#### WATenERgy CYCLE

Urban water full cycle: from its source to its end-users and back to the environment WP5 Joint Pilot Actions Joint Del. 5.2 Ex-Post Water efficiency evaluation



PP3 - Municipal Enterprise for Water Supply and Sewerage of Kozani

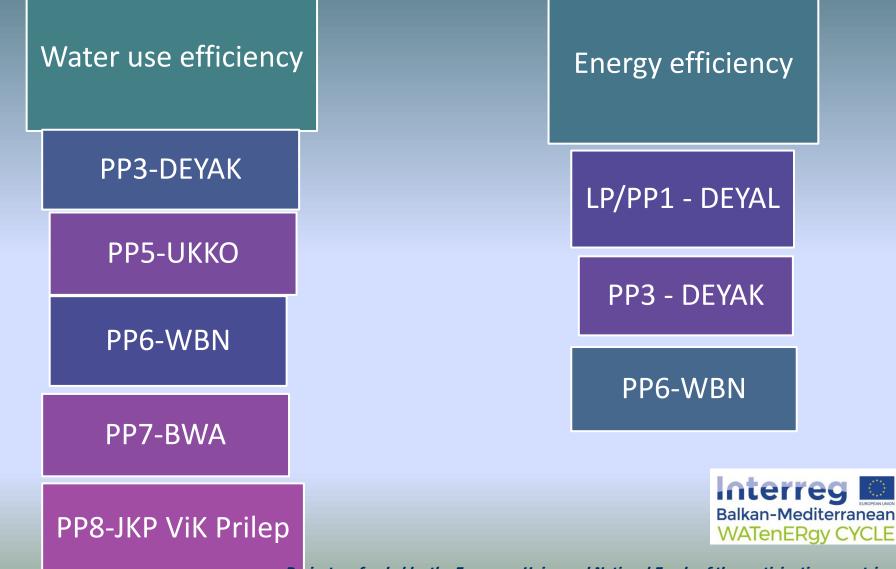
PP4 - University of Thessaly-Special Account Funds for Research-Department of Civil Engineering

PP2 - General Secretariat for Natural Environment and Water

- Responsible partners:
  - PP3 Municipal Enterprise for Water Supply and Sewerage of Kozani
  - PP4 University of Thessaly-Special Account Funds for Research-Department of Civil Engineering
  - PP2 General Secretariat for Natural Environment and Water
- Partners involved: ALL
- Budget: 885,021.23 €



WP5 includes Joint Pilot Actions


- Evaluation of the pilot case prior to the pilot actions. General presentation and description of the pilot case and the pilot action; identification of problems; water and energy audit (Water Balance and Pis); conclusion
- Evaluation of the pilot case after the pilot actions. Description of the pilot action implementation; water and energy audit after the implementation of the pilot action; discussion related to the new PIs values; problems encountered during the pilot action implementation; costs estimation; conclusions
- Summary report on the implementation of the pilot action (per partner).



| Ве  | neficiary                    | Pilot action                                                                                                                                                                                                                                                                                                     | Equipment                                                                                                                                                                  | Water Use<br>Efficiency                    | Energy<br>Efficiency |
|-----|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|
| LP  | DEYA<br>Larissas<br>(Greece) | Purchase & Installation of Energy Recovery System (three IE3 High<br>Energy Efficiency Motors 250 KW two Inverters, one Softstarter: &<br>Installation Service) at the Central Pumping Station for Larisa Water<br>Utility                                                                                       | three IE3 High Energy Efficiency<br>Motors 250 KW two Inverters,<br>one Softstarter: & Installation<br>Service                                                             |                                            | v                    |
| PP3 | DEYA<br>Kozanis<br>(Greece)  | Purchase of Energy Recovery System (ENR) and Automated Meter<br>Reading (AMR) (700 AMR, 2 mobile reading systems, software, 3<br>ENRs DN150 & 2 ENRs DN200, training) for Kozani Water Utility                                                                                                                   | 700 AMR; 5 small hydroturbines                                                                                                                                             | √<br>Apparent<br>Iosses                    | v                    |
| PP5 | UKKO<br>(Albania)            | Water leak detection car (equipped with facilities), Leak detection<br>equipment flow analysis, aquaphone, analysis secorr 300. Water<br>losses measurement database and decision support system. Korça<br>City Zone Pressure no. 3 will represent the UKKO JSC study area that<br>will be our pilot action area | Leak detection car with<br>incorporated Water Leak<br>detection Equipment                                                                                                  | √<br>Real losses                           |                      |
| PP6 | WBN<br>(Cyprus)              | Purchase of equipment for water pressure management (PRVs) and<br>smart water meters SCADA, PILLAR, software including training of<br>personnel. Monitor operating parameters (pressure, flow, quality<br>parameters). Water Balance calculation                                                                 | <ul> <li>700 AMR in DMA25</li> <li>PRV installation in DMA 15</li> <li>Electronic sensors for water<br/>quality monitoring</li> <li>Electronic power generators</li> </ul> | √<br>• Apparent<br>losses<br>• Real losses | v                    |
| PP7 | BWA<br>(Bulgaria)            | Purchase of leak detection, monitoring and sewerage network inspection equipment. Training purposes                                                                                                                                                                                                              | Water leak detection<br>equipment to be used for<br>training & educational purposes                                                                                        | √<br>Horizontal<br>training                |                      |
| PP8 | Prilep (N.<br>Macedonia)     | Purchase of leak detection system and measuring equipment, GIS software for "Water supply and drainage". Water losses measurement database and decision support system                                                                                                                                           | GIS software and leak detection<br>system and measuring<br>equipment                                                                                                       | √<br>Real losses                           |                      |

