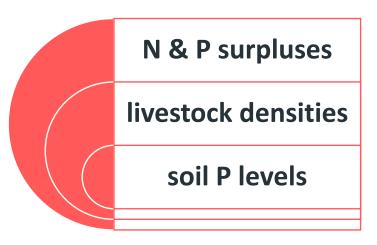
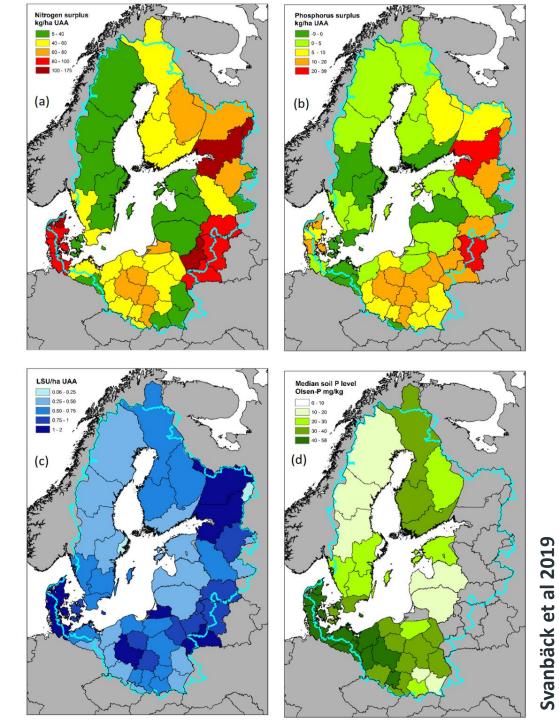
Key opportunities & challenges in nutrient recycling for the Baltic Sea Region


Arno Rosemarin Karina Barquet SEI



Biophysical Challenges

- BSR phosphorus load exceeds HELCOM recommendations by >40%
- P-driven cyanobacteria blooms fix as much nitrogen as the anthropogenic load
- Intensive animal farms nutrient hotspots requiring more attention
- Continued loading from legacy P from previous decades of excessive fertilizer use
- Enclosed brackish sea with 30-40 yr retention time and anoxic benthic zones

