effort is
		needed to reach a large number of

		greenhouses farmers and increase the
		performance of the greenhouse farms
3	Lack of clusters	The growers do not collaborate and do not
		develop clusters with the SMEs and the
		relevant actors of knowledge development.
		Thus, it is very difficult to reach them and
		raise awareness on the advantages that high
		tech greenhouse technologies offer.

2.3.5 Italy

Table 27 – Identified obstacles for the stakeholders and key players of the greenhouse sector in Molise Region (Italy)

Ν	Identified Obstacles	Short Description of the obstacle -	
		justification	
1	Very specific projects	some actors work exclusively on specific	
		projects financed by European, national and	
		regional programs	
2	Structural problem	small amounts of money to invest	

2.3.6 Spain

Table 28 – Identified obstacles for the stakeholders and key players of the greenhouse sector in the Region of Murcia (Spain)

Ν	Identified Obstacles	Short Description of the obstacle -
		justification
1	Lack of technology transfer	Technology is still developed in R&D
	offices and tools	institutions but very little of this technology
		is finally applied in the private sector
2	Lack of financing	Farmers are demanding more financing
	instruments promoted by	instruments such as low interest loans and
	the public administration	grants for greenhouse industry, and not only
		for crop production or for industrial sector

3. Financial Channels for eco-innovative technologies

Based on the findings of the Del. 3.1.3, this section presents important gaps that have been recorded at national / regional level regarding financial channels and tools for eco-innovative technologies.

3.1 Overview of the state of play

3.1.1 Albania

MED Greenhouses

Interreg

Mediterranean

As it has been pointed out by the United Nations in the environmental performance review, in the Albanian Statistical System there is a lack of accurate data that can thoroughly describe the current situation for what concerns the investments on ecoinnovative technologies. The National Statistic Institute should provide detailed information about the national expenditures to support the eco-innovations and the percentage of GDP bounded to the research and development of such technologies. In fact the provision of reliable and updated data can have positive repercussions on the national economy attracting foreign and local investors. The aforementioned investments can shift the current situation of general lack of expenditures in research and development in the private sector and boost the technological transfer among different actors that operate in the Albanian market. Small and medium enterprises, that constitute the backbone of the Albanian economy playing an important role in terms of employment, turnover and value added, are characterized by a general weakness in technological capacity to upgrade by absorbing existing advanced technologies. In fact the total amount of private investments in research and development is a scarce 0.4% of the GDP. Despite SMEs are driving the entire Albanian trading system in almost all fields such as agriculture, tourism and hydropower generation, the measures undertaken by the national government to attract businesses and simplify the access to funding, some bottlenecks remain. One of the issues that still have to be addressed is the technological and innovation transfer among firms that is still believed to be poor. Actually, although some SMEs introduced products, process, marketing or organizational innovations the general lack of data collected by the government does not provide a thorough insight of the actual situation leaving scarce or inexistent room for national programs specifically conceived to increase ecoefficient businesses and eco-innovative technologies. The National Business and Investment Strategy refers to the need to ensure environmental sustainability but does not provide any concrete measure. Moreover, business actors lack of expertise on environmental issues. Businesses remain largely unaware of environmental management systems and standards, and no incentivizing measures are in place, although, as of 2016, 111 ISO 14001 certificates were issued in the country (UN 2018). Despite the government poorly supports the eco-innovative businesses there are several organizations and foreign donors that are helping this sector to grow.

Mediterranean

However, according with UN, SMEs still lack access to finance and credit. It has been estimated that the total demand for SMEs loans is 1.4 billion euro, which represents 14 per cent of GDP and 34 per cent of the total loans in the financial system (UN 2018). Hence, the facilitation to credit access for new enterprises represents a good opportunity to achieve higher levels of specialization, innovation and competitiveness.

3.1.2 Cyprus

Despite significant improvement, Cyprus continues to perform poorly in ecoinnovation. In 2017, the country scored only 45 (EU average = 100), which is a slight improvement compared to the score of 43 in the 2015 assessment. This places the country just second last in the EU28 ranking of eco-innovative countries. Cyprus is heavily behind the EU28 average in eco-innovation inputs and activities, socioeconomic outputs and resource efficiency outcomes. It performs above theEU28 average in Eco-innovation outputs. Eco-innovation in Cyprus is predominantly produced by individual actors – research institutes or enterprises. As such, there are no distinct and mature eco-innovation sectors. Given the country's rich natural capital and inaccessibility to the energy grid of other countries, new developments in renewable energies could also promote eco-innovation activities. Eco-innovation in the field of energy is also driven by efforts to increase energy efficiency.

The agricultural and food industries are also contributing to eco-innovative solutions. Additionally, a number of EC funded research and innovation projects in the field of eco-innovation are currently under implementation. In terms of eco-innovation drivers, there is a wide range of EC supported funding opportunities for R&D that include ecoinnovations. With a total budget of approximately EUR 100 million, the programme RESTART acts as a significant support of research. The country also provides numerous tools to enhance access to information that is vital to increase innovation and growth. Regarding barriers, the R&D sector in the country is relatively new as it dates from the mid-90s.

As such, the system is still fragmented with a lack of coordination between the different stakeholders. The governance of research is lacking whereas the interface between research and business is inadequate. In addition, there is an inadequate evaluation culture to monitor research and increase its effectiveness.

3.1.3 France

Short presentation of the of the key findings of del. 3.1.3

France has favourable legislation supporting eco-innovation and entrepreneurship since 2003. In 2017, France ranked 13th among the EU Eco-innovation composite index, a bit below the European average of eco-innovation inputs (Europa, 2018).

- The French Gross domestic expenditure on R&D (GERD) is **2.25%** below the planned target of 3% (Eurostat, 2016), while the total number of R&D personnel was around **576K** in 2014. (Eurostat, 2018).
- For the period 2007-2013 in PACA region, 34% of FEDER funds were allocated to Eco innovation.
- The main Greenhouses investment aid fund is managed by France Agrimer at the national level and by the PACA region authority at the regional level. It is the "Future agricultural and agribusiness projects "P3A", but this fund was stopped in 2016.
- Some other schemes are available at the regional level for funding eco innovation and are applicable to agriculture and greenhouses sector as for example:
- **The Heat Fund "ADEME"**: The French government has introduced a "heat fund" (Fonds Chaleur) in order to support the production of heat through renewable energy plants. This fund is applicable for the construction of innovative greenhouses if it concerns energy efficiency.
- **European Agricultural Fund for Rural Development**: This fund is implemented in France through a national program that includes regional components.
- **European Territorial Cooperation:** Due to its geographical position, the Provence-Alpes-Côte-D'azur region is very involved in European territorial cooperation. For the period 2014-2020, it participates in 5 cooperation programs.
- Regional Innovation Fund (RIF): The Provence-Alpes-Côte d'Azur Regional Innovation Fund is combining regional and national (BPI-France) funding schemes. It provides a significant leverage effect on financing collaborative R & D projects between regional SMEs and academic research structures.

3.1.4 Greece

Greece continues to focus its policies on the promotion of renewable energies, energy efficiency measures and the new policy on waste management, which can also promote eco-innovations. The aim of the country is to derive 20% of final energy consumption from RES by 2020.

The National Strategic Reference Framework (NSRF) is expected to allocate approximately \notin 5.18 billion for the period 2014-2020 on activities relating to the environment and another \notin 1.2 billion is expected to be allocated on the objective 'Strengthening Research, Technological Development and Innovation'. Research is expected to be supported directly through the funding of actions supporting innovations in businesses. In addition as mentioned Operational Programme on Competitiveness, Entrepreneurship and Innovation will allocate at least 55 million EUR to support eco-innovation.

The Action Plan for the Implementation of the National Strategy for Research, Technological Development and Innovation for the period 2015-2021 (Action Plan) was published in 2014 and set the framework for the support of the Greek Government on research and innovation, and the promotion and strengthening the competitiveness of businesses through innovation.

The National Fund for Entrepreneurship and Development (ETEAN) was founded in 2011 (Law 3912/2011) in order to support enterprises, particularly small, medium, and innovative enterprises. ETEAN is co-funded by the Operational Programme 'Competitiveness and Entrepreneurship' and other NSRF programmes, supported by the European Regional Development Fund and the European Fisheries Fund. Amongst its priority areas, the Fund aims to support business in the fields of sustainability, energy efficiency (especially in the built environment) and renewable energies. The

scheme also supports activities that relate to the upgrade of energy efficiency in households.

There are several barriers related to political, institutional, cultural, social and economic aspects that prevent the development of eco-innovation in the country.

Compared to 2015, Greece continues to lack a clear and cohesive framework for the support of eco-innovation and eco-industries despite the improvement through the 2014 Action Plan for the Implementation of the National Strategy for Research, Technological Development and Innovation for the period 2015-2021, which promotes specific activities in relation to eco-innovation. Under the Action Plan, efforts are directed towards industrial waste management, anti-pollution technologies and industrial symbiosis, climate change mitigation, access to environmental information and mitigation of natural disasters.

Issues related to malpractices by local authorities and limited enforcement of laws by national authorities continues to exist. The long-lasting deterioration of the economy has further compounded these problems as the penury of resources makes any kind of systematic funding for eco-innovation unrealistic. Austerity policies have had a major impact on public funding leading to stagnation in terms of R&D expenses and delays in payments. Meanwhile, venture capital for eco-innovations is not easily available especially after the imposition of capital controls in July 2015, with most funding coming from EU Structural Funds.