#### Balkan-Mediterranean WATenERgy CYCLE

#### WP5: Joint Pilot Actions – Water or Energy Efficiency?



#### WP5: Joint Pilot Actions – Water Use Efficiency

## **Real Losses**

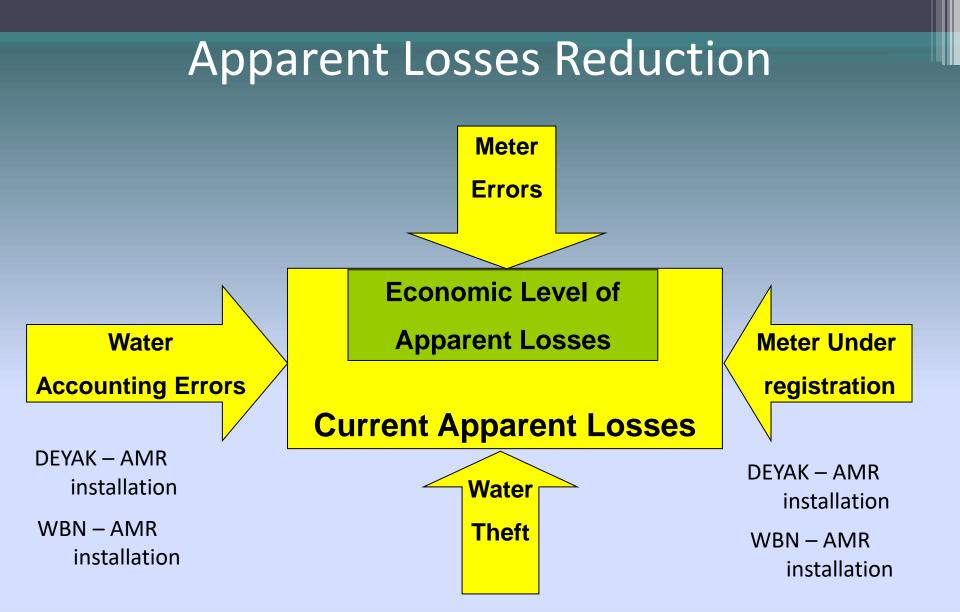
PP5: Supply of leak detection car and equipment

PP6: PRV in DMA 15

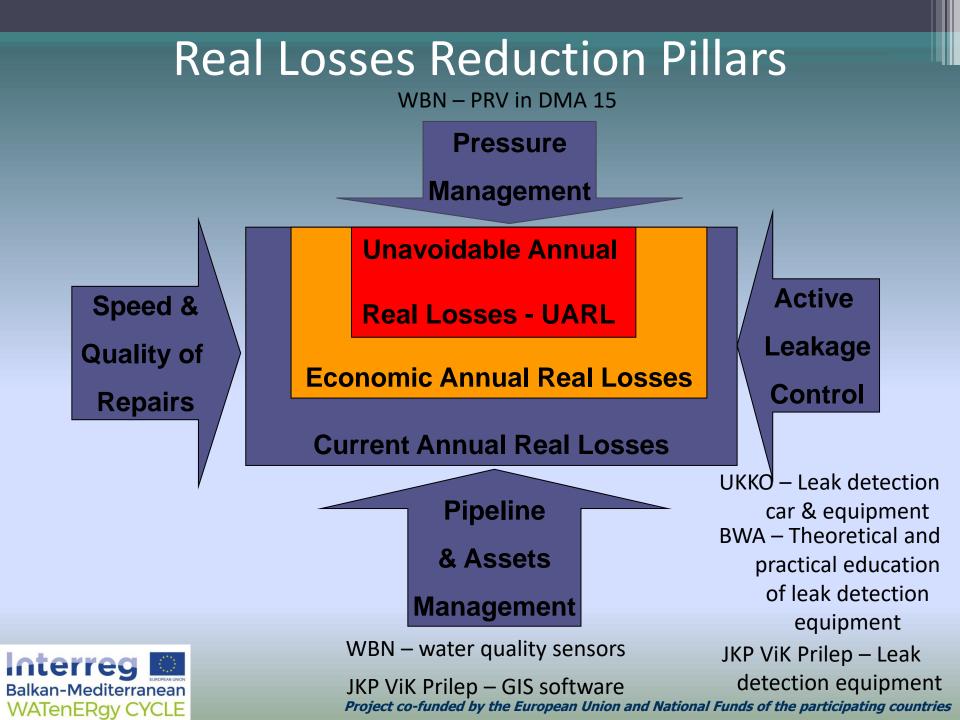
PP6: electronic sensors for monitoring water quality (indirect effects on pipes)

