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• Ecosystem service (ES) modeling is typ-
ically time consuming.

• Limited data and model reuse hinder
new applications and progress in the
field.

• We demonstrate 5 cloud-based ARIES
models that can run on global or cus-
tomized data.

• Models produce consistent outputs, in-
cluding ES supply, demand and sur-
plus/deficit.

• Community-level data and model shar-
ing can advance progress in ESmodeling.
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Scientists, stakeholders and decision makers face trade-offs between adopting simple or complex approaches
when modeling ecosystem services (ES). Complex approaches may be time- and data-intensive, making them
more challenging to implement and difficult to scale, but can produce more accurate and locally specific results.
In contrast, simple approaches allow for faster assessments but may sacrifice accuracy and credibility. The ARti-
ficial Intelligence for Ecosystem Services (ARIES) modeling platform has endeavored to provide a spectrum of
simple to complex ESmodels that are readily accessible to a broad range of users. In this paper, we describe a se-
ries of five “Tier 1” ES models that users can run anywhere in the world with no user input, while offering the
option to easily customize models with context-specific data and parameters. This approach enables rapid ES
quantification, as models are automatically adapted to the application context. We provide examples of custom-
ized ES assessments at three locations on different continents and demonstrate the use of ARIES' spatial multi-
criteria analysis module, which enables spatial prioritization of ES for different beneficiary groups. The models
described here use publicly available global- and continental-scale data as defaults. Advanced users can modify
data input requirements, model parameters or entire model structures to capitalize on high-resolution data
and context-specific model formulations. Data and methods contributed by the research community become
part of a growing knowledge base, enabling faster and better ES assessment for users worldwide. By engaging
with the ES modeling community to further develop and customize these models based on user needs,
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spatiotemporal contexts, and scale(s) of analysis, we aim to cover the full arc from simple to complex assess-
ments, minimizing the additional cost to the user when increased complexity and accuracy are needed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over a decade after the publication of theMillenniumEcosystemAs-
sessment (MEA, 2005), ecosystem service (ES) modeling is slowly be-
coming a more mature field. Abundant examples of ES modeling
applications from local to global scales now exist (Maes et al., 2015;
Ochoa and Urbina-Cardona, 2017). Large-scale, global assessments are
also driven by policy needs that support initiatives such as the Intergov-
ernmental Platform on Biodiversity and Ecosystem Services (IPBES;
Pascual et al., 2017), the U.N. Sustainable Development Goals (SDGs;
U.N., 2017), and natural capital accounting, including wealth accounts
and the System of Environmental-Economic Accounting (Bagstad
et al., 2018b; U.N., 2014).

Ideally, thenext generationof ESmodelswill be accessible and rapid,
yet customizable, efficiently reusing place-specific data and knowledge.
Reducing the effort needed to produce an ES assessment is important
for delivering timely results to decision makers and stakeholders, so
that ES information does not arrive after the decision window has
closed (Ruckelshaus et al., 2015). Model and data customization are im-
portant for capturing local knowledge, improving credibility, and reduc-
ing the inherent inaccuracies of global and other large-scale data
(Cerretelli et al., 2018; Zulian et al., 2018). Ideally, customization
would extend beyond input data to includemodel structure, accounting
for key differences in howES are generated (Smith et al., 2017) and used
by people (Wolff et al., 2017). Customizable ES models capable of syn-
thesizing and reusing dispersed knowledge could help break from the
long-standing dichotomy of using one-size-fits-all versus place-based
approaches for ES assessments (Carmen et al., 2018; Rieb et al., 2017;
Ruckelshaus et al., 2015).