In terms of competitiveness, the trade balance of high- and medium-tech products is negative and this prevents by default all types of technological innovation (Innovation Union 2014). The poor performance on technological innovation is also demonstrated by the low number of patent applications. The economic downturn, together with structural problems and bureaucratic obstacles has forced companies to prefer investments with low risks and short-term return over knowledge-based activities where by default the risks are higher and the return period longer. The small size of Greek companies also acts as a deterrent to further developing and commercialising innovations. Small companies may be more flexible and adapt at seizing innovation opportunities but ultimately a sustainable national framework requires synergy and economies of some scale. Nevertheless, as highlighted in chapter 1 only 3.5% of enterprises plan to perform investments.

Between the main obstacles to the implementation of eco-innovation are the economic-structural ones and those related to education and the labour market. With regard to the former, there is still difficulty in establishing a real competition in those markets that have been privatized; often both the regulation and the costs of using the network make it difficult for new companies to enter the market. Linked to this first aspect, it is also important to consider that the greenhouse sector is constituted from small farms that by definition have more difficult access to credit (and whose

production scale can make it difficult to sustain the high costs associated with the research and development of new cultivation systems and technologies.

On the administrative side, it is an often repeated complaint that Greece's complex bureaucratic stipulations (despite the progress achieved in the last years) dissuade actors and investors from developing eco-innovations. Moreover, the regulatory framework changes frequently thus limiting the ability of involved actors to plan and organise investments.

Research in Greece relies to a large extent on external funding, namely, the EU structural Funds and EU research funds (e.g. Horizon 2020). The dependence of Greece on external funds indicates the difficulty of the country to finance research (either through public funding or private sector investment) due to the deterioration of the economy. As regards the internal funding, in 2016 42.5% of funding derives from public funding whereas only 39.9% come from private funds. In relation to the EU research funds, Greece has been relatively successful in the participation in the FP7, in comparison to the EU average, but the success rate of the applications for funding remain relatively low.

Finally, there remain social barriers towards eco-innovation mostly related to public attitudes and unawareness of the benefits of innovation (especially in the area of energy efficiency in the built environment). These sometimes translate into outright distrust of change, especially in the current economic and political climate.

Greece benefits from its significant natural capital in renewable energies (solar, wind, tidal), growth in green and alternative tourism and innovation in agriculture and the food industry. The country has a small number of leading research institutions that can contribute in developing an innovation-driven economy. A significant number of small and medium ICT and high tech companies and start-ups can also help in supporting R&D. In addition, many Greek researchers have migrated in third country.

Greece is below the EU average with 0.99% of GDP spent on R&D activities 2016 (EU average 2.03%) (National Documentation Centre, 2017). Despite the austerity measures, a slight increase on R&D expenditure was achieved compared to 2015 (from 0.92%). Nevertheless, this share increased by 0.6% in the period 2007-2012 which indicates that the country is on its way to catch up (Innovation Union 2014). This improvement is also indicated by the slight increase the eco-innovation input index. Greece is also well placed regarding the eco-innovation related publications (which reached 27.45 publications per million inhabitants with an EU average of 20.53 publications). In this context, the economic downturn might act as an opportunity to move towards a knowledge-based economy.

EU Cohesion policy funding has increasingly focused on investments in energy efficiency andrenewables in line with the Europe 2020 Strategy for smart, sustainable and inclusive growthand the related 20-20-20 targets. In this context, EU Structural

Funds available in Greece play a significant role in financing energy efficiency and ecoinnovation projects. The majority of the measures related to eco-innovative technologies in greenhouses are targeted at energy-efficient heating systems (including co-generation and conversion to renewable energy sources), energy saving, improvement of agricultural processes and crop cultivation in general, as well as the purchase of energy-efficient equipment. Investment support (e.g. grants, subsidies, loans) is mainly provided to accelerate the introduction of efficient energy systems in greenhouses.

3.1.5 Italy

MED Greenhouses

Interreg

Mediterranean

The financial schemes for eco-innovative investments in Italy were investigated. Existing knowledge and the state of play technologies of innovative greenhouses in Italy were analysed and available financial channels for eco-innovative technologies were identified. The aim was to identify the obstacles and the existed bottlenecks and design tailored policy recommendations for the establishment of innovative (geothermal) greenhouses.

It's not easy to find data and percentage related to the eco-innovation in our Country. Most of the information are taken from study cases or researches made by experts and they show clearly how difficult is to find data because of the transversal nature of the topic. Nevertheless, most of the eco-innovation funds are related to European funds (ROP and RDP) and the main beneficiaries and areas that benefited most from the increase in eco-innovation are waste management and sustainable transport, while the areas that proved to be the most in difficulty are those of Research & Development. According to the Observatory's report, in this sector, investments appear to be substantially lower than the European average for both the private sector (1.29% in Italy versus 2.03% average in Europe) and for the public sector, where the share of investments in environmental research accounts for 6.5% of all public spending. In the waste management sector, there is a marked increase in the separate collection and recycling of various materials (from the textile sector to batteries); among many, a leading initiative is the adherence of Italy to Weelabex, a project conducted at European level whose goal is the creation of rules and standards for the management of waste from electrical and electronic equipment. Related to this sector, it is also the development of the methodology Romeo (Recovery of metals by hydrometallurgy) by ENEA (the National Agency for New Technologies, Energy and Sustainable Development) which aims to recover raw materials of high value (gold, silver, tin, copper) from the Raee.

In the transport sector, innovations mostly involve private transport. Sales of vehicles powered by alternative energy sources saw an increase of 15.3% compared to 2013. Furthermore, according to the Ministerial Decree of 10 October 2014, the production and use of fuels from waste and biological waste are incentivized. With regard to this

aspect, in the fuel sector the introduction of green diesel, the result of over 10 years of study and development of Ecofining [™] technology, at the Eni plants in Porto Marghera (Venice), is all Italian. This new technology allows the hydrogenation of various types of vegetable oils thus obtaining a fuel fully compatible with the fossil fuel to which it is mixed, thus allowing a reduction in air pollution.

Among the main barriers to the adoption of eco-innovation, the economic-structural ones and those related to education and the labor market are relevant. With regard to the former, there is still difficulty in establishing a real competition in those markets that have been privatized; often both the regulation and the costs of using the network make it difficult for new companies to enter the market. Linked to this first aspect, it is also important to consider that the Italian entrepreneurial fabric is constituted for most of small and medium-sized enterprises that by definition have more difficult access to credit (the risk to lenders may be much higher) and whose production scale can make it difficult to sustain the high costs associated with the research and development of new products and processes.

The second major brake on growth and the development of eco-innovation is identified in the lack of adequate skills between human capital.

Ultimately, the picture of eco-innovation in Italy presents lights and shadows: if it is true that many fundamental elements are already present, that some companies are able to bright and produce eco-innovations of international value, that on this theme there is an increasing commitment from big companies and from the side of the general public ,it is equally true that, to make the real leap in quality and become European leaders eco-innovation requires a clear willingness to invest in research in order to dedicate significant resources to these economic issues.

3.1.6 Spain

The most important eco-innovation areas and trends include waste management, ecodesign, green engineering, recycling, energy efficiency, sustainable construction, water efficiency and urban water systems.

However, agriculture is not a representative sector for the eco-innovative technologies implementation. The construction sector ranks first in terms of eco-innovation and leadership potential estimated for the year 2030. In particular, it is estimated that energy saving in buildings is the first global measure to reduce the environmental impact of buildings. Transport also plays a key role in reducing energy consumption, both with the development of new motorized vehicle technologies and the implementation of new transport concepts that encourage reduced use. On the other hand, for the reduction of emissions and waste, the development of ecological chemistry is fundamental, which will encourage eco-innovation in sectors such as biological products, food and packaging. Other sectors that have significant potential

for improvement at the environmental level are Information Technologies (with the development of concepts such as Smart Cities), Consumer Goods or the Health Sector. Regarding funding for innovation, the Ministry of Economy and Competitiveness has created the Centre for Industrial Technological Development (CDTI), a Public Business Entity that channels the funding and support applications for national and international RDi projects of Spanish companies, including greenhouse sector.

Beside this, each region in Spain has a specific department of promoting innovation thanks to incentives and grants.

3.2 Gaps

Interreg

Mediterranean

3.2.1 Albania

MED Greenhouses

Ν	Lack of financial models	Short Description of the financial
		channels required - justification
1	Research and development	The country lacks of specific incentives and
	strategy	financial models to promote research and
		development programs in order to boost
		SMEs' innovation and competitiveness to
		reach higher levels of specialization.
2	National financial schemes	Except for the European Funds bounded to
	specific to agricultural	the implementation of the project, in the
	sustainable development in	National Energy Strategy there is no room for
	greenhouse sector	the provision of specific measures to increase
		the sustainability of the greenhouse sector.
		The country strategy is aimed at reaching the
		38% of renewable energy usage within 2020
		boosting the hydropower energy production.
		In order to increase the agricultural sector
		sustainability the biodiesel production is
		deemed to be strategic. Any other activity has
		been pinpointed to be crucial to reduce the
		first sector environmental impact.
3	National strategy to exploit	In the National Energy Strategy the
	the untapped geothermal	exploitation of numerous untapped
	resources	geothermal resources has been defined as
		strategic, nevertheless in the same strategy
		there are no provisions on how to exploit
		these resources to increase the production of
		clean energy. In the same way there is no

Table 29 – Lack of financial models in the Region of Berat (Albania)

	mention on how to exploit this kind of energy
	in the agricultural sector.