PP7: theoretical and practical education of water leak detection equipment

PP8: GIS software


PP8: leak detection equipment

# Apparent Losses


PP3: Installation of 700 AMR

PP6: Installation of 700 AMR

Balkan-Mediterranean WATenERgy CYCLE







## Initial status – pilot areas characteristics

| General Data                     | Larissa (GR)             | Kozani (GR)           | Korca (AL)                  | WBN (CY) – DMA25 | WBN (CY) – DMA15 | BWA (BG)                                                     | Prilep (FYROM)                                                                                             |  |  |  |
|----------------------------------|--------------------------|-----------------------|-----------------------------|------------------|------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Total population served          | 162,591 (2011<br>census) |                       | 4,150                       | 1,909            | 22,766           | 212,877                                                      | 76,768                                                                                                     |  |  |  |
| Total area covered<br>(Km²)      | 335.12                   | 0.433 Km <sup>2</sup> | 1.2                         | 2.0              | 8.0              | 6,400                                                        | 1,194.44                                                                                                   |  |  |  |
| Total pipes' length<br>(Km)      | 1,078                    | 9.696                 | 25                          | 21.5             | 85.0             |                                                              | 247.76                                                                                                     |  |  |  |
| Mean altitude (m)                | 67                       | 672.9                 | 945                         | 325              | 135.0            | 400                                                          | 550-700                                                                                                    |  |  |  |
| Mean operating<br>pressure (atm) | 4.3                      |                       | 6-8                         | 1.8              | 3.3              | 7                                                            | 3.5                                                                                                        |  |  |  |
| material, diameter)              |                          | PVC as follows:       |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
| Diameter                         | Length (m)               | Age (years)           |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
|                                  |                          | 20                    |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
|                                  |                          | 20                    |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
|                                  | 575                      | 20                    |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
| 200                              | 1,529                    | 20                    |                             |                  |                  |                                                              |                                                                                                            |  |  |  |
|                                  | 9,697                    |                       | polyethylene; since<br>2000 |                  | 160mm; 30 years  | galvanized steel,<br>ductile iron, PVC and<br>PE; Since 1936 | DN700mm;<br>DN600mm;<br>DN500mm;<br>DN400mm;<br>DN300mm;<br>DN315mm;<br>Secondary network<br>LN 200-50 mm; |  |  |  |
| No. of service<br>connections    | 37,500                   | 235                   | 965                         | 704              | 4,469            | 52,083                                                       | 19,144                                                                                                     |  |  |  |
| No. of water<br>meters           | 82,737                   | 1,154                 | N/A                         | N/A              | N/A              | N/A                                                          | N/A                                                                                                        |  |  |  |