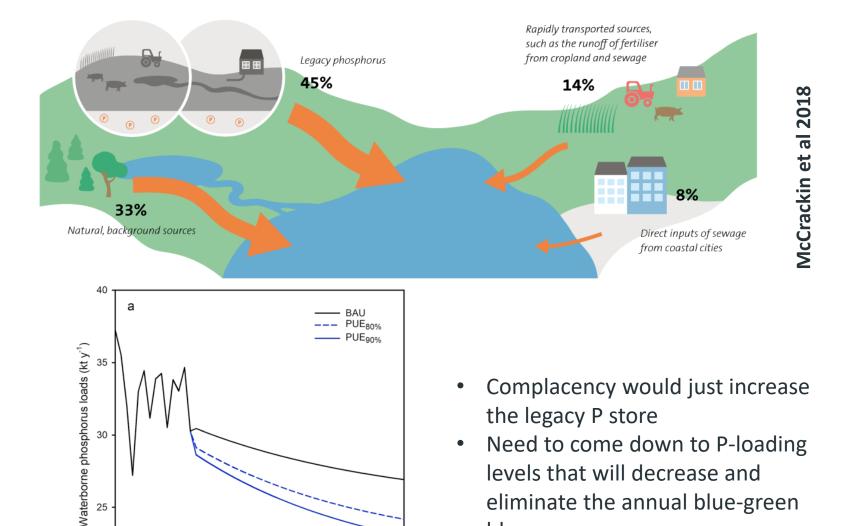
surpluses related to animal densities

Blaming legacy P could lead to complacency

Sources of phosphorus entering the sea

2000

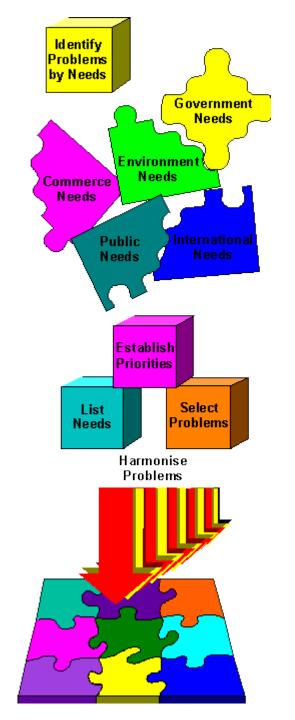
2010


2020

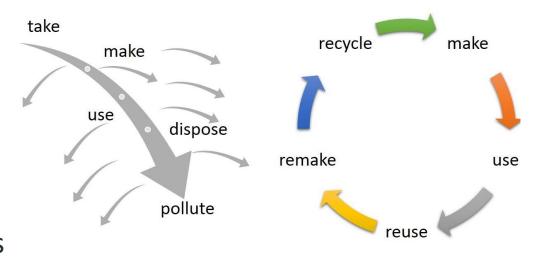
2030

Year

2040

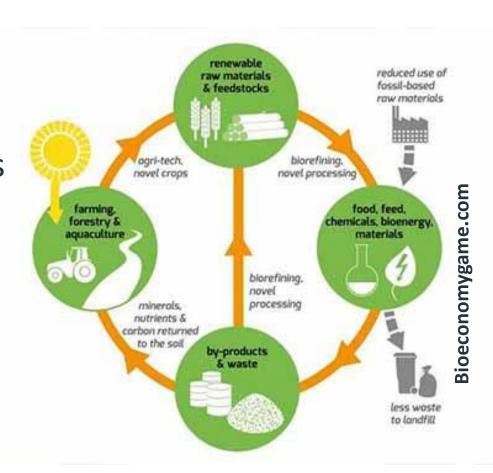

2050

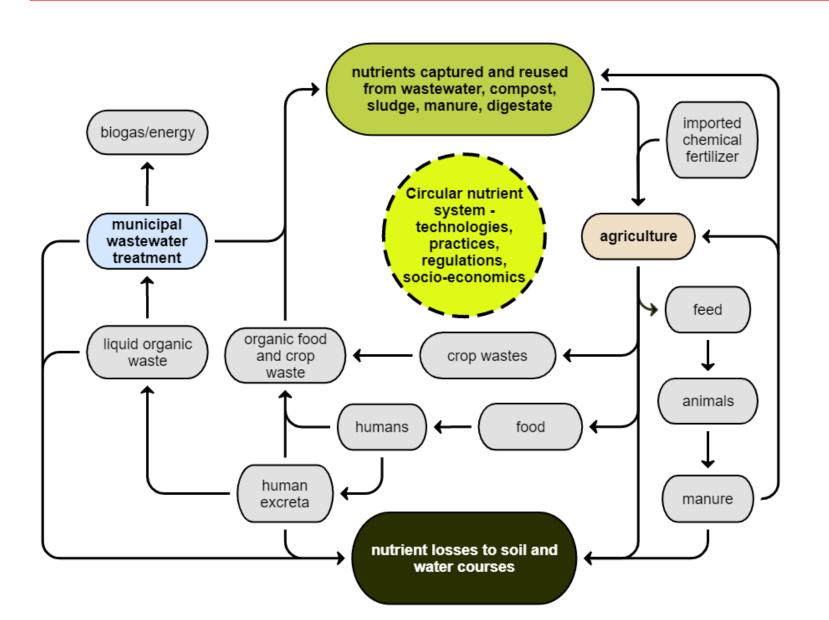
blooms


Policy challenges

- Lack of policy harmonisation & coherence
- EU Wastewater Directive
 - wastewater and sludge need to be brought into the fertilizer market
 - sludge needs a safety certification system
- EU Nitrates Directive
 - phosphorus left unmanaged
 - manure N/P ratios left unmanaged
 - National regulations for manure phosphorus vary widely and don't exist for several countries
 - Application of EU Water Framework Directive to farming practices unclear
- EU CAP subsidies to farmers have led to nutrient surpluses
- HELCOM recommendations not always adapted into national regulations