3.2.2 Cyprus

Table 30 – Lack of financial models in Cyprus

Ν	Lack of financial models	Short Description of the financial	
		channels required - justification	
1	Financial schemes specific to	The Greenhouse sector is hosted in financing	
	Greenhouses innovation	schemes covering a wider field (e.g.	
	development	agriculture or rural development).	

3.2.3 France

Tabla 21 I	ack of financial	models in		ragion	(Eranco)
	ack of illiancial	mouels in	FACA	region	(Trance)

Ν	Lack of financial models	Short Description of the financial
		channels required - justification
1	Financial schemas specific to	The "Future agricultural and agribusiness
	Greenhouses	projects "P3A managed by France Agrimer
		fund was stopped in 2016. No information
		available on the launch of a new program.
2	Research and innovation	Targeting small exploitation holders with
	funds	pilot cases are necessary to bridge the gap
		between researchers and farmers

3.2.4 Greece

Table 32 - Lack of financial models in the Region of Thessaly (Greece)

Ν	Lack of financial models	Short Description of the financial	
		channels required - justification	
1	Lack of programs targeted	Most of the financial models are general and	
	to innovation in	are not related to application of innovative	
	greenhouses	technologies. The financial rate is the same	
		in all cases while innovations may need	
		higher subsidy rate	

3.2.5 Italy

Table 33 – Lack of financial models in Molise Region (Italy)

Ν	Lack of financial models	Short Description of the financial
		channels required - justification
1	Sectoral programs	Most of the funding channels are not
		dedicated to the "innovative greenhouse
		sector". The main financial models are more
		general and inclusive (i.e. innovation
		financial model)

3.2.6 Spain

Table 34 – Lack of financial models in the Region of Murcia (Spain)

Ν	Lack of financial models	Short Description of the financial
		channels required - justification
1	Sectoral programmes for	Financing of innovation in Spain is
	agriculture innovation	generalist. Although there is a significant
		investment in ICT and new products
		developed for the greenhouse industry,
		financing of this particular topic is still not
		very remarkable

3.3 Obstacles

3.3.1 Albania

Table 35 – Identified obstacles for the use of the existing financial channels in the Region of Berat (Albania)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Gap between the priorities	There is a gap between the identified
	identified in the National	priorities in achieving the sustainable
	Energy Strategy and the	production and energy usage and the
	measures undertaken	measures undertaken to boost their
		production. The geothermal energy usage is
		considered a priority; however there is a lack
		of specific measures to exploit it.
2	Inelastic demand for green	Albanian consumers still present an inelastic
	goods	demand for green goods and more
		sensitiveness to the price. The consumers'
		behavior does not incentive the production of

eco-innovative technologies because the
awareness to environmental issues has still to
be raised. A shift in the consumers' behavior
could affect the eco-innovative technologies
usage and the adoption of financial schemes
to boost their production.

3.3.2 Cyprus

Table 36 – Identified obstacles for the use of the existing financial channels in Cyprus

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Complexity of the	Application procedures are complex and
	procedures to apply	usually need specialized human resource,
		something that the potential beneficiaries do
		not possess and are not able to hire due to
		high cost
2	Long time from application	Time from the approval of an application of a
	to finance	greenhouse project until the farmer receives
		the subsidy is usually long. Thus, the farmer
		will have to have the initial capital available
		for the investment as well as for another
		couple of years after the operation of the
		greenhouse unit. building and operation of
		the greenhouse in most of the times for more
		than two years after the operation of the
		investment.
3	Difficulties in getting a loan	After the financial crisis the banks in Cyprus
	from a bank	have become stricter and applied long-
		lasting procedures in loan approvals. The
		time required to acquire a loan is usually
		long-lasting and therefore affects the
		application procedures (that have strict
		deadlines)

3.3.3 France

Table 37 - Identified obstacles for the use of the existing financial channels in PACA Region (France)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Modification and update of	It is necessary to change the existing
	the existing financial	channels and separate them. Currently they
	channels	are all related to the device PA3 of France
		Agrimer from a financial and technical point
		of view.
2	Different priorities at	Regional programming is linked to the
	national and regional levels	national until 2020, so even if a region wants
	No-separate the regional	to give priority to greenhouse, it is now
	program from the national	impossible as it is not anymore, a national
	one	priority

3.3.4 Greece

Interre

Mediterranean

MED Greenhouses

Table 38 - Identified obstacles for the use of the existing financial channels in the Region of Thessaly (Greece)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	High bureaucracy	Complicated procedures and reporting
		schemes for small scale farmers with no
		experience in economic models
2	Long time from application	There is no clear timeframe how long it will
	to finance	take from the approval of the application of
		a greenhouse project to the time that the
		farmer will receive the subsidy. Thus, the
		farmer will have to have available the capital
		for the building and operation of the
		greenhouse in most of the times for more
		than two years after the operation of the
		investment.
3	Low or no availability of	Due to the economic crisis in Greece, the
	loans from the banks	banks do not offer loans to the farmers or
		when they offer, the interest rate is very
		high.
4	High cost of investment for a	An innovative greenhouse may cost from 0.8
	simple/small farmer	to 1.2 MEuro per ha. This is a very high
		investment cost for a single farmer and

SEMIDE

		bigger financial schemes are necessary for
		the development of the sector
5	Lack of support to small	Small farmers are not able to apply for
	scale farmers for application	funding from EU or National funds due to
	for finance from regional or	lack of knowledge and experience.
	EU funds	Consulting stakeholders have not high
		experience in the design of the investments
		for innovative greenhouses.

3.3.5 Italy

Table 39 – Identified obstacles for the use of the existing financial channels in Molise Region (Italy)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Delay in all the procedure	The main obstacle is represented by the
	phases	difficulty in writing the application, the
		uncertainty of the approval
2	financial timing	uncertainties on the date of payments
3	too much bureaucracy	complicated and laborious reporting

3.3.6 Spain

Table 40 – Identified obstacles for the use of the existing financial channels in the Region of Murcia (Spain)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Programs for cooperation of	Effective cooperation between R&D and
	companies , in particular	private companies is still not very common.
	SME'S, and R&D institutions	Only large companies use to understand the
		benefits of such cooperation.
		Funded plans incentivizing such cooperation
		should be promoted.
2	Lack of instruments that	Most of funding is received after the projects
	anticipate funding	are executed, so the company needs to
		apply for private funding

4. Policies and frameworks promoting eco-innovation

Based on the findings of the del. 3.1.4 "Joint Report on existing policies frameworks", this section presents important gaps and obstacles that have been recorded at national / regional on policies and frameworks favouring eco-innovation.

4.1 Overview of the state of play

4.1.1 Albania

MED Greenhouses

Interreg

Mediterranean

After receiving the status of EU member country in 2014, in Albania, many reforms have been undertaken to align the national agricultural strategies with the EU Common Agricultural Policies. In fact, in 2014 it has been adopted the "Inter Sectoral Agricultural and Rural Development Strategy" (ISARDS 2014-2020) to boost the country competitiveness. The strategy is supported by the legal framework of the Law on Agriculture and rural development issued in 2007 and it is in compliance with the "Europe 2020" strategic framework. Albeit the strategy focuses on sustainable and inclusive growth and on specific needs for the development of agriculture, agroprocessing and rural areas in Albania, there are still many issues that have to be addressed. The strategy, for example, recognizes the importance of the creation of an advisory system to boost the knowledge transfer on new technologies among farmers. It also points out the importance of the creation of advisory services that can foster the innovation in the agricultural field. However, despite the forward-looking measures adopted in the legal framework the implementation of policies still lags behind. In particular, according with authors, the budgetary plan provided to support the first sector has increased in the recent years but not as it was expected according with the 2020 aims. The reduction in the financial support is a consequence of the recent financial recession. Another issue that has to be addressed is the mismatch of political targets set in different documents that creates a non clear understanding on the overall strategy to undertake to boost the Albanian first sector. Furthermore, the Ministry of agricultural rural development should provide more funds to the advisory services and knowledge transfer activity between farmers because one of the main problems related to the Albanian first sector is the lack of education of farmers that often rely on traditional knowledge to run their businesses. Hence, more focus and financial support should be provided to implement the advisory measures that can foster the Albanian competitiveness. Another problem that has to be tackled is the general lack of data that often hamper the adoption of specific policies and the possibility to have a general and thorough vision of what is really happening in the first sector. For this reason the creation of a Market Information Systems and a Farm Accountancy Data Network are needed. Another important issue that can mine the productivity of the overall sector is the lack of adequate infrastructures and the poor financial budget bounded to their improvements. This issue stems also from the general lack of financial resources

provided to regional and local administrations that should enhance the construction and the development of a modern road network that can sharply boost the agricultural competitiveness and development reducing the transportation costs and aligning the country with the most advanced countries in Europe.

