



# Overview and global evaluation of pilot tests

Eduardo Pinilla. University of Extremadura



# Overview and global evaluation of pilot tests

 Part of GT6 "Field validation of the integrated electronic systems and cloud systems for air quality monitoring"



**A.6.1.** Air Quality Monitoring campaigns

**A.6.2.** Evaluation of results of Air Quality Monitoring campaigns

**A.6.3.** Evaluation of sensor costs

**A.6.4.** Feasibility study of sensors usage in Air Quality Monitoring networks

**A.6.5.** Citizen awareness campaigns by panels

**A.6.6.** Citizen awareness campaigns by mobile apps

**P.6.1** Pilot experiences in AQM

P.6.2
User guide for sensor data validation

P.6.3
Citizen awareness
campaigns about AQM





P.6.1 **A.6.1.** Air Quality Monitoring Pilot experiences in AQM campaigns P.6.2 **A.6.2.** Evaluation of results of Air User guide for sensor Quality Monitoring campaigns data validation **A.6.3.** Evaluation of sensor costs P.6.3 Citizen awareness **A.6.4.** Feasibility study of sensors campaigns about AQM usage in Air Quality Monitoring networks P.6.4 Publications about field **A.6.5.** Citizen awareness campaigns campaigns by panels Interreg **A.6.6.** Citizen awareness campaigns by mobile apps Sudoe European Regional Development Fund



| Sensor type                              | <u>Code</u>               | Number of units |
|------------------------------------------|---------------------------|-----------------|
| Fixed sensors (commercial)               | FEC                       | 8               |
| Fixed sensors (MOX developed by NanoSen) | FMXCS,<br>FMXCN,<br>FMXCO | 3               |
| Airborne (drone)                         | DEC                       | 1               |
| Bikes                                    | BEC                       | 8               |
| Citizens                                 | CMX                       | 10              |





# Interreg Pilottests Pilottests

| Year          | 2019 |     |     |     |     |     | 20  | 20  |     |     |     |     |     |     |     | 20  | 21  |     |    |
|---------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Month         | DEC  | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JI |
| Project month | 21   | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | ~  |
|               |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |

| Sensor type                              | <u>Code</u>               | Number of units |
|------------------------------------------|---------------------------|-----------------|
| Fixed sensors (commercial)               | FEC                       | 8               |
| Fixed sensors (MOX developed by NanoSen) | FMXCS,<br>FMXCN,<br>FMXCO | 3               |
| Airborne (drone)                         | DEC                       | 1               |
| Bikes                                    | BEC                       | 8               |
| Citizens                                 | CMX                       | 10              |

|                           |                     |     |     |     |     |     |     |     | •   |     |     |     | •   |     |     |     |     |     |     |     |
|---------------------------|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| STS                       | Month               | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN |
|                           | Project month       | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  |
|                           |                     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Place                     | Sensors             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Evora                     | FEC01-FEC02         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sines                     | FEC01-FEC02         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Badajoz                   | FEC05-FEC06         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Badajoz                   | DEC                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Monfragüe                 | FEC05-FEC06         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Badajoz                   | FMXCS, FMXCN, FMXCO |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ávila                     | FCE07-FEC08         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Navarredonda<br>de Gredos | FCE03-FEC04         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| El Barco<br>(Gredos)      | FCE03-FEC04         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Cugat                | FEC03-FEC04         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hospitalet                | FEC03-FEC04         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Adriá                | FEC03-FEC04         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Barcelona                 |                     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Cugat                | BEC01 to BEC08      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hospitalet                | BEC01 to BEC08      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Adriá                | BEC01 to BEC08      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Cugat                | CMX01 to CMX010     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hospitalet                | CMX01 to CMX010     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sant Adriá                | CMX01 to CMX010     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Toulouse                  | CMX01 to CMX010     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Évora                     | CMX01 to CMX010     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |







