

SUE "Vodokanal of St.Petersburg" experience in water management and resource-saving efficiency improvement

SUE "Vodokanal of St.Petersburg" is the largest water consumer in the Baltic Sea basin

- Water intake from the source exceeds 1,500 thou. m3 per day
- Wastewater treatment volume surpasses 2,200 thou. m3 per day

Improving Eco-Efficiency of Water Management

Eco-efficiency of water management to be improved by:

Reducing water volumes taken out of water supply sources for the city needs.

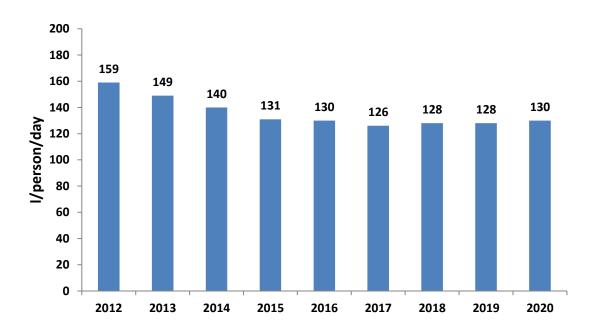
Mitigating the negative impact of sewage discharge on water bodies.

Organizational and technical actions

- ✓ Implementation of sustainable water recycling systems at water treatment plants.
- ✓ Reduction of water losses in water distribution networks.

- ✓ Elimination of untreated wastewater discharge into water bodies under the Neva Untreated Wastewater Discharge Closure Programme.
- ✓ Retrofitting and modernization of wastewater treatment plants; implementation of environment protection technologies.

Outreach activities and awareness raising

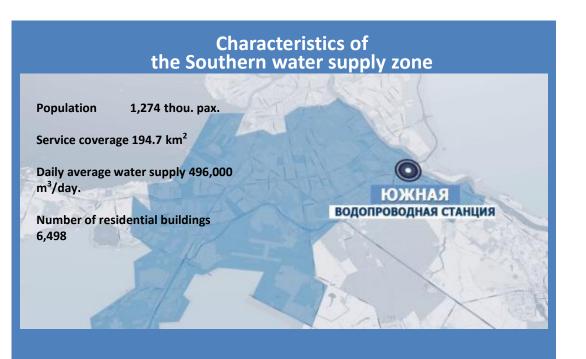


- Training of water specialists, sharing practical experience in water technologies, environmental awareness raising.
- Organization of environmental workshops, learning programmes and events for schoolchildren and college students.
- ✓ The Universe of Water museum complex.

Reduction of water consumption in St. Petersburg

Specific cold water consumption in St. Petersburg in 2012-2020

Actions to reduce water consumption:



- Installation, modernization and operation of building-level meters; transition to actual water metering;
- ✓ Reconstruction and repairs of in-house water networks;

Water Supply Management System in Southern districts of St. Petersburg

Project rationale:

- Excessive pressure;
- A lot of damage at the network;
- High level of water losses;
- Low performance of pumping units;
- Manual taking of customers meter readings is inconvenient and does not provide timely and reliable information for settlement with customers.

Southern zone project results

Losses and non-revenue water in water supply network, thous. m3./year

Prior to reconstruction (2010)

After reconstruction (2020)

Effect

28,544.8

11,872.4

58.4%

Employment of modern water-saving technologies in water treatment

K-6 new water treatment block was commissioned in 2011 at the Southern Water Treatment Plant and it encompasses state-of-the-art two-stage water treatment technology and water saving solutions

K-6 capacity is 350 thou. m3/day

Environmental efficiency improvement solutions were implemented:

- ✓ Recycling water supply system;
- ✓ Backwash water sludge disposal.