4.1.2 Cyprus

MED Greenhouses

Interreg

Mediterranean

Eco-innovation in Cyprus is predominantly produced by individual actors – research institutes or enterprises. As such, there are no distinct and mature eco-innovation sectors. Given the country's rich natural capital and inaccessibility to the energy grid of other countries, new developments in renewable energies could also promote ecoinnovation activities. Eco-innovation in the field of energy is also driven by efforts to increase energy efficiency. The agricultural and food industries are also contributing to eco-innovative solutions. Additionally, a number of EC funded research and innovation projects in the field of eco-innovation are currently under implementation. In terms of eco-innovation drivers, there is a wide range of EC supported funding opportunities for R&D that include eco-innovations. With a total budget of approximately EUR 100 million, the programme RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020) acts as a significant supporting mechanism for research and innovation. In addition, the Rural Development Programme (RDP) provides financing for the sector of greenhouse establishment, development and innovation. Both financing tools are in line with the Smart Specialization Strategy of Cyprus (S3Cy) which is applied during the entire programming period 2014-2020 and constitutes the basis for the formation of any other developmental policy or strategic documents during this period. The country also provides numerous tools to enhance access to information that is vital to increase innovation and growth. Regarding barriers, the R&D sector in the country is relatively new as it dates from the mid-90s.As such, the system is still fragmented with a lack of coordination between the different stakeholders. The governance of research is lacking whereas the interface between research and business is inadequate. In addition, there is an inadequate evaluation culture to monitor research and increase its effectiveness.

The following table presents a SWOT analysis based on the national policies identified and mentioned above:

Strengths	Weaknesses
- Political Willingness	- Insufficient Institutional
- Existing Policies	Infrastructure
- Financial support	- Bureaucracy
- Availability of Research based	- Delays in approval of Policies
policies	

59

- Fostering Innovation	 Lack of coordination among stakeholders Accountability Monitoring and Evaluation Poor Governance and administration
	- Lack of specific policy for
Opportunities	Threats
 Availability of successful models atnational and International level EU Guidelines Support through exchange of experience with other EU member states EU Interregional Cooperation Funding Programs 	 The recent financial crisis Environmental Degradation Degradation of Natural Resources Failure of Projects Local, National and International Conflicts Socio-economic disparities Difficulty for actors to access the main funding program

Furthermore, the following recommendations have occurred through the analysis for each policy instrument:

POLICY FRAMEWORK	RECOMMENDATIONS
OP "Competitiveness and Sustainable	More eco-innovation measures should
Development"2014-2020	be introduced
Rural Development Programme (RDP)	Eco-innovation and circular economy
	measures need to be added. More links
	to RIS3 should be created.
Smart Specialization Strategy of Cyprus	More emphasis on greenhouses needs to
(S3Cy)	be included

4.1.3 France

The key policies identified at regional (PACA region) and national level are:

HELLENIC REPUBLIC REGION OF THESSALY

- National Ecological Transition Strategy for Sustainable Development-SNTEDD: 2015-2020: This strategy was adopted by the Council of Ministers in

CEBAS-CSIC

Agricultural Research Institute

February 2015 and sets the framework for emerging issues in sustainable development policies for the period 2015-2020.

- Sector Strategies 2025 towards a competitive agriculture at the service of people: Strategy established by the ministry of agriculture and food to maintain and improve the competitiveness of France's products, a vision and a strategy shared by all the actors of the different sectors were established.
- **Regional Innovation Strategy 2014-2020 of PACA region:** it aims at finding new talent, boost innovative companies, support them in their conquest of markets to create jobs and strengthen the regional industrial sector.
- **Innovate more to boost growth and competitiveness in PACA region:** Thisstrategy focuses on concentrating resources on some strategic sectors and some segments where the Region has comparative advantages. The strategy has 8 operations of Regional Interest which includes "Energy of tomorrow": developing the green economy at the service of the energy transition in Provence-Alpes-Côte d'Azur
- **Regional strategy for agriculture:** It aims to improve sustainable production, climate change adaptation and mitigation, provide income to farmers, and meet societal expectations for product quality.

The following	table	presents	а	SWOT	analysis	based	on	the	regional	and	national
policies identi	fied.										

Strengths	Weaknesses
Strengths - Political Willingness - Institutional Capacity - Existing Policies - Existing financial support - Existing strategies	 Weaknesses Lack of financial instruments dedicated to farmers to lower the risk linked to high investment in innovative greenhouses Monitoring and Evaluation of strategies and policies Limited cross coordination between the implementation of agricultural policy and ecological Lack of economical prospective analysis to support crop and food
	analysis to support crop and food production (local and international market trends)
	 Lack of awareness on add value of green house agriculture at political level

Оррон	rtunities	Threats
-	Availability of successful models	- Degradation of Natural Resources
	atnational and International	- limited farmers resources
	level	- High competition with
-	EUinstruments	Mediterranean countries (EU and
-	Emerging EU networks/clusters	South Mediterranean Sea)
	for exchange of experiences	
-	Technical and research skills in	
	the region	
-	Institutional capacity and	
	infrastructure	

4.1.4 Greece

MED Greenhouses

Interreg

Mediterranean

Environmental policy in Greece focuses on the promotion of renewable energies and energy efficiency measures that can promote eco-innovations. The country benefits from its significant natural capital in renewable energies – solar, wind, tidal –, growth in green and alternative tourism and innovation in agriculture and the food industry. Despite the economic crisis, by the end of 2017, the installed capacity of photovoltaics, reached 2,623 MWp which covered 7.1% of the electricity consumption. Nevertheless, the uptake of renewable energy has been stagnated the past years.

In terms of eco-innovation performance, in 2017 Greece continues to rank low among the EU-28 countries with a score of only 77 (on an EU-28 average of 100). This places Greece on 19th position in the EU-28 ranking of eco-innovative countries.

Although, Greece shows potential in certain eco-innovation sectors, these areas cannot be characterised as fully developed. The efforts to introduce eco-innovations in the greenhouse sector were slowed down. Due to the economic crisis, companies have sought to explore opportunities afforded by eco-innovations in terms of costs but also in order to provide to clients' needs focusing (amongst other things) on transparent solar cells which can be used for greenhouse covering. Eco-innovation in agriculture, and more specifically in Greenhouses, needs to be better addressed in the existing policies for investments in innovation and competitiveness, as well as in rural policy.

Strengths	Weaknesses
- Variety of programmes	at - Lack of coordination among
different levels (region	al, stakeholders
national)	- Delays in approval of Policies
- Financial support by tl	e - Lack of Research based policies
European Union	- Insufficient Institutional
- Monitoring and Evaluation	Infrastructure

	- Availability of successful models at
	national and International level
Opportunities	Threats
- RIS3	- Failure of Projects
- New EU funding	- National, Regional and International
	Conflicts
	- Socio-economic disparities

At regional level, the Regional Operational Programme 2014-2020, is the programming tool for regional rural development for the realization of the Europe 2020 strategy. The ROP of Thessaly Region is the main measure related with greenhouses sector. Aim of the program is to create autonomous agricultural systems positioning them towards higher sustainability, and autonomy. It can be used for the development of innovative greenhouses aiming to improve the competitiveness of the agricultural sector. The policy encourages investments to improve the energy efficiency of building (also with geothermal energy).

At National Level, the Smart Specialisation strategy RIS3 program is about identifying the unique characteristics and assets of each region, highlighting each region's competitive advantages, and rallying regional stakeholders and resources around an excellence-driven and outward-looking vision of their future. The greenhouse sector is included in the RIS3 program and promotes activities that capitalise on Research, Technology and Innovation to bring structural changes in the greenhouse sector and improve their competitiveness.

Based on the assessment and findings, the following improvements/recommendations are provided for the policies and framework promoting eco-innovation in greenhouses:

POLICY FRAMEWORK	RECOMMENDATIONS
1. Operational Programme on	More eco-innovation measures should
Competitiveness, Entrepreneurship and	be introduced
Innovation under the new National	
Strategic Reference Framework (2014-	
2020)	
2. Regional Operational Programme of	Eco-innovation and circular economy
Thessaly Region 2014-2020 (ROP 2014-	measures need to be added. More links
2020)	to RIS3 should be created.
3. National Research and Innovation	Links to regional RIS3
Strategy For Smart Specialization 2014-	
2020	

4. European Agricultural	Fund for Rural	More emphasis on greenhouses needs to
Development	(EAFRD)-Greek	be put
programme 2014-2020		

Although there are several policies related to agriculture, the greenhouse sector seems to be among the leastpopular for the implementation of energy efficiency and ecoinnovation actions. Innovation programmes and demonstration project schemes for pilot applications with focus on energy-efficient processes and technologies, including the application of renewable technologies and the development of new products and cultivation techniques are missing.

4.1.5 Italy

In Italy were identified different policy related to the eco-innovative greenhouses.

At regional level, the **Rural Development Program 2014-2020**, is the programming tool for regional rural development for the realization of the Europe 2020 strategy. RDP of Molise Region, measure 4.1: investment in agricultural company is the main measure related with greenhouses sectors. The main objective of the measure is to create a more autonomous agricultural system from global trends and markets, through a modernization of agricultural, orienting them towards greater sustainability, and greater autonomy. Is it applicable for the construction of innovative greenhouses investments in farms aimed at improving the competitiveness of the agricultural sector, and to counteract the phenomena of weakening of the agri-food sector. The policy encourages investments to improve the energy efficiency of building (also with geothermal energy).

At National level different plans are related to eco-innovative solution, such as the strategic plan for innovation and research in the agricultural, food and forest sectors (2014-2020). Among the seven initiatives identified at community level to guide the implementation of the strategy, the "Innovation Union" initiative has the task of steer the implementation of the strategy on research, development and innovation, reorienting the relative policy according to the challenges facing our society e strengthening all the links in the innovation chain, from more theoretical research to marketing.