In recognition of these limitations, efforts are underway to adapt ES
modeling platforms for global application, e.g., ARtificial Intelligence for
Ecosystem Services (ARIES; Villa et al., 2014), Co$tingNature (Mulligan,
2015), and Integrated Valuation of Ecosystem Services Tradeoffs (In-
VEST; Sharp et al., 2015). Co$ting Nature is a web-based tool with
preloaded models and datasets that supports ES assessment anywhere
on Earth. Version 3.0 (currently in beta) enables the assessment of 12
ES, but does not support model customization by users. Moreover, op-
tions to run analyses at moderate to high resolution and output results
in biophysical units rather than index values require a paid subscription.
InVEST's global application adapts their existing suite of models (Sharp
et al., 2015) in a development build based on InVEST 3.4.4, incorporat-
ing global datasets and model coefficients (Kim et al., 2018). While
the InVEST global models are under development, the model code and
coefficients are available from a publicly available code repository and
the input data are available as described by Kim et al. (2018). Few of
these large-scale modeling platforms enable customization with local
data, parameterizations, or adjustments to model structure to reflect
local knowledge of processes that underlie ES supply and demand. For
example, Kim et al. (2018) apply a global mean parameter dataset to
running InVEST. Zulian et al. (2018) provide an example of the custom-
ization of the Ecosystem Services Mapping Tool (ESTIMAP), a European
ES modeling platform (Maes et al., 2015), and provide guidelines to
makemodel customizationmore scientifically robust and decision rele-
vant. However, the source code of the models is not yet publicly avail-
able and cannot be directly reused or adapted by users.

In this paper, we describe the ARIES modeling platform's approach
to developing global, yet customizable ES models. Our approach en-
deavors to balance tensions between the demand for complexity,
throughmodel customization and data integration to reflect biophysical
and socioeconomic conditions and behaviors, and simplicity, as data
limitations and user needs may require abstraction and simplification
of some ES models. Simple ES models are suitable to support some re-
source management decisions (Willcock et al., 2016), while others re-
quire information generated by more complex models. As such, the
linking of simple and complex ES models can help support adaptive
management by providing timely information that can easily be up-
dated and reevaluated as new data and knowledge become available.
In this paper, we describemodels that can provide a “bottom line” strat-
egy for rapid assessment and prioritization, while ensuring consistency
in outputs among different ES and adaptability to trade-off analysis, as
the first tier of a seamless path to adaptive complexity and automated
integration of ES models (Villa et al., 2014).

Our approach to automated model customization expands the role
of global ES models, enabling navigation between different model tiers
based on ES assessment needs, time and data availability. A “Tier 1”
approach, analogous to tiered approaches to forest carbon monitoring
under Reducing Emissions from Deforestation and Forest Degradation
(REDD+; Angelsen et al., 2012), ES models proposed in InVEST
(Kareiva, 2011) and other environmental modeling approaches
(Günther et al., 2013), is interpreted here as a base for customization
and a default strategy to use when better models (e.g., dynamic flow
models; Bagstad et al., 2013) are not available. The ARIES model base
also includes several Tier 2 models, such as a dynamic agent-based pol-
lination model that quantifies flows of pollinators between habitat
patches and pollination-dependent crops, and water supply models
employing dynamic, distributed surface runoff simulation. Suchmodels
are currently too computationally intensive for large-scale application,
and, like any modeling approach, require calibration if accurate outputs
are desired. Once ARIES is supplied with decision rules about the appro-
priate scale and spatiotemporal context under which to run eachmodel
tier, it can seamlessly navigate between tiers as spatiotemporal context
and resolution change, and as more data and models become available.

These Tier 1models provide a baseline for subsequent specialization
and customization. When semantically annotated data covering new
spatial and temporal extents or resolutions aremade available either lo-
cally on a user's computer or on the network, the annotated concept
(Janowicz et al., 2015) described in the data enables ARIES to automat-
ically substitute local data for global where appropriate (Villa et al.,
2014, 2017). For instance, a local or national-scale dataset for “percent
tree canopy cover”will replace a global dataset for the same observable
when a model requires that input and is run in a compatible time and
place. New models or adjustments to existing models can be specified
for a particular time, place, or spatiotemporal scale, and may cover all
concepts related to an ES or only a component concept of it (e.g., its sup-
ply or demand). Because ARIES is a context awaremodeling system, the
best available knowledge will be reused for the context analysed. The
system assembles a computational strategy, based on a set of rules
under which data, models, andmodel parameterizations are selectively
applied (Villa et al., 2014),which is run to produce both the desired out-
puts and associated provenance information (Villa et al., 2014). The lat-
ter is compiled into a report detailing the provenance of all input data
and the algorithms used to produce the modeled outputs (Willcock
et al., 2018). We thus lay the foundation for an intelligent ES modeling
platform that can improve model credibility by more systematically in-
corporating and reusing local knowledge (Zulian et al., 2018). As more
data andmodels are shared on the semantic web used by ARIES, the ac-
curacy, speed and credibility of ES assessments can be substantially
improved.