Outcome:

Own needs water consumption reduced from

15%

to

3%

Backwash water direct discharge was stopped

Key actions to stop untreated wastewater discharge in St.Petersburg

1978

1st stage of Central WWTP with the capacity
750,000 m3/day is put into operation

27 %

2005

South-West WWTP with the capacity 330,000 m3/day is put into operation

85%

2011

Seven outdated and worn-out WWTPs are closed with 3,000 m3/day of wastewater diverted to Northern WWTP

94%

2013

Northern Tunnel Collector is put into operation, 76 direct discharges equivalent to 330,000 m3/day are diverted

98,5 %

2019

Modern WWTP with the capacity 2,500 m3/day is put into operation in Molodezhnoye settlement

98,6 %

2019

15 direct discharges equivalent to over 2,000 m³/day are diverted of the Karpovka River

99,0%

2020

Okhta Collector completion (1 stage), 59 direct discharges equivalent to 27,000 m³/day are diverted

99,5 %

Helsinki Convention

1974 – The Baltic Sea Marine Environment Protection Convention (Helsinki Convention) was signed by all countries of the Baltic Sea Region.

1992 – the **updated Helsinki Convention** was signed by the Baltic-states, as well as by the European Community and entered into force following to ratification on January 17, 2000.

1998 – Convention on the Protection of the Marine Environment of the Baltic Sea was approved by the Russian Federation Government Decree № 1202 dated October 15, 1998.

Principal objective of the Convention – protection of the natural marine environment of the Baltic Sea from all pollution sources, reclamation and preservation of the Baltic Sea environmental balance, provision of sustainable use of its natural resources.

HELCOM Recommendation 28E/5 "Wastewater Treatment"

Treated effluent parameters	1999	2006	2008-2021
Total nitrogen, mg/l	<10,0	<10,0	<10,0
Total phosphorus, mg/l	<1,5	<1,0	<0,5

Tasks within the environmental and sectoral legislation reforming in the Russian Federation

Federal Law № 225-FZ "On Amendments Being Made to the Federal Law "On Environmental Protection" and Certain Legislative Acts of the Russian Federation" dated 29.07.2017 came into effect on 01.01.2019

The new law divides responsibility for the negative impact on water bodies between Vodokanals and their customers

SUE "Vodokanal of St.Petersburg" initiated implementation of measures for the transition to process-oriented regulation in 2020:

- preparation of documentation for obtaining an integrated environmental permit (IEP) for the 1st category facilities;
- preparation of Environmental Performance Improvement
 Programs for the 1st category facilities.

Customers are obliged to:

- develop and approve discharges reduction plans with the Rosprirodnadzor authorities;
- Implement planned activities (incl. local WWTPs construction).

The SUE "Vodokanal of St.Petersburg" operates 8 facilities of the 1st category of negative environmental impact, 6 of which are wastewater treatment plants

No	I NEI category facilities	IEP obtaining term	Actions implementation term	
1	CWWTP			
2	NWWTP	up to 2022	up to 2029	
3	SWWTP			
4	Pushkin WWTP			
5	Petrodvorets WWTP	up to 2025	up to 2032	
6	Kolpino WWTP			

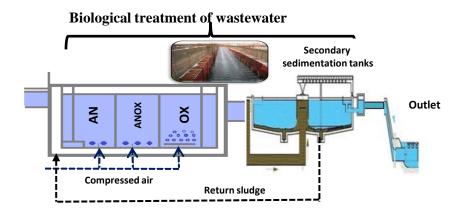
Comparison of designed process indicators and "fishery" requirements

Process indicators of the <u>best available technologies</u> for discharge into the Baltic Sea catchment area

Ranges/capacity of	Concentration values of pollutants in municipal wastewater, max, mg/l						
treatment facilities, incl.	SS	COD	BOD5	Ammonium nitrogen	Nitrates nitrogen	Nitrites nitrogen	Phosphorus phosphates
Big to large-scale (more than 600 thou. m3/day)	10	80*	6	1	9	0.1	0.7

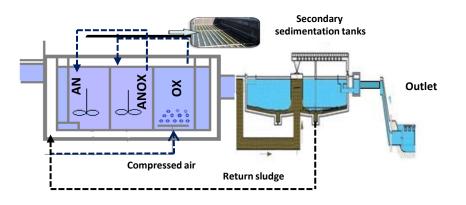
Requirements for the discharge quality based on the "fishery" MPC (regardless of the water body category)