Agricultural, food and forestry sectors National strategy plan, he policy is implemented at National and regional level. The policy is implemented at national level by ministry of agriculture and the main institutions that deal with agri-food research. At regional level, agricultural research is regulated by specific rules, while an important coordinating role is played by the Interregional Research Network agriculture, forestry, aquaculture and fishing. In the field of development and transfer services innovation, regional administrations have full autonomy of action.

Interreg

Mediterranean

MED Greenhouses

The plan is related to two crucial areas of programming for innovation in agriculture, the rural and territorial development through the European Agricultural Development Fundrural (EAFRD); and research and innovation through the new Horizon 2020 instrument.

National plan of flowers and ornamental sector

The National Plan of the floriculture sector identifies the issues to be addressed, the strengths and weaknesses and a series of interventions and lines of action aimed at the economic and productive strengthening of one of the most dynamic sectors of our agricultural economy, in order to enhance its competitiveness on EU and international markets. The general objective is to preserve, through the necessary synergistic actions with other public institutions, at regional and local level, the wealth of both human and technical and productive capacities, whose employment impact is very significant. The Sector Plan include regulatory updates, professional training, valorization and qualification of production, research and experimentation, communication, promotion, logistics and promotion. Information actions at Community level to highlight the problems of the sector.

- Encourage the transition from the use of fossil fuels to renewable energy sources

- Promote aggregation and the competitiveness and innovation of companies.

- Encourage a more rational and sustainable use of energy (renewable energy sources). **Installation of greenhouses and greenhouse tunnels. Regional Low 26, 2008, n. 5.** Provisions regarding the installation of greenhouses and greenhouses and greenhouses at regional level.Installation of greenhouses and greenhouse tunnels. It is a Regional law, discipline the installation of greenhouses (mandatory) Municipalities, SMEs, farmers. Basic regulations (mandatory) for building a greenhouse in the regional territory.

National Energy Strategy

The National Energy Strategy is the ten-year plan that the Italian Government drew up to anticipate and manage the change of the national energy system: a document looking beyond 2030, and laying the groundwork for building an advanced and innovative energy model.

The objective of the Strategy is to make the national energy system more competitive, more sustainable, and more secure

The Strategy aims to make the national energy system more competitive, sustainable and secure.

4.1.6 Spain

Public policy support in Spain is a mix of first and second-generation policies and measures, addressing technologies and resources for pollution control and energy efficiency.

Eco-innovation is generally embedded in national and regional policies targeting resource efficiency, environmental innovations, clean technologies and sustainable development.

4.2 Gaps

4.2.1 Albania

Table 41 – Lack of Policies and frameworks favouring eco-innovation in the Region of Berat (Albania)

Ν	Lack of policies	Short Description required
		policy/framework - justification
1	Specific policies related to	With the last agricultural strategy adopted in
	greenhouses	the country a great emphasis has been given
		to the competitiveness enhancement of the
		first sector, however there are no specific
		measures in the strategy related to the
		greenhouses' vegetable production.
2	Specific policies related to	Despite of the adoption of the national
	the geothermal energy	strategy for renewable energies there are no
	production	specific measures or incentives related to the
		geothermal production industry.
3	Lack of coordination among	Many documents have been issued during
	policies	last years to boost the Albanian agriculture
		competitiveness, however there is a mismatch
		between the various documents issued,
		therefore there is a lack of a strategic overall
		view that can specifically address all the
		problems related to the first sector.
4	Lack of implementation	Albeit during recent years the legal
	policies process	framework has been modified to align the
		national agricultural policies to the EU
		Common Agriculture Policy and although the
		looking forward present agricultural
		strategies, the implementation process of all
		measures still lags behind.
5	National research and	In the national strategies provisions little or
	development policies	inexistent attention is given to the
		enhancement of the research and
		development policies that can boost the first
		sector.

6	National statistic tools and	The National Statistic Institute database lacks
	indicators	of specific statistical tools or indicators that
		can give an insight on the national
		expenditures in eco-innovation and green
		economy.

4.2.2 Cyprus

Table 42 – Lack of Policies and frameworks favouring eco-innovation in Cyprus

Ν	Lack of policies	Short Description required
		policy/framework - justification
1	Lack of specific policy for the	Many political strategies contain aid for the
	greenhouses sector (The	greenhouses sector, but there is no exclusive
	policies concern the agro	policy for those, who must include all the
	food sector in general)	action necessary to implement innovative
		eco-greenhouses.
2	Lack of policy for knowledge	Measures to enable stakeholders to evaluate
	transfer	the effectiveness and impact of innovation
		should be introduced.

4.2.3 France

Table 43 – Lack of Policies and frameworks favouring eco-innovation in PACA region (France)

Ν	Lack of policies	Short Description required
		policy/framework - justification
1	Structured regional policy	Despite a favourable national policy for eco-
		innovation, this was not translated into a
		strong regional policy in PACA
2	Lack of financial policy to	Need of financial instruments dedicated to
	minimize the investment	farmers to lower the risk linked to high
	cost of greenhouses for	investment in innovative greenhouses
	farmers	
3	Lack of policies on	Farmers need guidance /advices on local and
	economical prospective	international market trends
	analysis to support crop and	
	food production	

4.2.4 Greece

Ν	Lack of policies	Short Description required
		policy/framework - justification
1	Lack of specific policy for the	Many political strategies contain aid for the
	greenhouses sector (The	greenhouses sector, but there is no exclusive
	policy concerns the agro	policy for those, who must include all the
	food sector in general)	action necessary to implement innovative
		eco-greenhouses.
2	Policies for the development	No specific policy actions are undertaken for
	of demonstration and pilot	demonstration projects focusing on eco-
	projects	innovative greenhouses and use of new
		energy technologiesfor RES, new energy
		technologies and energy efficiency or
		presentation of good practices in sustainable
		greenhouse production.
3	Lack of plan for specific	There is no plan for the research needs for the
	research and innovation in	greenhouses sector. The setting up of
	the greenhouses sector and	technology centres, research laboratories and
	the development of	programmes to enhance competitiveness of
	technology innovation	the greenhouse sector is necessary. Policies
	campuses	for eco-innovative greenhouses development
		and related research from the idea to the
		market introduction phase are missing.
4	Lack of plan for specific	No plan for the development of the academic
	development of the	sector in relation to greenhouses. The
	academic sector related to	relevant departments/labs could merge to
	greenhouses	one unit and work together for the
		development of the sector.
5	Lack of policy for knowledge	No policy for the measures to enable
	transfer	stakeholders to evaluate the effectiveness of
		innovations is available
6	Lack of market analysis plan	Lack of political strategies to promote the
	and policies for new market	value of products grown in innovative
	opportunities and strategies	greenhouses
7	Lack of plan for development	Lack of advice on energy savings
	of eco-innovative, zero	opportunities and information about related
	emission greenhouses	subsidies. Policies forcing the indication by
		labelling and standard product information of

Table 44 - Lack of Policies and frameworks favouring eco-innovation in the Region of Thessaly (Greece)

		the consumption of energy, water, fertilisers and other related inputs/resources is missing. Lack of policies for sustainable greenhouse
		products, included the implementation of ecodesign and labelling requirements as a
		separate measure.
8	Lack of policies for the	Lack of policies for the development of
	development of eco-	strategic cutting-edge expertise, green
	innovation clusters	growth and sustainable communities related
		to eco-innovation in the greenhouse sector

4.2.5 Italy

Table 45 – Lack of Policies and frameworks favouring eco-innovation in the Molise Region (Italy)

Ν	Lack of policies	Short Description required
		policy/framework - justification
1	Lack of specific policy for	Many political strategies contain aid for the
	greenhouses sector (Policy	greenhouses sector, but there is no exclusive
	concerning too many	policy for those, who must include all the
	sectors)	action necessary to implement innovative
		eco-greenhouses.
2	Lack of coordination	The strategies are linked to the individual
	strategies	issues
3	Lack of plan for specific	There are no specific research strategies for
	research and innovation in	the greenhouse, from construction to
	the greenhouses sector	systems of energy, conservation and
		cultivation
4	Lack of policy for knowledge	measures to enable stakeholders to evaluate
	transfer	the effectiveness of innovations
5	Lack of policies for new	lack of political strategies to promote the
	markets opportunities and	value of products grown in innovative
	market strategies	greenhouses

4.2.6 Spain

Table 46 - Lack of Policies and frameworks favouring eco-innovation in the Region of Murcia (Spain)

Ν	Lack of policies	Short Description required
		policy/framework - justification

1	Policies promoting participation of private sector	The weaknesses focus on the poor and insufficient participation of the private sector in the financing of $R + D + i$.
2	Technology transfer offices	There are very few offices of technological transfer, to which is added that the $R + D + i$ of the universities and public centers of research is not entirely oriented to the technological needs of companies.
3	Policies for technology company's entrepreneurship	There is a lack of policies addressed to create technology enterprises. At present, most of promoters are private investment funds or big companies, which are interested in supporting such new entrepreneurs

4.3 Obstacles

4.3.1 Albania

Table 47 – Identified obstacles for the adoption/development of frameworks/policies favouring ecoinnovation in the region of Berat Albania

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Political class ineptitude	Politicians are concerned in the attainment of
		European standards and for this reason
		modern development strategies have been
		adopted at national level. However the
		political class is responsible of the general
		lack of effective measures and national
		funding, as well as of the poor infrastructures
		development and the lack of funding in
		research and development projects. Hence, a
		modern overall strategy that can link different
		productive sectors based on the concept of
		sustainable development is needed.
2	Lack of funding	The general lack of funding is one of the main
		causes that hinder the first sector strategies
		development.