Policy challenges


- Linear and "silo" thinking impedes progress towards circularity
- Contrasting paradigms: wastewater sees nutrients as pollutants; agriculture sees them as a resource
- Circular nutrient economy has not yet taken root
- Pricing of conventional fertilizer makes reuse products less competitive


- Intrinsic value of EUSBSR
 "Saving the Sea"
 inadequately communicated
 to the public
- EUSBSR requires a clear action strategy linked to flagship project recommendations

Opportunities/drivers for recycling nutrients

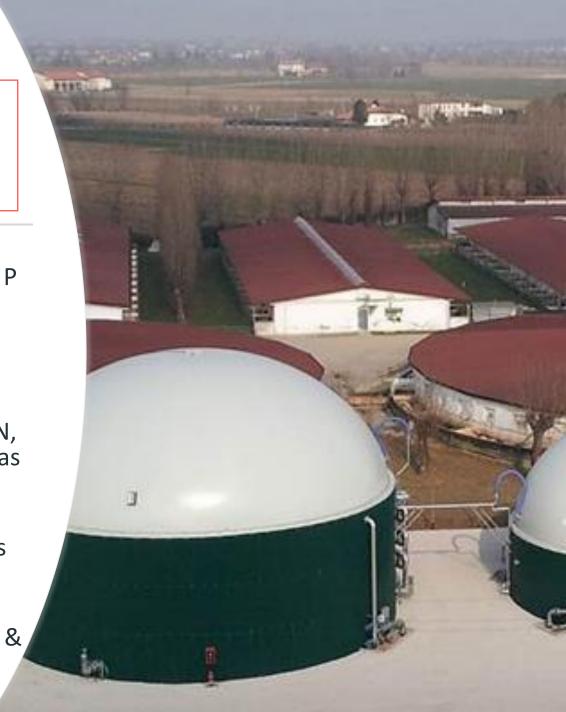
- Technologies & practices exist integrating C, N & P capture/reuse
- New bioeconomy business models integrating energy and nutrient systems
- Retaining sovereign P (P is on EU list of Critical Raw Materials)

Agriculture & wastewater components comprising the circular nutrient system

Capture & reuse of wastes

turning them into energy & fertilizer resources

Starting materials


 manure, crop residues, digestates (liquid and solid), wastewater and sludge

Priority factors

- bioavailability as fertilizer
- transportability to markets
- storage without losses of volatile N and C or water-soluble N and P

Technologies at hand

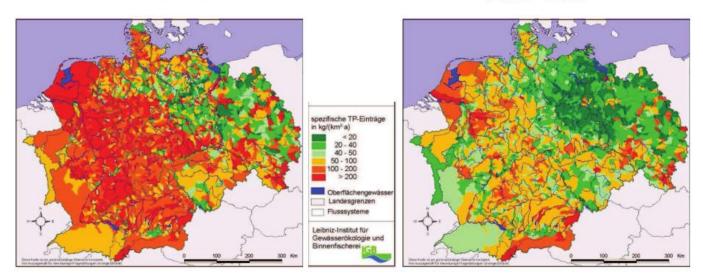
- anaerobic digestion of wet matter producing biogas & N & P capture
- slurry acidification to retain ammonia
- aerobic composting of dewatered matter mineralizes N, P & C increasing bioavailability as fertilizer
- pyrolysis of dried matter to retain C as biochar - also retains P
- incineration of dried matter to produce ash for P extraction (N & C are lost to the atmosphere)

Agriculture practices to retain nutrients on land

- planting of buffer zones to trap runoff
- constructed wetlands to absorb N & P in wastewater & runoff
- sedimentation ponds to trap suspended soil particles
- contour ploughing to reduce runoff
- cover crops to trap & fix N preventing losses to the air & water courses
- planting of crops without manure additions to reduce residual soil P levels

Phosphorus management in agriculture

- BSR P-indices development
 - P-based manure application
 - P-loss risk maps for BSR croplands & fields
- BSR region-wide norms for P
 fertiliser use for the relevant


BSR region-wide tool for farmgate P balancing (feed, fertilizer, manure, soil, crops)

 regional and national policies and multi-level governance to manage phosphorus

crops

Spezifische Phosphoreinträge aus den Teilgebieten im Zeitraum, 1983 - 1987

Spezifische Phosphoreinträge aus den Teilgebieten im Zeitraum, 2003 - 2005

Marginal costs to reduce emissions

Marginal costs for N reductions

Calculated marginal costs per kg N reduction to the Baltic Sea from emission reduction measures at sources, Euro/kg N reduction to coastal waters.