**A.6.1.** Air Quality Monitoring campaigns

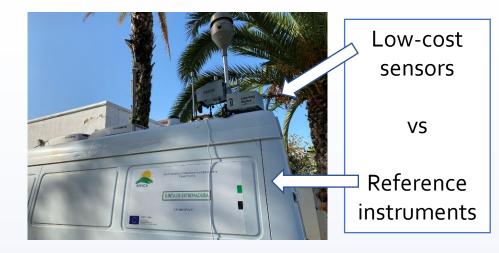
**A.6.2.** Evaluation of results of Air Quality Monitoring campaigns

**A.6.3.** Evaluation of sensor costs

**A.6.4.** Feasibility study of sensors usage in Air Quality Monitoring networks

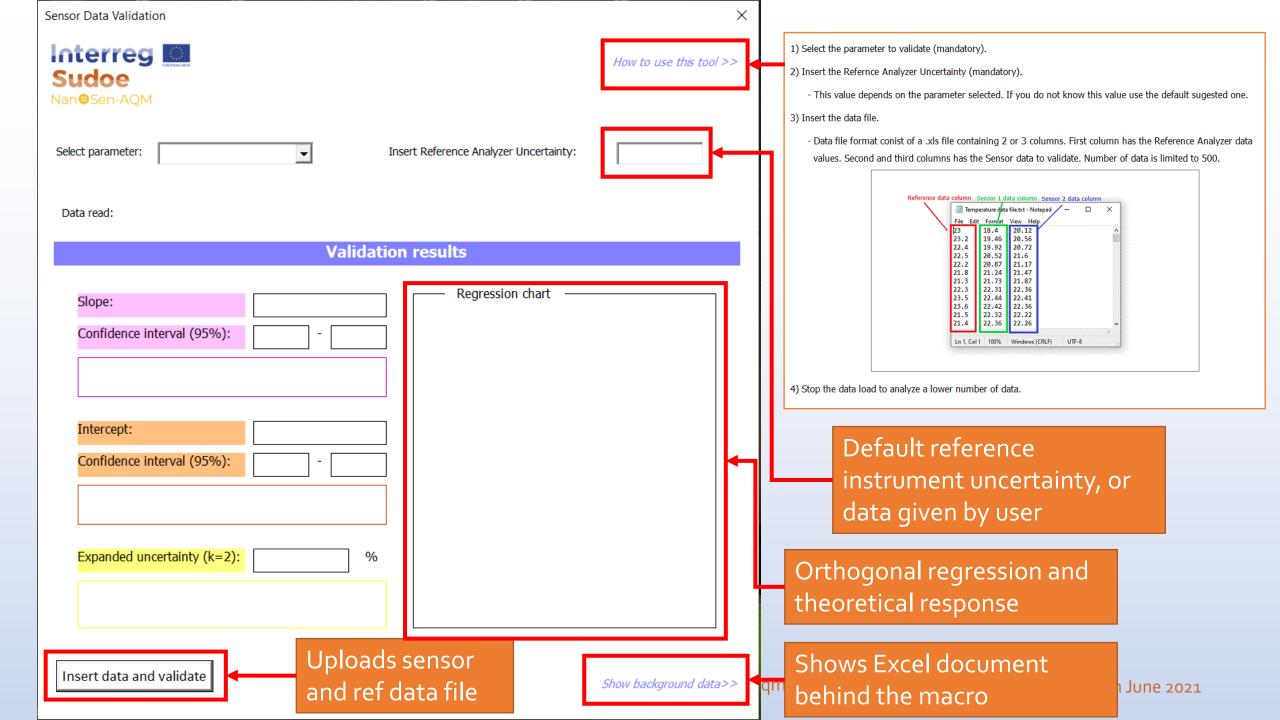
**A.6.5.** Citizen awareness campaigns by panels