Regardless of WWTP capacity	0.25 + backgr ound	30	2	0.4	9.0	0.02	0.2
-----------------------------	--------------------------	----	---	-----	-----	------	-----


Improvement of Biological Treatment Process

Process flow chart of wastewater treatment using Kreal biological treatment technology

Disadvantages:


- bubbling with coarse bubble aeration
- no controlled recycles

Process flow chart of wastewater treatment using up-to-date UCT and JHB biological treatment technologies

Advantages:

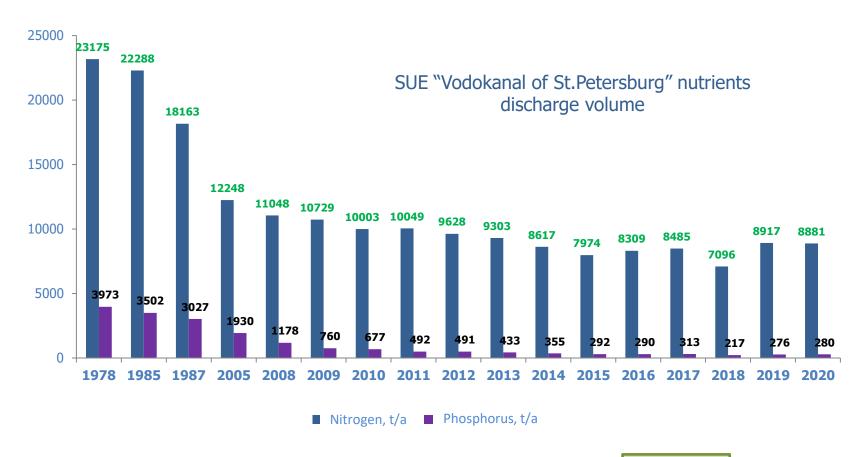
- membrane aerators, mixers
- internal recycling
- online water quality control devices

Clean Baltic Project, 2005 – 2011

Elimination of eutrophication, green-blue algae pollution of the Sea, is one of the principal environmental tasks of the Baltic region countries.

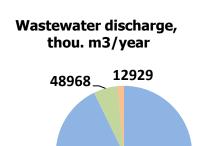
Clean Baltic is a joint project of Vodokanal of St.Petersburg, Finnish Ministry of Environment, Swedish international cooperation agency SIDA, and John Nurminen Foundation.

Project objective is wastewater treatment in compliance with HELCOM recommendations

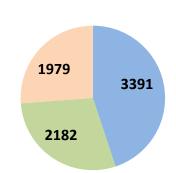

Outcome:

- ✓ Enhanced phosphorus precipitation technologies are implemented at all St.Petersburg WWTPs since 2011.
- Ca. 10 tons of phosphorus are precipitated daily
- ✓ Average phosphorus content in overall discharge is less than 0.5 mg/l

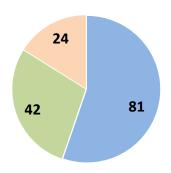
Nutrients load reduction


Annual phosphorus removal level at Vodokanal's WWTPs exceeds 3,000 tons

Surface runoff


Percentage of surface runoff in the total volume of wastewater collected by the centralized wastewater system

30%



795157

Discharge of oil, t/year

Discharge via treatment plants

- Direct discharge via storm sewers
- Direct discharge via combined / domestic sewers

Surface runoff collection and treatment actions

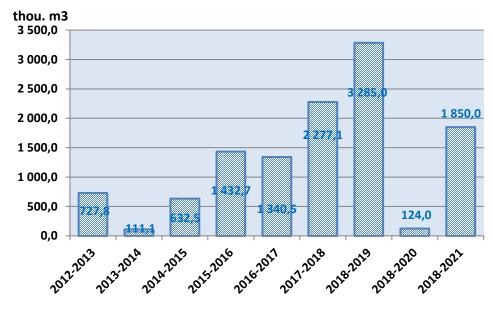
Atmospheric precipitation metering system is implemented

Search for new process solutions to treat surface runoff

34 precipitation gauges

Surface runoff treatment plants

Cartridge filters in stormwater sumps


Discharge of polluted snow into the city water bodies is stopped

In St. Petersburg, there are:

- √ 11 permanent snow-melting stations
- ✓ 7 permanent technically-equipped snow collection points

Volumes of snow received by permanent snow melting / collection facilities in winter periods 2012-2019

volume of snow received by SMS and SCP, thou. m3

Environmental benefit

In one season of snow-melting stations operation the city water bodies <u>evade</u>

> 100 thou. tons of sand

> 150 tons of litter

Sludge incineration plants

CWWTP SIP since 1997.