3	Lack of inter ministerial	The Ministry of Agricultural Development and
	coordination	water management, the ministry of Energy
		and Infrastructures and the ministry of the
		Economic Development lack of a inter
		ministerial cooperation strategy that can
		boost the first sector development.

4.3.2 Cyprus

Table 48 – Identified obstacles for the adoption/development of frameworks/policies favouring ecoinnovation in Cyprus

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Lack of awareness on added	Need for highlighting the greenhouses sector
	value of greenhouse	contribution on the national production, as
	agriculture	well as its impact on the environment and the
		society (jobs, local (organic) food)
2	Lack of communication	Absence of cooperation between academia,
	between stakeholders	public sector, civil society and the private
		sector/entrepreneurs.
3	Return on investment	Often the return on investment is too low and
		discourages the stakeholders
4	Small Market	The market in Cyprus for selling the products
		is rather small and exporting procedures
		require extra know-how and specializations
		that are linked with extra cost
5	Lack of capacity building and	Farmers are the target of the innovation.
	training	However, there is a lack of capacity building
		in this kind of enterprises, in such a way that
		understanding the benefits of innovation is
		not clear for them.

4.3.3 France

Table 49 – Indentified obstacles for the adoption/development of frameworks/policies favouringecoinnovation in PACA Region (France)

Ν	Identified Obstacles for the	Short Description of the
	adoption/development of	obstacle - justification

	frameworks/policies favouring eco-	
	innovation	
1	Land planning in favor of urban	Agriculture generates lower
	development rather than agriculture	incomes than industry and
		tertiary sectors.
2	Lack of awareness on add value of	Need for highlighting the
	greenhouse agriculture at political level	greenhouses sector contribution
	(national, mainly)	on the regional and national
		production, as well as impact on
		the environment and the society
		(jobs, local (organic) food)

4.3.4 Greece

Table 50 - Identified obstacles for the adoption/development of frameworks/policies favouring ecoinnovation in the Region of Thessaly (Greece)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Lack of communication	No cooperation between the academic and
	between stakeholders	research actors and the SMEs.
2	Undeveloped heat market	No market available for use of heating
	due to the low and irregular	energy produced by the greenhouse sector
	demand for heat and cooling	that could be used for domestic use.
3	Difficulty in investment	This difficulty is enhanced by the lack of
	financing	attractiveness of these technologies
		compared to RES investments in other
		sectors
	Lack of commercial	The technologies available for eco-
	availability on the market of	innovative greenhouses have been
	small-scale innovation	developed for large scale investments and
	systems at low cost (such as	low scale investments for single farmers are
	cogeneration plants)	not always possible and sustainable.
	Delays in approval of policies	Often the calls and the subsequent
		payments are delivered with huge delays,
		discouraging the stakeholders
	Return on investment	Often the return on investment is too low
		and discourages the stakeholders

Competition with other	The greenhouse products are sometimes not
countries	competitive with those imported and
	disincentive the creation of greenhouses,
	very expensive especially from the energy
	point of view

4.3.5 Italy

Table 51 – Identified obstacles for the adoption/development of frameworks/policies favouring ecoinnovation in Molise Region (Italy)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Delays in approval of Policies	often the calls and the subsequent payments
		are delivered with huge delays, discouraging
		the stakeholders
2	Return on investment	Often the return on investment is too low
		and discourages the stakeholders
3	Return on investment	the products grown in Italy are sometimes
		not competitive with those imported and
		disincentive the creation of greenhouses,
		very expensive especially from the energy
		point of view

4.3.6 Spain

Table 52 – Identified obstacles for the adoption/development of frameworks/policies favouring ecoinnovation in the Region of Murcia (Spain)

Ν	Identified Obstacles for the	Short Description of the obstacle -
	use of the existing	justification
	financial channels	
1	Bureaucracy in applying for funding	Bureaucracy in the application for funding and in the process of implementation of funded innovation projects, creates a lack of interest for companies and farmers.
2	Lack of capacity building and training	Farmers are the target of the innovation. However, there is a lack of capacity building in this kind of enterprises, in such a way that

	understanding the benefits of innovation is
	not clear for them.

5. Policy Recommendations favouring the establishment of innovative greenhouses

Taking into consideration the analysis of the previous chapters, this section presents at least 3 policy recommendations per country, favouring the establishment of innovative greenhouse. To be noted that the recommended policies were designed in accordance with existing regional/national policies and strategies of agriculture sector in order to be applicable from policy makers.

5.1.1 Albania

MED Greenhouses

Interreg

Mediterranean

POLICY RECOMMENDATION 1: *Initiatives & capacity building seminars for farmers*

Short Description: Supporting through incentives and tax reductions farmers that produce vegetables in heated sustainable greenhouses fueled by clean and renewable energies (such as solar, geothermal, biomass, wind) with a particular attention on farmers that produce high quality organic vegetables that can be sold on international markets at higher prices. The beneficiaries of these incentives must be in this market for at least 5 years in a row otherwise they have to pay back the funds that they have received with an interest rate of 4%. After the third year of production the incentives will turn into productivity and sustainability subsidies for farmers in term of marketing support systems. The government will help farmers to create a label that will allow consumers to recognize the food produced in sustainable greenhouses on local and international markets. At the same time in order to implement this strategy it is important to train farmers. The training must be compulsory for all farmers involved in the project otherwise farmers will be excluded from the financing plan. After the training period farmers must take a final exam to assess their knowledge. Universities and research centers have to implement the farmers' training with the aim to educate to good environmental practices that will be helpful in terms of pollution reduction, increased product quality and farmers' health prevention. At the same time government should boost the domestic consumption of food produced in sustainable way raising awareness educating children in schools and boosting the rural tourism in sustainable farms.

Priority Axis: Boosting Albanian agricultural competitiveness promoting sustainable greenhouses production and farmers' education

Specific Objectives:

- promote sustainable agriculture and organic food production;
- promoting crop production in sustainable greenhouses;

• fostering the Albanian agriculture competitiveness at national and international level.

Implementing body / authority: MARDWA, Ministry of Agriculture Rural Development and water Management

Beneficiaries: Greenhouses' producers

Proposed interventions / measures:

- support farmers that produce food in sustainable heated greenhouses;
- increase the Albanian agriculture competitiveness through marketing support measures;
- increase farmers' education through specific training systems;
- raising awareness among people and farmers on the importance of the implementation of sustainable practices.

Links with existing (regional/ national/ sectoral) policy/framework:

The policy on sustainable greenhouses can be included in the Inter Sectoral Rural Development Strategy ISARD strategy and implemented through the incentives provided in IPARD II measures.

POLICY RECOMMENDATION 2: <u>Incentives for investors in order to use clean forms</u> of energy in agricultural sector

Short Description: Even if the country has adopted the National Action Plan for Renewable Energy Resources 2015-2020, poor attention has been given to the production of geothermal energy. The country has many untapped geothermal resources that should be used to produce clean energy. Hence, the government should provide incentives to energy producers that want to exploit this energy to fuel high environmental impact activities such as the crop production in heated non-sustainable greenhouses. In the National Plan, in fact, the geothermal energy has been recognized such as one of the sustainable energy resources that have to be exploited to reach the 38% of sustainable energy consumption in 2030, however presently the percentage of energy produced with this kind of resource is almost 0%. In the Plan more focus has been given to the implementation of hydroelectric power plant. Therefore, the government should provide a special favorable fiscal system to attract investors on this market that can enhance job creation and contribute to the national clean energy production. Furthermore, the government should provide additional subsidies to energy producers that build sustainable geothermal plants that can substantively reduce the environmental impact in a specific economic sector.

Priority Axis: Fostering the Albanian clean energy production focusing on geothermal energy.

Specific Objectives: Reduce the environmental impact on some specific economic sector.

Implementing body / authority: National Agency of Natural Resources NANR, Ministry of Energy and Industry MEI, Ministry of Environment ME

Beneficiaries: Sustainable energy producer, geothermal energy producers.

Proposed interventions / measures:

- Special favorable fiscal system for geothermal energy producers,
- Additional subsidies to geothermal energy producers that link their activity on the environmental impact reduction of some specific economic sectors.

Links with existing (regional/ national/ sectoral) policy/framework:

National Action Plan for Renewable Energy Resources 2015-2020.