**A.6.6.** Citizen awareness campaigns by mobile apps


**P.6.1** Pilot experiences in AQM

P.6.2
User guide for sensor data validation

P.6.3
Citizen awareness
campaigns about AQM








### Field validation App

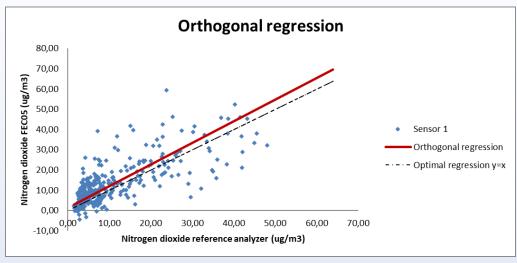
- **Excel Macro**
- Validate results of a low-cost sensor against a reference instrument, according to EU Guide for field validation of air quality sensors
- Accepts any type of paired data sets (10 min average, hourly, etc.)
- Gives advice about the overall performance of the sensor under validation



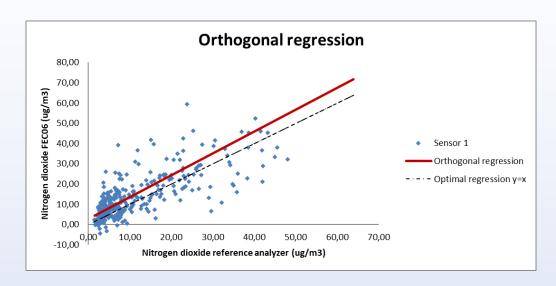
| nterreg CANDONNIAN SUdoe an @ Sen-AQM  | How to use this tool >>                |
|----------------------------------------|----------------------------------------|
| elect parameter:                       | Insert Reference Analyzer Uncertainty: |
| Data read:                             |                                        |
| Valid                                  | lation results                         |
| Slope:  Confidence interval (95%):     | Regression chart                       |
| Intercept:  Confidence interval (95%): |                                        |
| Expanded uncertainty (k=2):            | %                                      |

# Field validation App

| Parameter | Result              | Message                      |
|-----------|---------------------|------------------------------|
|           |                     | There is no systematic error |
|           | 0 within confidence | in the intercept (95%        |
| Intercept | limits              | confidence level)            |
|           |                     | There is a systematic error  |
|           | 0 out of confidence | in the intercept (95%        |
| Intercept | limits              | confidence level)            |
|           |                     | There is no systematic error |
|           | 1 within confidence | in the slope (95%            |
| Slope     | limits              | confidence level)            |
|           |                     | There is a systematic error  |
|           | 1 out of confidence | in the slope (95%            |
| Slope     | limits              | confidence level)            |


| Sensor Data Validation                                                        |                                      | ×                       |
|-------------------------------------------------------------------------------|--------------------------------------|-------------------------|
| Interreg Sudoe Nan@Sen-AQM                                                    |                                      | How to use this tool >> |
| Select parameter:                                                             | sert Reference Analyzer Uncertainty: |                         |
| Data read:                                                                    |                                      |                         |
| Validation                                                                    | n results                            |                         |
| Slope:  Confidence interval (95%):  Intercept:  Confidence interval (95%):  - | Regression chart                     |                         |
| Expanded uncertainty (k=2): %                                                 |                                      |                         |
| Insert data and validate                                                      |                                      | Show background data>>  |

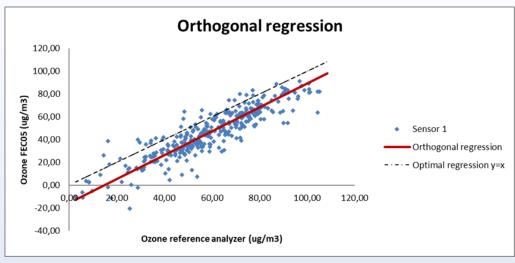
# Field validation App


| Expanded uncertainty                                                 | Value                   | Message                                                                                                |
|----------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|
| Equal to ref instrument                                              | Equal to ref instrument | The performance of<br>the sensor is<br>equivalent to the<br>performance of the<br>reference instrument |
| Less than max value according to EU Directive 2008/50/CE             | Numerical (%)           | Good                                                                                                   |
| Less than double of max value according to EU Directive 2008/50/CE   | Numerical (%)           | Questionable                                                                                           |
| Higher than double of max value according to EU Directive 2008/50/CE | Numerical (%)           | Out of control                                                                                         |



