

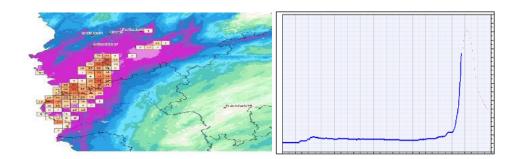
TAKING COOPERATION FORWARD

Final Conference Webmeeting | 02 February 2022

Flood disasters in July 2021 in Germany: how can we better adapt to extreme events

Peter Heiland INFRASTRUKTUR & UMWELT Professor Böhm und Partner

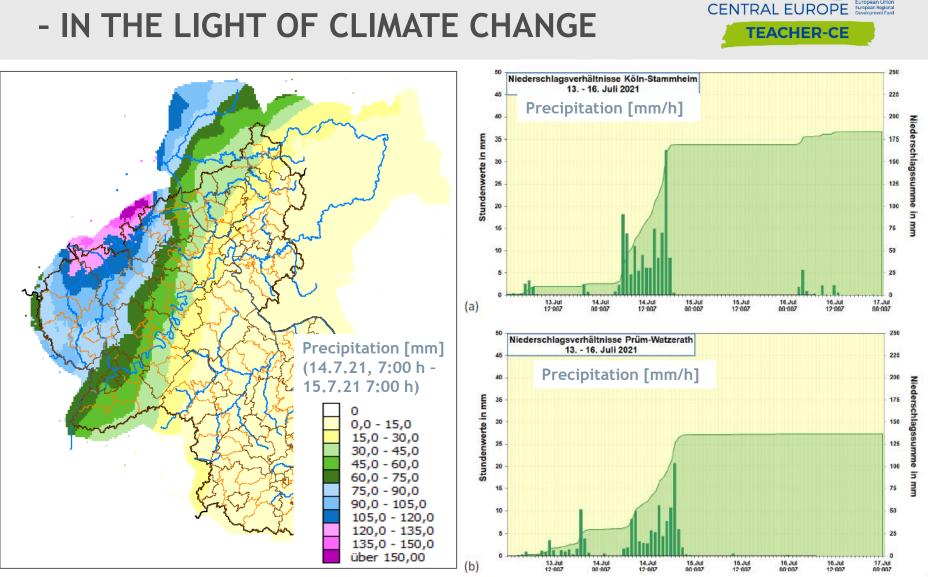
FLOOD DISASTERS IN JULY 2021 IN GERMANY: HOW CAN WE BETTER ADAPT TO EXTREME EVENTS


The July-2021 events
in the light of climate
change

2. Lessons learnt so far: *what are first conclusions*

3. how can we better adapt to extreme events

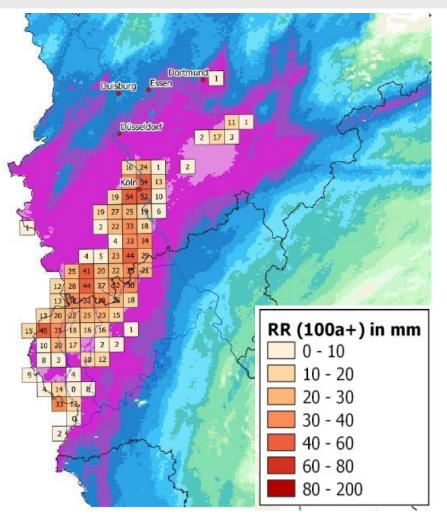
Floods 14./15. July 22 in Western Germany


- 180 cities and villages with damages
- 184 persons died
- 33.000.000.000 € damage

Figures:

- Center for Disaster Management and Risk Reduction Technology (7/2021)
- LfU, Mainz, 7/2021

TAKING COOPERATION FORWARD


Source: German Weather Service DWD; in: Center for Disaster Management and Risk Reduction Technology (7/2021)