	NOx	Livestock	Fertiliser	Sewage	Private
		reductions	reduction	treatment	sewers
Denmark	25 - 42	36 - 65	1 - 154	15 - 35	54 – 60
Finland	27 - 43	30 - 59	1 - 42	15 - 45	54 – 77
Germany	47 - 80	56 – 68	1 - 44	15 - 48	54 – 82
Poland	33 – 56	33 – 44	1-11	12 - 48	46 – 81
Sweden	23 - 40	23 - 52	1 - 50	15 - 79	54 – 81
Estonia	24 - 40	23 - 35	1 - 7	12 - 35	46 – 59
Lithuania	27 – 45	6 - 14	1 - 24	12 - 41	46 - 83
Latvia	37 - 37	22 – 43	1 - 17	12 - 49	46 – 70
Russia	28 - 64	22 - 41	1 – 44	12 - 67	46 – 115

Gren et al 2008

Need to follow up on these data and to use this approach to achieve further reductions

Marginal costs for P reduction

Calculated marginal costs for phosphorus reductions to the Baltic Sea from emission reduction at sources, Euro/kg P reduction to coastal waters.

	P free	Livestock	Fertiliser	Sewage	Private
	detergents	reductions	reductions	treatment	sewers
Denmark	11 - 46	2530 -	1 - 10920	61 - 135	255 - 260
		4810			
Finland	15 - 52	1020 -	1 - 1190	61 - 180	255 - 345
		1730			
Germany	27 - 134	4300 -	1 - 9950	61 - 330	255 - 637
		6000			
Poland	18 - 29	497 - 590	1 - 550	(41 - 140)	215 - 345
Sweden	11 - 100	1190 –	1 - 4140	61 - 250	255 - 480
		4540			
Estonia	17 - 30	775 - 920	1 - 280	41 - 138	215 - 335
Lithuania	14 - 20	(120 - 260)	1 - 160	41 - 126	215 - 306
Latvia	18 - 36	640 - 650	1 – 293	41 - 147	215 - 360
Russia	13 – 45	960 –	1 - 2021	41 - 220	215 - 535
		2080			

Conventional vs reuse fertilizers

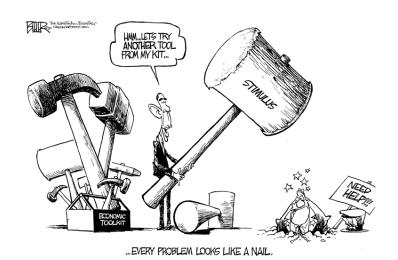
- Conventional fertilizers relatively cheap & not used efficiently
- Their costs don't account for externalities
- They are priced based on commodities eg P-rock, methane (for ammonia production), potash, sulfuric acid, etc.
- Reuse products account more for externalities and c annot compete with conventional fertilizers

Economic tools to promote nutrient capture and reuse

A technology's economic feasibility

 determined by cost, market demand, price for recovered & competing products, transportability & levels of energy consumption

Economic tools


 Include quotas (tradable & nontradable), fixed & volume-based fees or taxes & subsidies (the new CAP?)

It's an ethical, political, public/private choice

local circumstances and priorities

Combining different measures & tools

To provide more sustainable solutions for all parties

Opportunities but with challenges

- EU Circular Economy package
- EU Farm to Fork Strategy
- European Green Deal
- EU Integrated Nutrient Management Action Plan
- New EU Fertilising Products Regulation (STRUBIAS and cadmium regs)
- Nitrates Directive / recycled nutrient products from manure (SAFEMANURE)
- Common Agricultural Policy environmental measures
- Best available techniques (BAT) BREFs (Industrial Emissions Directive)
- Best environmental management practices (BEMPs)