### Correlation between FECo<sub>5</sub> AND FECo<sub>6</sub> sensors and reference instrument. Multilinear regression. **NITROGEN DIOXIDE**




| -10,                         | Nitrogen | dioxide reference analyzer (ug/ | m3)         |             |
|------------------------------|----------|---------------------------------|-------------|-------------|
| FEC05                        | Value    | Standard error                  | Lower (95%) | Upper (95%) |
| Intercept                    | 1,406    | 0,691                           | 0,049       | 2,763       |
| Slope                        | 1,067    | 0,077                           | 0,916       | 1,219       |
| Rel. Exp.<br>Uncertainty (%) | 57,7     |                                 |             |             |

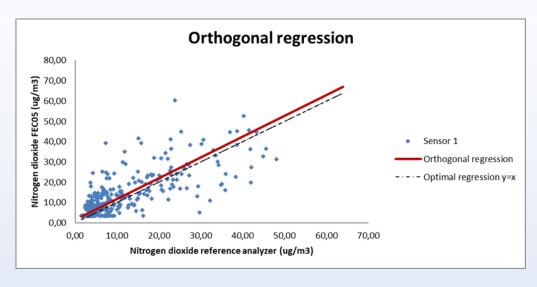


| FEC06                        | Value | Standard error | Lower (95%) | Upper (95%) |
|------------------------------|-------|----------------|-------------|-------------|
| Intercept                    | 2,725 | 0,633          | 1,482       | 3,968       |
| Slope                        | 1,074 | 0,071          | 0,934       | 1,214       |
| Rel. Exp.<br>Uncertainty (%) | 65,9  |                |             |             |



### Correlation between FECo<sub>5</sub> AND FECo<sub>6</sub> sensors and reference instrument. Multilinear regression. **OZONE**




| Ozon    | e reference analyzer (ug/m3) |                                                                                            |                                                                                                                                              |
|---------|------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|         |                              |                                                                                            |                                                                                                                                              |
| Value   | Standard error               | Lower (95%)                                                                                | Upper (95%)                                                                                                                                  |
| -15,756 | 1,676                        | -19,049                                                                                    | -12,463                                                                                                                                      |
| 1,052   | 0,025                        | 1,003                                                                                      | 1,101                                                                                                                                        |
| 35,3    |                              |                                                                                            |                                                                                                                                              |
|         | Value<br>-15,756<br>1,052    | Value         Standard error           -15,756         1,676           1,052         0,025 | Value         Standard error         Lower (95%)           -15,756         1,676         -19,049           1,052         0,025         1,003 |

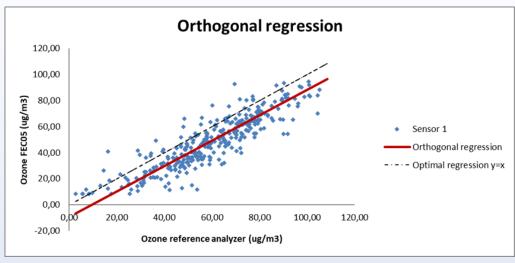
|                     |        | Orthogonal regression                 |                                                          |
|---------------------|--------|---------------------------------------|----------------------------------------------------------|
|                     | 120,00 |                                       |                                                          |
|                     | 100,00 |                                       |                                                          |
| 3)                  | 80,00  |                                       |                                                          |
| Ozone FEC06 (ug/m3) | 60,00  |                                       |                                                          |
| 900                 | 40,00  |                                       | <ul><li>Sensor 1</li><li>Orthogonal regression</li></ul> |
| one FE              | 20,00  |                                       | - · - · - Optimal regression y=x                         |
| OZO                 | 0,00   |                                       |                                                          |
|                     | -20,00 | 20,00 40,00 60,00 80,00 100,00 120,00 |                                                          |
|                     | -40,00 | Ozone reference analyzer (ug/m3)      |                                                          |