SWWTP SIP since 2007

NWWTP SIP since 2007

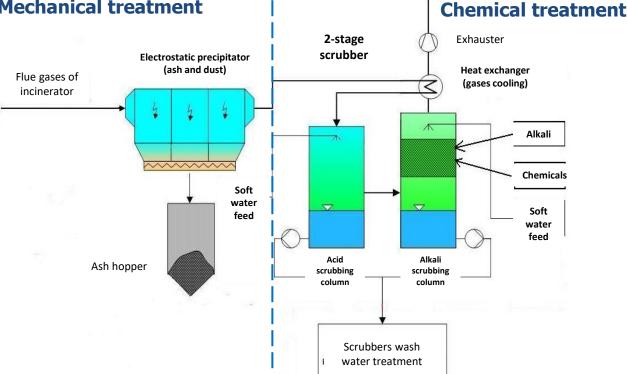
St.Petersburg is the first city to solve the wastewater sludge utilization challenge.

Vodokanal has 3 sludge incineration plants.

- 100% utilization of dewatered sludge;
- Sludge incineration with ash formation, 10 times reduction of sludge volume;
- Commercial use of ash is possible;
- No pathogens or unpleasant odor in the ash;
- Concentrations of hazardous substances in the cleaned flue gases produced by sludge incineration fully comply with the standards of the Russian Federation and EU
- Flue gas heat recovery for hot water supply and space heating;
- Steam utilization. Electricity production is possible.

Flue gases treatment at sludge incineration plants

Exhaust pipe a


(h=24m)

Electrostatic precipitator - ash removal from flue gases.

Ash particles falling into the electrostatic field settle on the electrodes and are shaken off into the hoppers by hammer mechanisms upon accumulation

Mechanical treatment

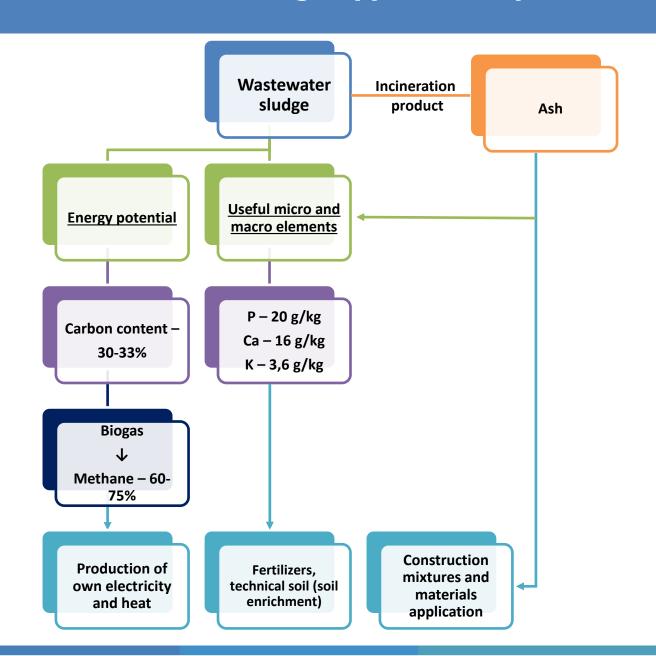
In the acid scrubbing column, gases are sprayed with water. Due to the scrubbing liquid and flue gases interaction, acid-forming contaminants are removed.

In the acid scrubbing column -

- Alkali dosing. Sulphur compounds and other pollutants removal
- Chemical dosing for metals binding.