#### Ex-ante & ex-post WB evaluation

|                                 | DEYAL      |            | DEYAK   |         | SH.A UKKO |         | WBN – DN  | IA 25         | WBN – DMA 15 |         | JKP ViK Prilep |           |
|---------------------------------|------------|------------|---------|---------|-----------|---------|-----------|---------------|--------------|---------|----------------|-----------|
|                                 | 2017       | 2019       | 2017    | 2019    | 2017      | 2019    | 2017      | 2019          | 2017         | 2019    | 2017           | 2019      |
| Sustam Input Valuma             | 15 200 250 | 15 770 607 |         |         | 250 250   | 242.002 | 1 221 267 | 1.304.1<br>80 |              | 212 200 | 7 702 200      | 8.399.875 |
| System Input Volume             | 15.899.359 | 15.779.607 | 509.522 | 509.522 | 258.258   | 243.002 | 1.331.267 | 80            | 174.305      | 212.390 | 7.793.289      | 3.953.170 |
| Authorized Consumption          | 12.532.914 | 12.211.089 | 214.679 | 237.275 | 188.612   | 182.330 | 852584    | 868.766       | 112.524      | 124.516 | 3.395.071      |           |
| Billed Authorized Consumption   | 11.599.694 | 11.283.286 | 212.553 | 234.926 | 188.572   | 182.290 | 845924    | 868.766       | 112.524      | 123.454 | 3.357.446      | 3.688.492 |
| Billed Metered Consumption      | 11.599.694 | 11.283.286 | 212.553 | 234.926 | 188.572   | 182.290 | 845.924   | 868.766       | 112.524      | 123.454 | 3.357.446      | 3.688.492 |
| Billed Unmetered Consumption    | 0          | 0          | 0       | 0       | 0         | 0       | 0         | 0             | 0            | 0       | 0              | 0         |
| Unbilled Authorized Consumption | 933.220    | 927.803    | 2.126   | 2.349   | 40        | 40      | 6.660     | -             | 0            | 1.062   | 37.625         | 264.678   |
| Unbilled Metered Consumption    | 933.220    | 927.803    | 0       | 0       | 35        | 40      | 0         | 0             | 0            | 0       | 36.425         | 14.678    |
| Unbilled Unmetered Consumption  | 0          | 0          | 2.126   | 2.349   | 5         | 0       | 6.660     | 0             | 0            | 1.062   | 1.200          | 250.000   |
| Revenue Water                   | 11.599.694 | 11.283.286 | 212.553 | 234.926 | 188.572   | 182.290 | 845.924   | 868.766       | 112.524      | 123.454 | 3.357.446      | 3.688.492 |
| Water Losses                    | 3.366.445  | 3.568.518  | 294.843 | 272.247 | 69.646    | 60.672  | 478.683   | 435.414       | 61.781       | 87.874  | 4.398.218      | 4.446.705 |
| Apparent Losses                 | 1.550.957  | 1.511.790  | 26.350  | 5.095   | 31.302    | 50.386  | 33.290    | 32.600        | 4.360        | 18.560  | 733.574        | 59.123    |
| Unauthorized Consumption        | 158.994    | 157.796    | 5.095   | 5.095   | 23.949    | 320     | 6.660     | 6.520         | 870          | 1.062   | 700.000        | 40.588    |
| Meter and Metering Errors       | 1.391.963  | 1.353.994  | 21.255  | 0       | 7.353     | 50.066  | 26.630    | 26.080        | 3.490        | 17.498  | 33.574         | 18.535    |
| Real Losses                     | 1.815.488  | 2.056.728  | 268.493 | 267.152 | 38.344    | 10.286  | 445.393   | 402.814       | 57.421       | 69.314  | 3.664.644      | 4.387.582 |
| Non-Revenue Water               | 4.299.665  | 4.496.321  | 296.969 | 274.596 | 69.686    | 60.712  | 485.343   | 435.414       | 61.781       | 88.936  | 4.435.843      | 4.711.383 |
| MCD                             | 3.001.845  | 3.439.716  | -       |         |           |         | 292.300   | 336.425       | 26.334       | 27.746  |                |           |
| Accounted for NRW               | 1.297.820  | 1.056.605  | 296.969 | 274.596 | 69.686    | 60.712  | 193.043   | 98.989        | 35.447       | 61.190  | 4.435.843      |           |



#### Ex-ante & ex-post WB evaluation

- DEYAL: NRW level in 2017 was 4,299,665m<sup>3</sup>, representing 27.04% of SIV and in 2019 NRW is 4,496,321m<sup>3</sup>, representing 28.49% of SIV.
- DEYAK: NRW level in 2017 was 296,969 m<sup>3</sup>, representing 58.3% of SIV and in 2019 NRW level is 274,596m<sup>3</sup> representing 53.89% of SIV.
- Korce UKKO: NRW level in 2017 was 69,686 m<sup>3</sup>, representing 26.98% of SIV and in 2019 NRW is 60,712 m<sup>3</sup>, representing 24.98% of SIV.
- WBN DMA 25: the water balance showed that NRW level in 2017 was 61,781 m<sup>3</sup> representing 35.44% of SIV, while in 2019 it is 88,936 m<sup>3</sup>, representing 41.87% of SIV.
- WBN DMA 15: the water balance showed that NRW level in 2017 was 485,343 m<sup>3</sup> representing 36.46% of SIV, while in 2019 it is 435,414 m<sup>3</sup>, representing 33.39% of SIV.
- JPK ViK Prilep: NRW was estimated to be 4,435,843 m<sup>3</sup> for 2017, representing 56.92% of the SIV, while in 2019 NRW is 4,711,383 m<sup>3</sup>, representing 56.09% of the SIV.
- BWA: the water balance could not provide any insights as the pilot action was mainly the training and education of the staff.