| FEC06                        | Value   | Standard error | Lower (95%) | Upper (95%) |
|------------------------------|---------|----------------|-------------|-------------|
| Intercept                    | -15,964 | 1,711          | -19,325     | -12,603     |
| Slope                        | 1,101   | 0,025          | 1,052       | 1,150       |
| Rel. Exp.<br>Uncertainty (%) | 30,0    |                |             |             |



### Correlation between FECo5 AND FECo6 sensors and reference instrument. Neural Network. **NITROGEN DIOXIDE**




| FEC05                        | Value | Standard error | Lower (95%) | Upper (95%) |
|------------------------------|-------|----------------|-------------|-------------|
| Intercept                    | 1,673 | 0,662          | 0,371       | 2,974       |
| Slope                        | 1,022 | 0,075          | 0,875       | 1,170       |
| Rel. Exp.<br>Uncertainty (%) | 46,6  |                |             |             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |       | Orth  | ogona | al regr | essio | า     |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|-------|-------|---------|-------|-------|---------------------------------|
| 80,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |       |       |       |         |       |       |                                 |
| ල 70,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |       |       |       |         |       |       |                                 |
| Fig. 70,00 (m/m) ( |                                             | •     |       |       |         |       |       |                                 |
| 50,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |       |       |       |         |       |       |                                 |
| 흥 40,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • •                                         |       | •     |       | •       |       |       | <ul> <li>Sensor 1</li> </ul>    |
| 30,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | •••   |       | •     | •       |       |       | Orthogonal regression           |
| 20,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |       | • • • |       |         |       |       | - · - · - Optimal regression y= |
| 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |       | * •   |       |         |       |       |                                 |
| 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | •     |       |       |         |       |       |                                 |
| 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,00                                       | 20,00 | 30,00 | 40,00 | 50,00   | 60,00 | 70,00 |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrogen dioxide reference analyzer (ug/m3) |       |       |       |         |       |       |                                 |

| FEC06                        | Value | Standard error | Lower (95%) | Upper (95%) |
|------------------------------|-------|----------------|-------------|-------------|
| Intercept                    | 2,249 | 0,619          | 1,033       | 3,465       |
| Slope                        | 1,038 | 0,071          | 0,898       | 1,177       |
| Rel. Exp.<br>Uncertainty (%) | 50,3  |                |             |             |



### Correlation between FECo5 AND FECo6 sensors and reference instrument. Neural Network. **OZONE**



| -20,0                        | -20,00 Ozone reference analyzer (ug/m3) |                |             |             |  |  |
|------------------------------|-----------------------------------------|----------------|-------------|-------------|--|--|
|                              |                                         |                |             |             |  |  |
| FEC05                        | Value                                   | Standard error | Lower (95%) | Upper (95%) |  |  |
| Intercept                    | -9,441                                  | 1,478          | -12,344     | -6,538      |  |  |
| Slope                        | 0,979                                   | 0,022          | 0,935       | 1,023       |  |  |
| Rel. Exp.<br>Uncertainty (%) | 36,9                                    |                |             |             |  |  |

|                     |                               | Orthogonal regression                 |                                    |
|---------------------|-------------------------------|---------------------------------------|------------------------------------|
|                     | 120,00<br>100,00              |                                       |                                    |
| Ozone FEC06 (ug/m3) | 80,00<br>60,00<br>40,00       |                                       | Sensor 1     Orthogonal regression |
| Ozone               | 20,00<br>0,00<br>0,<br>-20,00 | 20,00 40,00 60,00 80,00 100,00 120,00 | - · - · - Optimal regression y=x   |
|                     | -40,00                        | Ozone reference analyzer (ug/m3)      |                                    |

| FEC06                        | Value   | Standard error | Lower (95%) | Upper (95%) |
|------------------------------|---------|----------------|-------------|-------------|
| Intercept                    | -13,124 | 1,606          | -16,279     | -9,969      |
| Slope                        | 1,070   | 0,023          | 1,024       | 1,116       |
| Rel. Exp.<br>Uncertainty (%) | 32,0    |                |             |             |