1. THE JULY-2022 EVENTS

TAKING COOPERATION FORWARD

Interre

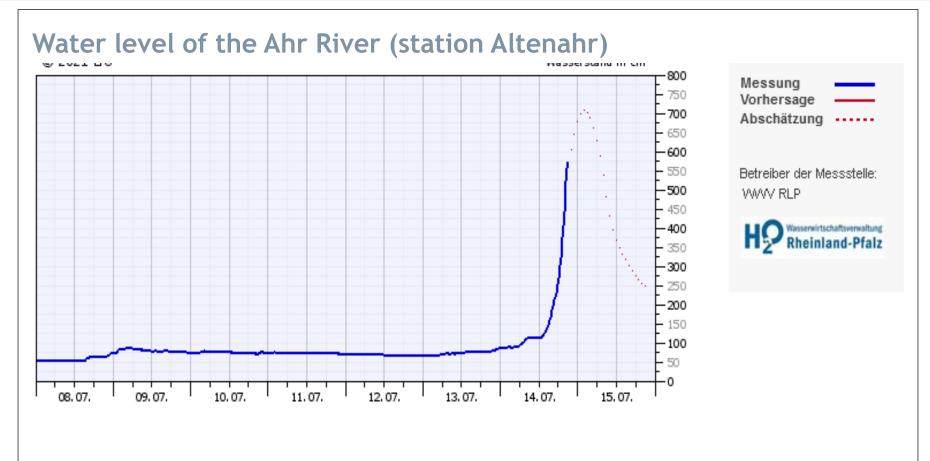
Grid cells in which the RADOLAN maximum precipitation value (1 km²) measured on 14 July 2021 exceeded the previous KOSTRA (statistical rainfall data) maximum for a 100-year precipitation event (in mm).

The distribution of 24-hour precipitation according to RADOLAN on 14 July 2021 is highlighted in color.

Conclusion:

the event exceeded the reference data used for modelling 100-year events partly by far.

Source: Center for Disaster Management and Risk Reduction Technology (July 2021)



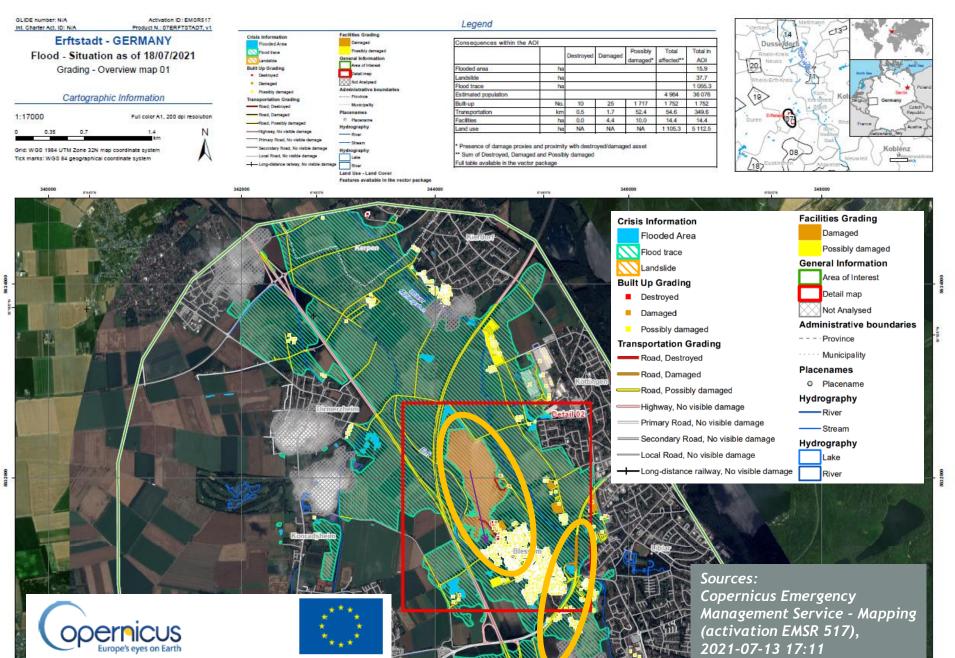
Köln-Stammheim		Schneifelforsthaus			
Datum	BL	RR24h	Datum	BL	RR24h
14.07.2021	NW	153,5	14.07.2021	RP	124,1
19.07.2017	NW	95,0	07.10.1982	RP	73,3
30.08.1968	NW	91,3	16.09.2000	RP	70,0
02.06.1961	NW	68,8	03.06.1999	RP	69,7
29.06.2005	NW	68,3	06.02.1984	RP	63,8
11.07.1958	NW	53,7	03.11.1977	RP	61,6
08.07.2014	NW	49,1	13.01.1900	RP	59,3
20.07.1965	NW	47,3	12.02.1962	RP	57,4
13.06.1995	NW	46,5	21.12.1991	RP	54,9
09.06.1949	NW	45,4	09.08.1979	RP	51,7

List of the 10 wettest days and the 24-hour rainfall amounts of the entire measurement series at the stations in Cologne-Stammheim and at the Schneifelforsthaus. The length of the measurement series in both cases covers about 70 years (data: DWD).