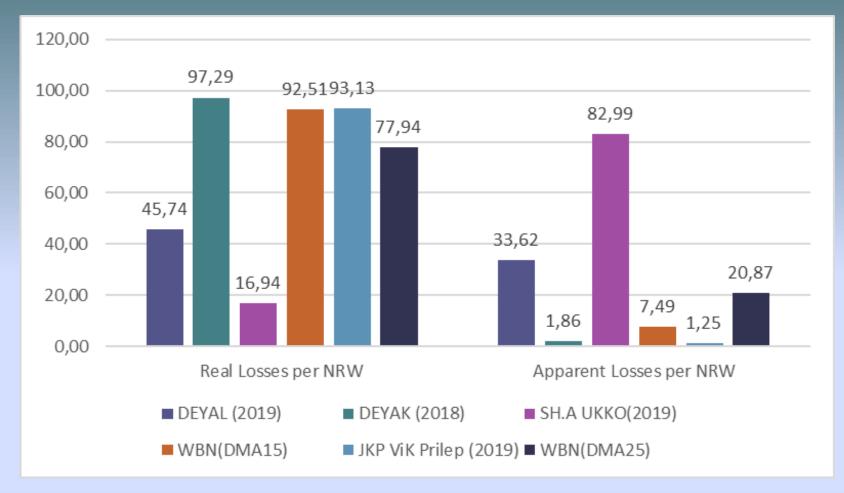
#### Ex-ante & ex-post PIs

| Performance Indicators                  | Units                    | D          | EYAL   | DEY      | DEYAK  |       | SH.A UKKO |        | WBN-DMA 25 |        | WBN-DMA 15 |        | JKP ViK Prilep |  |
|-----------------------------------------|--------------------------|------------|--------|----------|--------|-------|-----------|--------|------------|--------|------------|--------|----------------|--|
|                                         |                          | 2017       | 2019   | 2017     | 2019   | 2017  | 2019      | 2017   | 2019       | 2017   | 2019       | 2017   | 2019           |  |
| Inefficiency of use of water resources  | %                        | 11.42      | 13.03  | N/A      |        | 24.02 | 4.23      | 32.94  | 32.63      | 33.46  | 30.89      | 47.02  | 52.23          |  |
| Water losses per connection             | m <sup>3</sup> /conn/day | 89.77      | 95.16  | 1,254.78 | 1,158  | 72.17 | 62.87     | 87.76  | 124.82     | 107.11 | 97.43      | 175.56 | 177.50         |  |
| Water losses per mains length           | m³/Km/year               | 8.56       | 9.07   | 83.36    | 76.97  | 7.63  | 6.65      | 7.87   | 11.2       | 15.59  | 14.18      | 48.63  | 51.10          |  |
| Apparent losses                         | %                        | 9.75       | 9.58   | 5.17     | 1.00   | 2.95  | 20.73     | 2.50   | 8.74       | 2.50   | 2.50       | 9.41   | 0.70           |  |
| Apparent losses per system input volume | %                        | 9.75       | 9.58   | 5.17     | 1.00   | 2.95  | 20.73     | 2.50   | 8.74       | 2.50   | 2.50       | 9.41   | 0.70           |  |
| Real losses per connection              | L/conn/day               | 132.6<br>4 | 150.26 | 3,130.55 | 3,114  | 176.1 | 29.20     | 223.46 | 269.74     | 273.05 | 246.95     | 400.77 | 479.83         |  |
| Real losses per mains length            | L/Km/day                 | 4,614      | 5,227  | 75,912   | 75,533 | 6,797 | 1,127     | 7,317  | 8,832      | 14,509 | 13,122     | 40,523 | 50,422         |  |
| Infrastructure Leakage Index (ILI)      | -                        | 2.14       | 2.42   | 11.6     | 11.6   | 16.2  | 0.3       | 8.8    | 10.66      | 6.26   | 6.04       | 10.38  | 12.51          |  |
| Unmetered water                         | %                        | 21.17      | 22.61  | N/A      | N/A    | 26.97 | 24.97     | 35.44  | 41.87      | 36,46  | 33.39      | 56.45  | 55.91          |  |
| Non-revenue water by volume             | %                        | 27.04      | 28.49  | 58.28    | 53.89  | 26.98 | 24.98     | 35.44  | 41.87      | 36.46  | 33.39      | 56.92  | 56.09          |  |
| Revenue Water as % of SIV               | %                        | 72.96      | 71.51  | 41.72    | 46.11  | 73.02 | 75.02     | 64.56  | 58.13      | 63.54  | 66.61      | 43.08  | 43.91          |  |
| Real Losses as % of SIV                 | %                        | 11.42      | 13.03  | 52.70    | 52.43  | 24.02 | 4.23      | 32.94  | 32.64      | 33.46  | 30.89      | 47.02  | 52.23          |  |
| Real Losses as % of NRW                 | %                        | 42.22      | 45.74  | 90.41    | 97.29  | 89.01 | 16.94     | 92.94  | 77.94      | 91.77  | 92.51      | 82.61  | 93.13          |  |
| Apparent Losses as % of NRW             | %                        | 36.07      | 9.58   | 8.87     | 1.86   | 10.93 | 20.73     | 7.06   | 20.87      | 6.86   | 7.49       | 16.54  | 1.25           |  |