Gas treatment system performance

Snails control composition of flue gases at the SWWTP SIP.


Flue gas treatment systems at the SWWTP and NWWTP SIPs are identical.

Chemicals applied for gases treatment			
Limestone	Sulphur oxides sedimentation		
Hydrochloric acid	Feed water pH adjustment		
Sodium chloride	Feed water softening		
Ammoniate PK-2, KO-3	Feed water quality adjustment		
TMT-15	Heavy metals sedimentation		
Ammoniate PK-2, KO-3	Quality adjustment		
Ferrous chloride	Coagulation of sediment solids in discharge water		
Sodium hydroxide	Neutral environment development for Sulphur oxides retaining		

	Pollutants emissions, mg/m3							
Sludge incineration plant (SIP)		Inorganic dust: 70- 20% SiO ₂		Sulphur dioxide		Mercury compositions		
	Standard	Actual	Standard	Actual	Standard	Actual		
CWTP SIP		5		34		<0.0003		
NWTP SIP	10	10	50	34	<0.05	<0.00017		
SWWTP SIP		4.4		45		0.00088		

Wastewater Sludge Application Options

HELCOM Recommendations

The Helsinki Commission (HELCOM) initiated the implementation of the Baltic Sea Region Environmental Policy by developing:

- common environmental goals;
- actions to reach the goals

HELCOM						
2007 Recommendation 28E/5 "Municipal Wastewater Treatment"	2015 Draft Recommendation for sewerage sludge treatment	2018 Draft Recommendation for nutrients recycling				
Objectives:	Objectives:	Objectives:				
 Reduction of nutrients load on the Baltic Sea Parameters of effluent discharged to the Baltic Sea catchment area: Total nitrogen, mg/l – 10 Total phosphorus, mg/l – 0.5 	 Reduction of the negative impact on the environment by reducing landfilling of sewage sludge. Recommendation of possible options for the sewage sludge beneficial application, taking into account: Sludge energy potential; Useful elements content, incl. phosporus. 	 Implementation of process solutions for the beneficial application of sewage sludge. Implementation of a circular economy for wastewater treatment processes. Development of regional sewage sludge management strategies, which differentially account methods of its disposal and possibility of secondary products extraction, depending on the sludge qualitative composition and the settlement size. 				

GOST "Technical principles for sewage sludge treatment. General requirements" (draft)

In 2021, GOST, which includes a differentiated approach to the sewage sludge treatment methods selection, is being developed in Russia

Table B.1 – Sewage sludge treatment options and requirement therewith

	FOCT P
СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ	(вторая редакция)
оинципы обработки осадко	ов сточных вод. Общі
•	
ции проект станоарта не поол до его утверждения	ежит применению
	РОССИЙСКОЙ ФЕДЕРАЦИИ ринципы обработки осадки требования щий проект стандарта не подл

Sludge treatment process/ application	Optional preliminary treatment of sludge	Physical properties of raw sludge	Sludge treatment resulting product, its application/disposal options
Sludge incineration for large and extra- large WWTPs	Preliminary dewatering, drying or combination of both	Cake humidity – less than 78% Ash content up to 60%	Ash is applied for: - production of fertilizers subject to the heavy metals extraction; - vitrification with obtaining of an inert construction material; - as part of construction mixtures. Heat and power generation
Aerobic digestion in specific conditions – high energy costs	cific Thickening ions – high		Stabilized and decontaminated sludge is used as local organic fertilizer, etc. Possibility of realization in a liquid state and in a dehydrated state (moisture content - 82–83%). Excess heat recovery.
Geotubing/ flexible, but season dependent – temperature over 0 °C.	Homogenization	Humidity - 95%	Technical soil - for the enrichment of soil cover - for small and medium WWTPs; - for formation of a vegetation layer in improvement of roadsides and slopes, for recovery of disturbed lands, quarries, solid waste landfills and industrial waste landfills (outside populated areas) - for large and extralarge WWTPs

Thank you!

Dmitry Troshenko

SUE "Vodokanal of St.Petersburg"