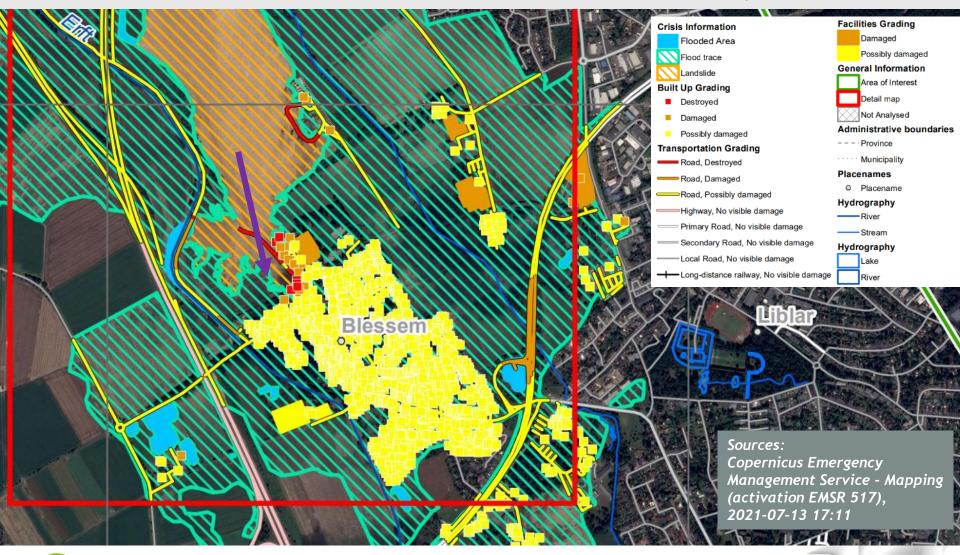
Source: Center for Disaster Management and Risk Reduction Technology (July 2021)

Letzter Messwert: 14.07.2021 20:45 Uhr, 575 cm ● >= 100 jährliches Hochwasser Vorhersage der HVZ Rheinland-Pfalz vom 14.07.2021 21 Uhr

Source: Federal Environment Agency Rhineland-Palatinate (7/2021)


Year	Discharge	Reconstructed historic (H) and	
ισαι	[m ³ /s]	measured (G) events	
21.06.1804	1208	H* ¹	
<mark>15.07.2021</mark>	<mark>1000</mark>	G*2	
13.06.1910	500	Н	
24.06.1888	280	Н	
02.06.2016	236	G	
16.01.1918	240	Н	
21.12.1993	214	G	
30.05.1984	192	G	
16.03.1988	190	G	
11.12.1966	178	G	
31.01.1961	175	G	
11.01.1920	170	Н	
23.01.1995	167	G	
23.11.1984	165	G	
07.02.1984	158	G	
12.01.1993	145	G	

Reconstructed historic and measured flood events: discharge (Station Altenahr)



Flood marks in Dernau, 2016

Source: Federal Environment Agency Rhineland-Palatinate (7/2021)

TEACHER-CE

Wassertiefen - Gebiete ohne technischen Hochwasserschutz

0 - 0,5 m 0,5 - 1 m 1 - 2 m 2 - 4 m > 4 m	Potential Water depth in not protected areas
---	--

DUD/4 EIIISIdUL

- DIESSEU

Wassertiefen - hochwassergeschützte Gebiete

	-
0 - 0,5 m	
0,5 - 1 m	Potential Water
1 - 2 m	depth in
2 - 4 m	
> 4 m	protected areas

Fließgeschwindigkeiten

↑ > 0,2 - 0,5 m/s	
 <mark>↑</mark> > 0,5 - 2 m/s	Potential velocity in
t > 2 m/s	case of flooding

Hochwasserabwehrinfrastruktur

- Deiche, mobile und stationäre Hochwasserschutzwände
- Gesteuerte Flutpolder / Hochwasserrückhaltebecken

💐 Flood Hazard Map (2019)Scenario: extreme flood event

Sources:

Flood Hazard Map Northrhine Westfalia (2019); online https://www.elwasweb.nrw.de /elwas-web/map/index.xhtml

AN STREAM LABOR

Wassertiefen - Gebiete ohne technischen Hochwasserschutz

0 - 0,5 m	Potential Water
0,5 - 1 m	
1 - 2 m	depth in not
2 - 4 m	protected areas
> 4 m	Protected areas

Wassertiefen - hochwassergeschützte Gebiete

0 - 0,5 m 0,5 - 1 m	Potential Water
1 - 2 m 2 - 4 m > 4 m	depth in protected areas