POLICY RECOMMENDATION 3: Community-based enterprises implementation

Short Description: One of the problems related to the Albanian agriculture competitiveness is the land smallholding. This is a heritage of the past communist era and represents one of the issues that have to be tackled in order to increase the first sector productivity. However, smallholding can be seen as an impediment to attain higher GVA in agriculture or it can be seen as a peculiarity of the Albanian territory that can produce virtuous circles in the overall sector. In fact, according with important international agencies, such as FAO, smallholders represent a resource in terms of environmental and traditions conservation, they prevent the migration floods to the urban areas and they have a positive impact on the biodiversity conservation. Hence, they represent a formidable resource to reduce the environmental impact in agriculture and the climate change. However, because of their poor lobby power on governments they are often excluded from national policies and considered as an issue. In order to tackle this problem the government should implement policies to gather all the smallholders of a specific area in community-based enterprises. The policy should provide incentives for the creation of these CBEs focusing on the agro-ecological production. The subsidy should work as a productivity incentive for clusters of smallholders that decide to share the costs for plants and equipments, inputs costs, administrative costs, start-up costs and total revenues. Above all, incentives have to be granted to smallholders clusters that adopt the principles of agro-ecology. The government should train farmers in the reduction of chemicals and pesticides usage, in the production of organic compost and in the wise waste disposal. In order to push

the CBEs' products in the market the government should implement specific marketing strategies such as the creation of a specific label for CBEs organic products and networking strategies with the aim to put in contact local and international firms interested in purchasing organic products and small farmers.

Priority Axis: Enhancement of the smallholders' conditions and creation of community-based enterprises.

Specific Objectives: Tackle the problem of smallholding in agriculture gathering all small farms of a specific area in an agro-ecological producer cluster that can compete with big producers in domestic and international markets.

Implementing body / authority: MARDWA, Ministry of Agriculture Rural Development and water Management

Beneficiaries: smallholders

Proposed interventions / measures:

- Incentives to the creation of stallholders' agro-ecological producers CBEs;
- Implementation of market strategies;
- Implementation of networking strategies;
- Training systems.

Links with existing (regional/ national/ sectoral) policy/framework: ISARD and IPARD II

POLICY RECOMMENDATION 4: <u>Establishment of National Contact Points –</u> <u>Information Centers for farmers</u>

Short Description: An important issue to be addressed in the Albanian agricultural market is the lack of national contact points or information centers for farmers. As it has been pointed out from the same farmers during consultations, the lack of awareness about the benefits and the opportunities of eco-innovative technological advancements on the overall agricultural sector. Thus, a policy that can strengthen the link between members of civil society involved in the agricultural sector, such as farmers and small entrepreneurs, public institutions and national agencies is needed, in order to discuss and implement policies to the benefit of all interested parties. Hence, the creation of National Contact Points can address not only the general lack of awareness about the eco-innovation but also the lack of knowledge transfer in order to make use of new technologies to reduce costs of constructing, operating and maintaining greenhouses. In fact the generally family-run enterprises that operate in

the Albanian agricultural market need to be supported by development agencies in order to receive reliable and useful information regarding the possibility of developing greenhouses and receive incentives in order to cut the startup costs of building new modern plants. Hence, Information Centers shall help farmers in the identification and provision of financial support from different projects and opportunities.

Priority Axis: Create national information points that can help farmers to recognize the benefits of eco-innovation in agriculture and access to financial schemes created ad hoc for them.

Specific Objectives: Raise awareness among farmers about the benefits of ecoinnovative technologies and inform them about transferability and operation issues as well as funding opportunities through national/regional and EU financial schemes.

Implementing body / authority: MARDWA, Ministry of Agriculture Rural Development and water Management, National Development agencies.

Beneficiaries: Farmers, SMEs and smallholders that operate in the agricultural sector

Proposed interventions / measures:

- Creation of National Information Points
- Increase the awareness about eco-innovative technologies;
- Boost the linkage between the National Government, farmers and national development agencies.

Links with existing (regional/ national/ sectoral) policy/framework: ISARD and IPARD II.

5.1.2 Cyprus

Mediterranean

MED Greenhouses

POLICY RECOMMENDATION 1: <u>Application of the quadruple helix approach in</u> <u>greenhouse innovation production and application</u>

Short Description: Absence of cooperation between academia, public sector, civil society and the private sector/entrepreneurs. The quadruple helix approach should be encouraged and strengthened to boost the production and application of innovation in the greenhouse market.

Priority Axis: Innovation, Energy and sustainability, Green economy-growth

Specific Objectives: To strengthen the cooperation between the stakeholders in the greenhouse sector to boost production and application of innovation in the greenhouse market.

Implementing body / authority: Ministry of Agriculture, Rural Development and Environment.

Beneficiaries:

- Central Government
- Chambers
- Educational Institutions
- Large Enterprises
- Local Authorities
- NGOs
- Researchers/Research Centers/Institutions
- Small and Medium Enterprises (SMEs)
- State-owned Enterprises
- Trade Unions

Proposed interventions / measures: Establishment of clusters/networks of greenhouse innovation.

Links with existing (regional/ national/ sectoral) policy/framework:

- Rural Development Programme (RDP)2014-2020
- Smart Specialization Strategy of Cyprus (S3Cy).

POLICY RECOMMENDATION 2: Innovative Greenhouses

Short Description: Provision of support in establishing innovative, efficient and productive greenhouses with minimum expenses, exploiting the use of RES. The intention of this new policy could be that of creating a specific link to the greenhouses sector as part of the research and innovation program RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020).

Priority Axis: Innovation, Energy and sustainability, Green economy-growth.

Specific Objectives: Establishing innovative, efficient and productive greenhouses with minimum expenses, exploiting the use of RES.

Implementing body / authority: Foundation for Research and Innovation or Ministry of Agriculture, Rural Development and Environment.

Beneficiaries:

- Farmers
- Producer groups
- Businesses

- Local authorities
- Public authorities
- Research Institutions
- NGOs

Proposed interventions / measures:

- Application of innovative technologies in Greenhouse Units
- Establishment of new innovative Greenhouse Units
- Exploitation of the use of RES in Greenhouse Units

Links with existing (regional/ national/ sectoral) policy/framework: Program RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020), Rural Development Programme (RDP) 2014-2020, Smart Specialization Strategy of Cyprus (S3Cy).

POLICY RECOMMENDATION 3: Innovative Greenhouses

Short Description: Provision of support in establishing innovative, efficient and productive greenhouses with minimum expenses, exploiting the use of RES. The intention of this new policy could be that of creating a specific link to the greenhouses sector as part of the research and innovation program RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020).

Priority Axis: Innovation, Energy and sustainability, Green economy-growth.

Specific Objectives: Establishing innovative, efficient and productive greenhouses with minimum expenses, exploiting the use of RES.

Implementing body / authority: Foundation for Research and Innovation or Ministry of Agriculture, Rural Development and Environment.

Beneficiaries:

- Farmers
- Producer groups
- Businesses
- Local authorities
- Public authorities
- Research Institutions
- NGOs

Proposed interventions / measures:

- Application of innovative technologies in Greenhouse Units
- Establishment of new innovative Greenhouse Units

• Exploitation of the use of RES in Greenhouse Units

Links with existing (regional/ national/ sectoral) policy/framework: Program RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020), Rural Development Programme (RDP) 2014-2020, Smart Specialization Strategy of Cyprus (S3Cy).

POLICY RECOMMENDATION 4: Interregional Innovative Technology Transfers

Short Description: Knowledge of innovation on greenhouse industry is spread around the EU member states and innovative technologies may be applicable in Cyprus too. In this way, time, money and human resource could be saved on investing in creating innovative technologies which might already exist. In addition, the commercial value of the research results is one of the most important concerns of the scientific and technological policy of the most advanced countries, encouraging scientists to continue their work beyond their basic research projects and even to participate in the application of its results.

Priority Axis: Innovation, Eco-innovation, Research.

Specific Objectives: To create synergies between European regions in exchanging experience and practices on greenhouse innovation technologies.

Implementing body / authority: Foundation for Research and Innovation or Ministry of Agriculture, Rural Development and Environment.

Beneficiaries:

Interrec

Mediterranean

MED Greenhouses

- Farmers
- Producer groups
- Businesses
- Research Institutions
- NGOs

Proposed interventions / measures: Establishment of greenhouse innovation knowledge networks.

Links with existing (regional/ national/ sectoral) policy/framework: Program, RESTART (in the framework of OP "Competitiveness and Sustainable Development" 2014-2020) Rural Development Programme (RDP) 2014-2020.

5.1.3 France

MED Greenhouses

Interreg

Mediterranean

POLICY RECOMMENDATION 1: Improve existing financial instruments

Short Description: In order to improve the establishment of innovative greenhouses it is necessary to change the existing policies, and create separated financial strategies. Currently all of the financing policies are related to France Agrimer funding plan and the regional program will be linked to the national one until 2020.

Priority Axis: Promoting Mediterranean innovation capacities to develop smart and sustainable growth.

Specific Objectives: Decentralization - More independence for the regional funding bodies.

Implementing body / authority: Ministries – Regions

Beneficiaries: Regional authorities

Proposed interventions / measures:

- Separation between the nationals and regionals financial strategies
- Creation of an instruction unit at regional level
- Organization of farmers' consultation at regional level for the implementation to be taken into account in the implementation of financial strategies.

Links with existing (regional/ national/ sectoral) policy/framework:

Bioeconomic Strategy for France - 2018-2020 Action Plan

Under the axis: Lift the brakes and mobilize funding

POLICY RECOMMENDATION 2: <u>Creating new business models for the promotion</u> <u>of innovative greenhouses</u>

Short Description: Regional authorities could develop new innovative business models for farmers to encourage them to invest in innovative and sustainable greenhouses. Example of innovative business models developed by some enterprises of photovoltaic energy: Greenhouses installation and maintenance cost is totally covered by the enterprise who exploits the energy produced by the photovoltaic panels.

Priority Axis: Promoting Mediterranean innovation capacities to develop smart and sustainable growth.