**A.6.1.** Air Quality Monitoring campaigns

**A.6.2.** Evaluation of results of Air Quality Monitoring campaigns

**A.6.3.** Evaluation of sensor costs

**A.6.4.** Feasibility study of sensors usage in Air Quality Monitoring networks

**A.6.5.** Citizen awareness campaigns by panels

**A.6.6.** Citizen awareness campaigns by mobile apps

**P.6.1** Pilot experiences in AQM

P.6.2
User guide for sensor data validation

Citizen awareness campaigns about AQM

P.6.3





# Deliverable E.6.3.1

Table 11: Estimated cost of a multisensor obtained by mass production with optimized processes.

|                                                                                    | Cost (€) | Nºchip / wafer | Total/chip (€) |
|------------------------------------------------------------------------------------|----------|----------------|----------------|
| Wafer (Process in parallel of 3 Wafers) Packaging =30 €/unit Packaging = 10€/unit) | 20.000   | 200            | 130<br>110     |
| Wafer (Process in parallel of 8 Wafers) Packaging =30 €/unit Packaging = 5 €/unit  | 7.500    | 200            | ≈ 68<br>≈ 43   |

- The cost of the sensors developed in the project can be significantly reduced, reaching values similar to LCS available on the market.
- To achieve this, the preparation processes must be optimised, and a suitable equipment must be available for mass production, in order to process at least 8 wafers in parallel as shown in table 11.



**A.6.1.** Air Quality Monitoring campaigns

**A.6.2.** Evaluation of results of Air Quality Monitoring campaigns

**A.6.3.** Evaluation of sensor costs

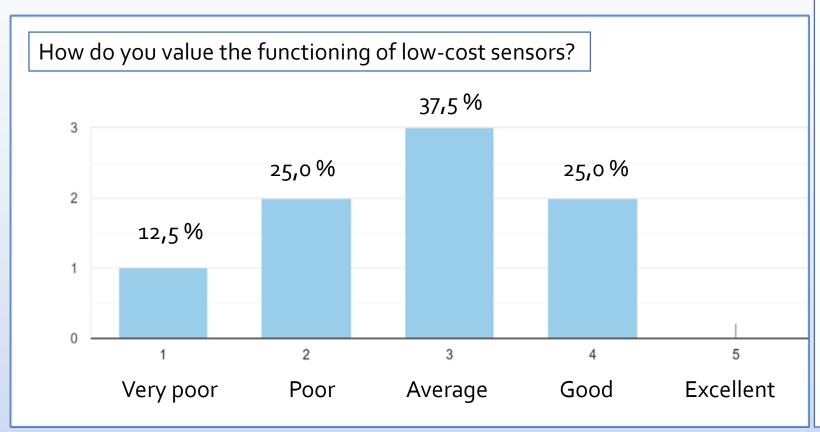
**A.6.4.** Feasibility study of sensors usage in Air Quality Monitoring networks

**A.6.5.** Citizen awareness campaigns by panels

**A.6.6.** Citizen awareness campaigns by mobile apps

**P.6.1** Pilot experiences in AQM

P.6.2
User guide for sensor data validation


P.6.3
Citizen awareness
campaigns about AQM





# Deliverable E.6.4.1

Survey to official Air Quality Monitoring Network managers to test their opinion about low-cost sensors applicability in their networks



The managers consider low-cost sensors valuable for providing indicative values and collecting massive data.

They are sceptical about using the data as representative as the measurements made with standard fixed instruments.

The managers consider it essential to regulate the use of low-cost sensors making both calibrations and verifications mandatory.





# Thank you

