#### Ex-post – PIs (2019 base year) Revenue Water, Apparent Losses, Real Losses, NRW






### Ex-post – PIs (2019 base year) ILI



#### Balkan-Mediterranean WATenERgy CYCLE

#### Ex-post – PIs (2019 base year) Real Losses & Apparent Losses as % of NRW





## Ex-post – Results (1/4)

- DEYAL:
  - real losses are the major part of NRW representing 11.50% of SIV or 129.29L/connection/day in 2017 while in 2019 real losses represent 13.03% of SIV or 150.26L/connection/day.
  - Apparent losses represent 9.74% of SIV in 2017 and 9.58% of SIV in 2019.
  - ILI value for 2017 is 2.14 while for 2019 it is 2.42.
  - DEYAL implemented a pilot action targeting energy recovery, thus the comparison of the water balance and PIs for 2017 and 2019 is not expected to provide any sufficient conclusions regarding the pilot action
- DEYAK:
  - real losses are the major part of NRW representing 52.7% of SIV or 3,130L/connection/day in2017 while in 2019 real losses are 52.43% of SIV or 3,114L/connection/day.
  - Apparent losses represent 5.17% of SIV in2017 and 1% of SIV in 2019.
  - ILI value for 2017 is 11.6, while for 2019 it remains the same.
- Korce UKKO:
  - real losses are the major part of NRW representing 24.12% of SIV or 176.1L/connection/day while in 2019 real losses are 4.23% of SIV or 29.2L/connection/day.
  - Apparent losses represent 2.84% of SIV in 2017 while in 2019 apparent losses are 20.73% of SIV.
  - ILI value for 2017 is 16.2 while for 2019 it is 0.3.
  - apparent losses were underestimated. The water utility should perform a pilot activity to better estimate water theft and meters under-registration.



## Ex ante – Results (2/4)

- WBN DMA25:
  - real losses are the major part of NRW representing 32.94% of SIV or 223L/connection/day in 2017 while in 2019 real losses are 32.64% of SIV or 269L/connection/day.
  - Apparent losses represent 2.5% of SIV in 2017 and 8.74% in 2019. ILl value for 2017 is 8.8 while in 2019 it is 10.65.
  - estimations for DMA25 are elaborated using the top-down approach for 2017 and the bottomup one for 2019 → apparent losses and real losses for 2017 are based on assumptions and estimations and cannot be taken as reliable. For 2019, the estimations are reliable. It is important to show the impacts of AMR installation in the case of DMA25.
- WBN DMA15:
  - real losses are the major part of NRW representing 33.46% of SIV or 273L/connection/day while in 2019 real losses are 30.89% of SIV or 254L/connection/day.
  - Apparent losses represent 2.5% of SIV for both years.
  - ILI value in 2017 is 6.25 while in 2019 is reduced to 6.04



## Ex ante – Results (3/4)

- Blagoevgrad (BWA case):
  - real losses represent the major part of NRW, up to 48.45% of SIV or 695.07Lt/connection/day.
  - Apparent losses represent 10.08% of SIV.
  - the pilot action of BWA had a rather training and educational character during the pilot action BWA trained 6 managers and engineers from the WSS of Blagoevgrad & 20 students were educated regarding leakage detection activities in water distribution networks.
- JKP Vik Prilep:
  - real losses represent the major part of NRW level, up to 47.02% of the SIV or 400.77 L/connection/day in 2017, while in 2019 real losses are 52.23% of SIV or 479.83L/connection/day.
  - Apparent losses account for 9.41% of the SIV in 2017 while in 2019 apparent losses are 0.70% of SIV.
  - ILI value is 10.38 in 2017 while in 2019 it is 12.51.
  - Although real losses are higher in 2019, NRW levels are lower high real losses are due to inaccurate measurements and assumptions when estimating the WB of 2017.