Specific Objectives:

Improve sustainable agriculture

• Facilitate the investment on sustainable and innovative greenhouses

Implementing body / authority:

- Chamber of agriculture
- Regions

MED Greenhouses

Interrec

Mediterranean

- Ministry of agriculture
- Ministry of ecology

Beneficiaries: Framers.

Proposed interventions / measures:

- Preparation of innovative business models adapted to farmers groups in the region
- Preparation of support plan for the implementation of investments of material and immaterial projects selected by calls for projects.

Links with existing (regional/ national/ sectoral) policy/framework:

- Regional Innovation Strategy 2014-2020 of PACA region
- Regional strategy for agriculture

POLICY RECOMMENDATION 3: <u>Better identify, produce and disseminate</u> <u>innovations</u>

Short Description: Innovation can come in both ways: a) from researchers to farmers or b) from farmers to researchers in this case researchers should analyze the innovative methods applied by framers and evaluate the possibilities of replicability. As for researchers, farmers shall be recognized as producers of innovations and knowledge. Therefore, the exchange of know-how between the two categories of actors is essential to improve innovation.

Priority Axis: Promoting Mediterranean innovation capacities to develop smart and sustainable growth.

Specific Objectives:

- Facilitate the exchange of know how between researchers and farmers
- Promote different forms of innovation at regional and national levels and between different actors → increase innovative technologies/methods use.

Implementing body / authority: National and regional authorities

Beneficiaries:

- Framers
- Researchers
- Policy makers

Proposed interventions / measures:

- Creation of platform for exchanging experiences and know -how integrating all actors
- Capitalization and dissemination of innovations to all actors.

Links with existing (regional/ national/ sectoral) policy/framework:

- Sector Strategies 2025 towards a competitive agriculture at the service of people
- Regional Innovation Strategy 2014-2020 of PACA region

5.1.4 Greece

POLICY RECOMMENDATION 1: *Pilot/demonstration eco-innovative greenhouses*

Short Description: This policy could aim to the development of demonstration centers of eco-innovative greenhouses in several places around Greece. These centers could creating a specific link to the greenhouses sector as part of ERDF program.

Priority Axis: Innovation

Specific Objectives: The specific objectives could be the demonstration of the efficiency of the application of different type of technologies, the test of new technologies and the transfer of knowledge related to the management of innovative greenhouses.

Implementing body / authority: National or Region governmental Body.

Beneficiaries: Private companies, Academic and Research Institutions.

Proposed interventions / measures:

- Technical assistance in writing proposal
- Technical assistance in the implementation of the intervention

Links with existing (regional/ national/ sectoral) policy/framework: ERDF

POLICY RECOMMENDATION 2: Knowledge cluster of the greenhouse sector

Short Description: This policy could aim to the development of knowledge clusters and living labs related to innovative greenhouses in Greece. These clusters could create a specific link to the greenhouses sector as part of ERDF program.

Priority Axis: Innovation, Energy and sustainability, Green economy-growth

Specific Objectives: The specific objectives could be the development of research and development projects and innovation plans as well as knowledge transfer plans related to the development of innovative greenhouses.

Implementing body / authority: National

Beneficiaries: Private companies, Academic and Research Institutions, Farmer Associations, Start-ups.

Proposed interventions / measures:

- Technical assistance in writing proposal
- Financing channels for fostering greenhouses

Links with existing (regional/ national/ sectoral) policy/framework: ERDF

POLICY RECOMMENDATION 3: <u>Eco-innovation upgrading of the greenhouse</u> <u>sector</u>

Short Description:

Interrec

Mediterranean

MED Greenhouses

The intention of the policy could be that of fostering:

- Upgrade of greenhouse climate control systems
- Upgrade of greenhouses energy saving systems
- Upgrade of greenhouse water and fertilizer control systems

Priority Axis: digital innovation, energy and sustainability, green economy-growth.

Specific Objectives: Fostering the upgrade of the performance of greenhouses, increase of their efficiency and reduce their environmental impact.

Implementing body / authority: National

Beneficiaries: Private companies, farmers, start-ups, etc.

Proposed interventions / measures: financing channels for fostering eco-innovation technologies in greenhouses.

Links with existing (regional/ national/ sectoral) policy/framework:

The intention of the policy could be that of fostering:

- Greenhouses construction
- Greenhouses energy development
- Greenhouse innovation and technology

POLICY RECOMMENDATION 4: <u>Market analysis of the greenhouse sector and</u> <u>marketing challenges of the greenhouse products</u>

Short Description: Small companies cannot easily create a certain market for the sale of the product. Marketing policies can favor the creation of supply chains and the certainty of the return on investment for innovative greenhouses. A market analysis of the greenhouse sector can help the interested stakeholders to invest on the necessary sub sectors.

Priority Axis: Market investment.

Specific Objectives: Create a supply chains for the sale of greenhouse products.

Implementing body / authority: National and Regional level.

Beneficiaries: Farmers, SMEs, companies.

Proposed interventions / measures: Encourage the creation of commercial chains with supply chain agreements and contracts at interregional level.

Links with existing (regional/ national/ sectoral) policy/framework:

- Supply chain and district contracts at national level
- Supply chain and district contracts at regional level

5.1.5 Italy

POLICY RECOMMENDATION 1: <u>"Innovative Greenhouses"</u>

Short Description: The intention of this new policy could be that of creating a specific link to the greenhouses sector as part of ERDF program.

Priority Axis: Innovation

Specific Objectives: The specific objectives could be that of creating innovative greenhouses.

Implementing body / authority: Region governmental Body.

Beneficiaries: Private Company.

Proposed interventions / measures:

- Technical assistance in writing proposal
- Technical assistance in the implementation of the intervention

Links with existing (regional/ national/ sectoral) policy/framework: ERDF (PSR)

POLICY RECOMMENDATION 2: Fostering Greenhouses

Short Description:

The intention of the policy could be that of fostering:

- Greenhouses construction
- Greenhouses energy development
- Greenhouse innovation and technology

Priority Axis: digital innovation, energy and sustainability, green economy-growth.

Specific Objectives: Fostering the construction of greenhouses through digitalization.

Implementing body / authority: National

Beneficiaries: Private Company, research institute, farmers, start-up, etc.

Proposed interventions / measures: financing channels for Fostering Greenhouses.

Links with existing (regional/ national/ sectoral) policy/framework: -

POLICY RECOMMENDATION 3: <u>Promote marketing channels for greenhouse</u> <u>products</u>

Short Description: One of the main problems with small companies is to create a certain market for the sale of the product. Aggregation and commercialization policies can favor the creation of supply chains and the certainty of the return on investment for innovative greenhouses.

Priority Axis: Market investment.

Specific Objectives: Create a supply chains for the sale of greenhouse products.

Implementing body / authority: National and Regional level.

Beneficiaries: Farmers, SMEs, company.

Proposed interventions / measures: Encourage the creation of commercial chains with supply chain agreements and contracts at interregional level.

Links with existing (regional/ national/ sectoral) policy/framework:

- Supply chain and district contracts at national level
- Supply chain and district contracts at regional level

5.1.6 Spain

POLICY RECOMMENDATION 1: ENCOURAGE LOCAL MARKETS

Short Description: There is a trend to supply local markets with imported crops. However, local consumers could be better encourage to buy from local producers that are investing in innovative greenhouse systems, creating a more environmental friendly production and distribution system. Therefore, public awareness should be remarked on the importation of products from third counties, and to encourage the consumption of national products.

Priority Axis: -

Specific Objectives: Create a strategy to encourage consumption of local products, putting our local products in value. This initiative would be part of a set of actions for the valorization of the products.

Implementing body / authority: Regional Authority

Beneficiaries: The entire food chain (production, transformation, distribution, sale and marketing).

Proposed interventions / measures: The development of a web portal that can serve as a promotional platform for these products. Another direct action would be the creation of an application for mobile devices that aims to bring these products to the consumer.

Links with existing (regional/ national/ sectoral) policy/framework: Market innovation.

POLICY RECOMMENDATION 2: PROMOTE TECHNOLOGY TRANSFER PROJECTS

Short Description: The commercial valuation of the results of the research is one of the most important concerns of the scientific and technological policy of the most

advanced countries, encouraging scientists to continue their work beyond their basic research projects and even to participate in the application of its results.

Priority Axis: -

Specific Objectives: To ensure generational change in the Greenhouse sector.

Implementing body / authority: National administration authority.

Beneficiaries: Farmers, SME's.

Proposed interventions / measures: To encourage the innovative activity of many Spanish companies, hiring more technologists in their staff, capable of implementing innovations and being effective interlocutors with research centers. It is essential to incorporate young researchers into the private sector.

Links with existing (regional/ national/ sectoral) policy/framework: R&D national programs promoting cooperative projects with private and public sector

POLICY RECOMMENDATION 3: WATER SUPPLIES

Short Description: To ensure the necessary water supplies for the farmer to cultivate.

Priority Axis: -

Specific Objectives: The objective is to guarantee water resources to irrigators and farmers with modernization projects and infrastructures that help in water management, so that the Region remains a world leader in water use.

Implementing body / authority: Regional authority

Beneficiaries: Irrigators and farmers

Proposed interventions / measures: Promote investments in water and provide the infrastructure necessary for the Region to remain a world leader in water reuse.

Links with existing (regional/ national/ sectoral) policy/framework: Water Framework Directive Irrigation modernization policies at national and regional level.