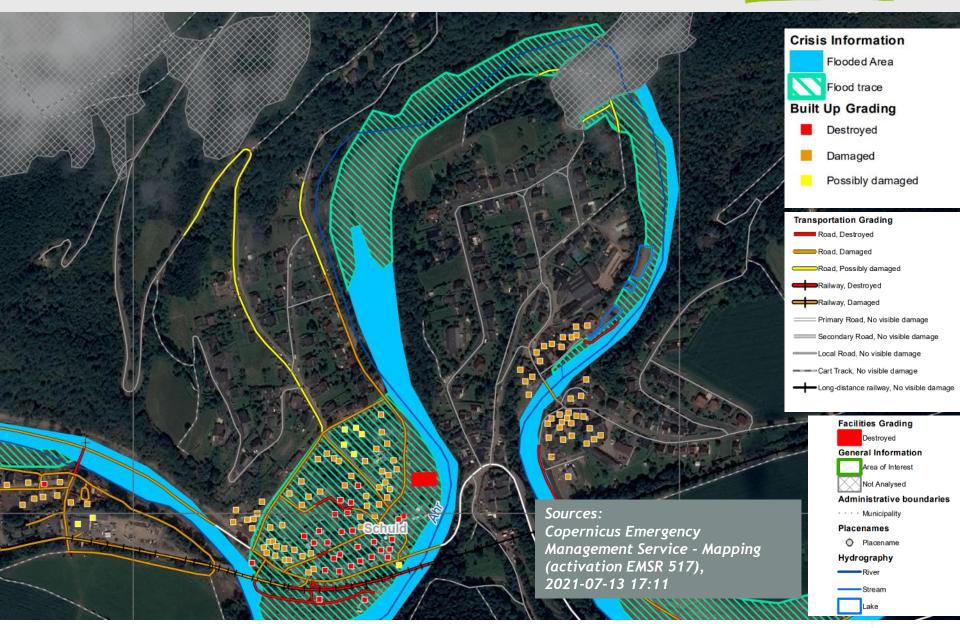
Fließgeschwindigkeiten

🕇 > 0,2 - 0,5 m	/s
<mark>↑</mark> > 0,5 - 2 m/s	Potential velocity in
♦ 2 m/s	case of flooding

Hochwasserabwehrinfrastruktur

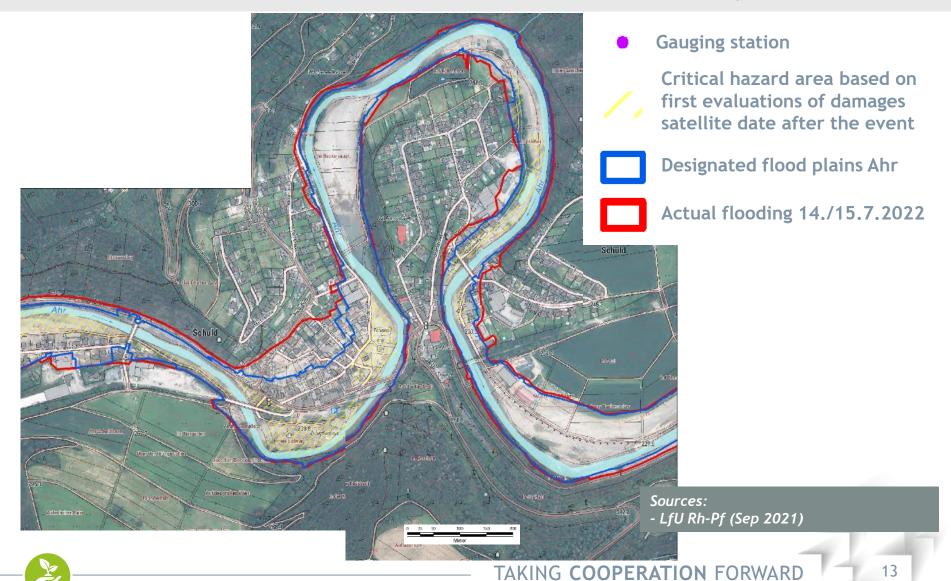
- Deiche, mobile und stationäre Hochwasserschutzwände
- Gesteuerte Flutpolder / Hochwasserrückhaltebecken

Flood Hazard Map (2019) Scenario: extreme flood event


Sources:

1

Flood Hazard Map Northrhine Westfalia (2019); online https://www.elwasweb.nrw.de /elwas-web/map/index.xhtml