### Ex ante – Results (4/4)

- NRW levels are high for JKP ViK Prilep pilot case (56.09%) followed by DEYAK (53.89%) while Korce has the lowest NRW level (24.98%) in 2019
- Real losses as % of SIV are high for DEYAK (52.43%) followed by JKP ViK Prilep (52.23%) while the lowest values is the one of UKKO (4.23%).
- Real losses as % of NRW are high for DEYAK (97.29%) followed by JKP ViK Prilep (93.13) while the lowest one is from UKKO (16.94%).
- The highest ILI values for 2019 is the one from JKP ViK Prilep (12.51) followed by DEYAK (11.6) and the lowest one is from UKKO (0.3)
- For apparent losses the highest values are the ones from UKKO (20.73% of SIV) followed by DEYAL (9.58) and the lowest one is from JKP ViK Prilep (0.7%).



#### Real Losses

PP5: Supply of leak detection car and equipment

#### PP6: PRV in DMA 15

PP6: electronic sensors for monitoring water quality (indirect effects on pipes)

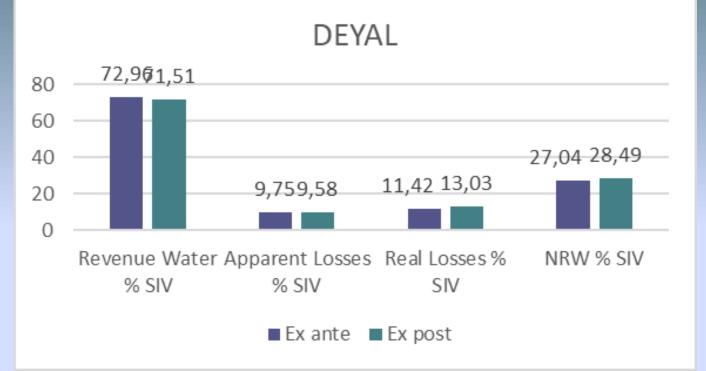
PP7: theoretical and practical education of water leak detection equipment

PP8: GIS software

PP8: leak detection equipment

Apparent Losses

PP3: Installation of 700 AMR

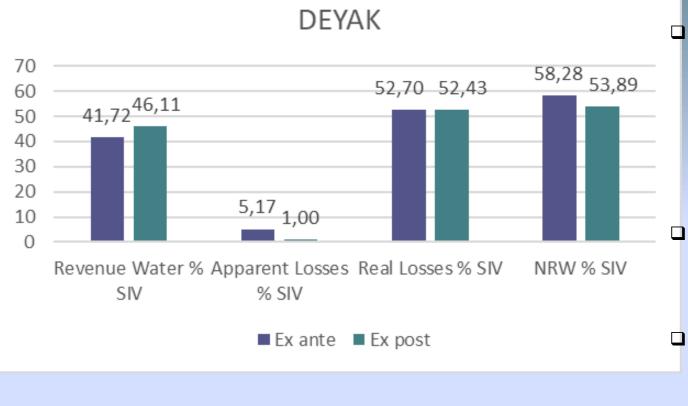

PP6: Installation of 700 AMR

#### **Pilot Actions Results**

- NRW reduction
- Real losses reduction
- Leak events reduction
- Leaks detection
- Energy cost reduction
- Water production cost reduction
- □ Apparent losses reduction
- □ Labour cost reduction
- □ Recording of water use profiles
- Define areas with high water use
- Maintenance and operation costs minimization
- Continuous supply of information without depending in the maintenance of the power supply
- □ Underground cadastre
- Improved customer service