2. LESSONS LEARNT SO FAR: WHAT ARE FIRST CONCLUSIONS

2. LESSONS LEARNT SO FAR: WHAT ARE FIRST CONCLUSIONS

2. LESSONS LEARNT SO FAR: WHAT ARE FIRST CONCLUSIONS

• Extreme events really happen ... now we cannot ignore that

- although many people did/do not want to know.
- in future perhaps even more.
- Small catchments are today's problem ...
 - dangerous meteorological situations are increasing
 - combined impacts of long term heavy rain, erosion, blocking, flooding
 - no sufficient forecast, danger for people (not "only" economy)
 - for large catchments we have improved over 30 years.

• Risk areas must be reviewed and redefined according CC?

- is the maximum design flood really the maximum in future?
- aren't restrictions in extreme-risk-areas adequate if we safe lifes?
- Preparedness, preparedness, preparedness ...
 - but how can we improve risk-communication? We tried since 30 years?

3. HOW CAN WE BETTER ADAPT TO EXTREME EVENTS

- (1) Improve modelling & forecast in small catchments
- (2) Close the communication-gaps during crises meteorology + hydrology + emergencies + local actors
- (3) Clear and honest risk-communication (in times without floods), improve awareness
- (4) Improve preparedness (honest information, training, self-protection)
- (5) Review and improve risk area definition and determination
- (6) Strengthen management of land use and sensible objects in risk areas

3. HOW CAN WE BETTER ADAPT TO EXTREME EVENTS

Phase 1	Phase 2		Phase 3 medium/long term
immediate	short term		
1.	2a.	2b.	3.
Vision, strategy,	Sectoral	Focussed spatial	Development
objectives	resilience	analysis /	concept /
(overarching for all	requirements	development	"Masterplan"
sectors +		restrictions &	sustainable,
cross-sectoral)	(what to consider when rebuilding /	potentials	climate adapted
Installation of a "future conference"	many different	(where is what possible,	Ahr Valley
	disciplines)	where is what to be considered; discussion/coordination with local actors!)	(overall and sectoral development)
×	\$	\$	\$

Provision of consulting offers for municipalities, planners, local actors, infrastructure operators etc.

Sources: Heiland, Peter (Aug 2021) on behalf of the parliament of Rhineland-Palatinate

TAKING COOPERATION FORWARD

3. HOW CAN WE BETTER ADAPT TO EXTREME EVENTS

We need clear guidelinies & requirements for all relevant sectors (guidance, consulting)

"Resilience-requirements": areas, design, material, organisation ...:

Preventive flood protection, technical protection, flood&heavy rain resilience

Adaptation to additional impacts of climate change

Climate protection, energy efficiency, reduction of carbon gases

Sectoral "resilience-requirements"

Aspects fo urban/village development, social aspects

Economy, agriculture, winery, tourism

Water supply, energy supply

Urban drainage, waste water collection and treatment

- Roads, railway, other transport aspects
- Cultural heritage, protection of historical building/objects

Social infrastructure, education

Nature protection, urban green, multifunctional uses

Implementation and organisation guidance - coordination - regulation - subsidising

[Legal aspects]

[Financing, funding]

Sources: Heiland, Peter (Aug 2021) on behalf of the parliament of Rhineland-Palatinate

Requirements to improve flood resilience 2) Consequent regulation of 1) Review risk assessments / 3) General requirements e.g.: risk area delineations land use: (based on actually (1) Retention areas and ponds, documented areas): a. Keep free all areas for flood channels, room for the discharge of flood waves and rivers - Floodplains (new crossheavy rain run-off (too many (2) Risk awareness and risk sections). exceptions are allowed) communication - Risk areas b. Keep free all high risk areas, - heavy rainfall risk areas. (3) **Protection works where** also those where buildings suitable and necessary were destroyed In addition: Identify and solve conflicts of (4) c. Moderate risk areas: - re-evaluate influences of land users, land owners and precautionary measures, blockages on bridges and existing risk; dialogue and protection of objects, raise debris/ bedload. solution-finding - risks from the interaction of awareness and preparedness floods and heavy rainfall Sources: Heiland, Peter (Aug 2021) on behalf of the parliament of Rhineland-Palatinate

3. HOW CAN WE BETTER ADAPT TO EXTREME EVENTS

Thank you for your attention!

Peter Heiland INFRASTRUKTUR & UMWELT Professor Böhm und Partner

https://www.interreg-central.eu/TEACHER-CE