### Ex-post comparison DEYAL pilot case

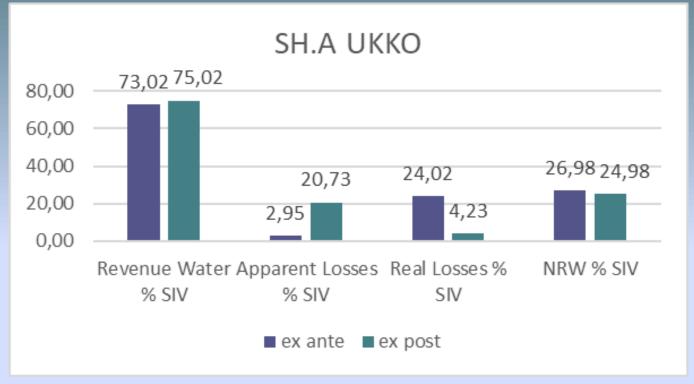



#### <u>Pilot Actions</u> <u>Results</u>

No conclusion drawn as the pilot action is addressed to energy recovery



### Ex-post comparison DEYAK pilot case

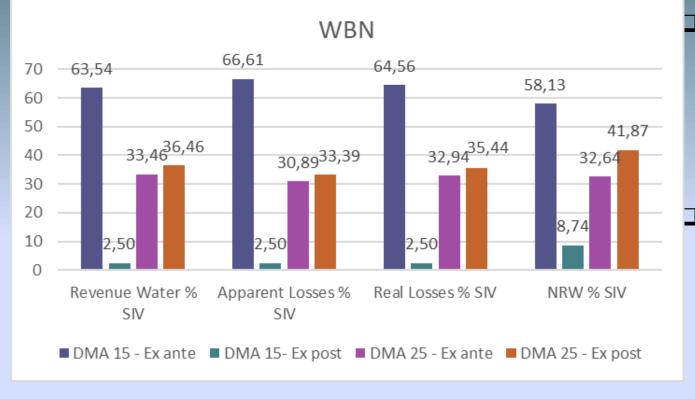



#### Pilot Actions Results

- Replacement of 700 water meters with AMRs
- From the analysis of the 82 AMRs installed in parallel with the existing water meters, it was shown that the deviation in registrations was from – 2.79% to 12.55% depending on the water meter age.
  - Water meters aged 2 years register higher water volumes than the consumed ones (2.79% to 1.34%).
- Water meters aged 9 years were found to register higher water volumes (2.26%) to under-register (1.88%).
- Water meters aged more than 15 year underregistered from 12.55% to 15.00%.



### Ex-post comparison UKKO pilot case



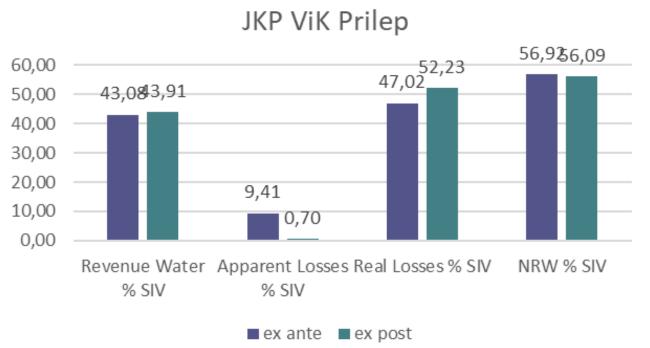

#### Pilot Actions Results

- there is a significant reduction in real losses but at the same time apparent losses were underestimated.
- Total water saving in UKKO was 4,866m<sup>3</sup> in the 14 months of the pilot action implementation, meaning that the equivalent population that could be supplied with water is 965 people.
- Additional benefits
   include the energy
   savings.



### Ex-post comparison WBN pilot case




#### **Pilot Actions Results**

In DMA 25 700 AMRs are installed → although the results gathered are not representative, revenue water is increased

In DMA 15, a PRV is installed to reduce pressure → real losses are reduced radically (from 64.56% of SIV to 2.5%) and NRW is also reduced



## Ex-post comparison JKP Vik Prilep pilot case



#### **Pilot Actions Results**

- I hidden leaks are detected by using the equipment, improving at the same time the customer service.
- The time to repair failures is reduced to 30%.
- NRW level is reduced from 56.92% in 2017 to 56.09% in 2019
- The water utility detected 58 leaks out of which 38 leaks on private connections and 20 leaks found in water supply network.



### Ex-post comparison BWA pilot case

#### **Pilot Actions Results**

- the results obtained from the pilot action is increased awareness of local population, as well as the specialists working in WSS Operator of Blagoevgrad that could lead to future improvement of the situation.
- As non-governmental organization BWA pilot activities were aimed at knowledge and good practices dissemination.
- There may not be water saving achieved by the current pilot actions, but it is expected that the general activities carried out will help with the improvement of water sector in Bulgaria regarding water usage management, water loss reduction and subsequently on last place to increase the energy efficiency.



#### WATenERgy CYCLE

Urban water full cycle: from its source to its end-users and back to the environment WP5 Joint Pilot Actions Joint Del. 5.2 Ex-Post Water efficiency evaluation



PP3 - Municipal Enterprise for Water Supply and Sewerage of Kozani

> PP4 - University of Thessaly-Special Account Funds for Research-Department of Civil Engineering

**PP2** - General Secretariat for Natural Environment and Water