This work supports progress towards several long-anticipated goals
in ES modeling specifically and semantic modeling more generally

http://creativecommons.org/licenses/by/4.0/
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(Villa, 2009). Past ARIES applications were place-based case studies
(e.g., Bagstad et al., 2014; Balbi et al., 2015), meaning that ARIESmodels
could be run only for a relatively small number of locations. The avail-
ability of global data and models, hosted on networked geoservices,
now enables their computation anywhere. The collection of models de-
scribed here is accessible through the Knowledge Laboratory (k.LAB) In-
tegrated Development Environment (ARIES team, 2017), the open
source software package used by ARIES (Fig. 1 describes the user
workflow). In order to run models, the user must select a spatiotempo-
ral context, model resolution, optional scenario condition(s), and the
underlying ES concepts to be observed (e.g., supply or demand; ARIES
team, 2018a). The k.LAB software package also provides the tools to
write new models or customize existing ones. A web-based ARIES ex-
plorer, currently in prototype stage and slated for public release in
early 2019, will make it possible to run ARIES models online through a
web browser, making models more accessible particularly for nontech-
nical users.

In this paper, we describe methods and results for five ARIES Tier 1
models. We demonstrate model applications in three continents, and
extend one of those applications to include a spatial multi-criteria anal-
ysis, which enables simple trade-off and prioritization analysis in ARIES.
These models will continue to be developed and new models will be
added to the model library by the ARIES core development team and
collaborators. The aim is for any ARIES modeler to be able to use them,
develop customizations for specific local conditions, or improve and
share themodels for the benefit of the broader ESmodeling community.

2. Methods

A publicly accessible code repository (ARIES team, 2018b) contain-
ing allmodels and spatial context definitions used for this paper is avail-
able for download and use. Our model developer workflow, which used
k.LAB version 0.9.11, is shown in Fig. 1. Detailed information on all data
sources and lookup tables used for each model in this study can be
found in the Supplemental Information. Input data without use restric-
tions (e.g., public data) can be accessed through networked geoservices
available to any ARIES user. All model outputs for the three application
areas are available from the authors upon request.
Fig. 1.Model developer workflow for the use of the global ecosystem service (ES) ARIES model
using default data sources; those in beige represent opportunities to customize model source c
We developed models for the supply of five ES: carbon storage, crop
pollination, flood regulation, outdoor recreation, and sediment regula-
tion. We modeled demand for crop pollination, flood regulation, and
outdoor recreation, ranking locations of greater and lesser demand,
but not considering demand in monetary terms. We did not estimate
demand for carbon, a global service whose demand can be proxied
using greenhouse gas emissions data (Bagstad et al., 2014), nor for sed-
iment regulation, where different, context-dependent beneficiary
groups can be identified. Our models for ES supply and demand for
crop pollination, flood regulation, and outdoor recreation are estimated
as ranked indicators, rather than biophysical values. For crop pollination
and flood regulation, we also developed a metric of surplus or deficit,
which simply subtracts normalized ES demand from supply to calculate
a surplus/deficit value (ESsd), where negative values represent a deficit
and positive values represent a surplus. This metric can be used to un-
derstand potential threats to ES provision (Maron et al., 2017; Wei
et al., 2017). Large versus moderate surplus/deficit subcategories were
also considered based on values above or below ∓0.5, but we caution
that given the use of normalized, uncalibrated model outputs not on
the same scale, care be taken in interpreting surplus/deficit results. To
account for the hydrological connection between grid cells located
within the same watershed, we also enabled the calculation of ESsd for
water-related ES (e.g., sediment or flood regulation) by aggregating
grid-cell values on a sub-watershed basis, using globally available wa-
tershed polygons (Lehner et al., 2008).

As example model customization applications, we chose regions on
three continents that use varying levels of customization based on the
best available input data. Thus, we selected the Basque Country
(Spain), a multi-watershed region surrounding the Santa Fe Fireshed
(U.S.), and Rwanda and Burundi (Africa) (Fig. 2). The Basque Country
is a diverse region in northeast Spain covering 7234 km2 that can be di-
vided into three distinct geographic regions from north to south: the
mountainous Atlantic region, a central plains region (the Llanada
Alavesa) and the Ebro Valley. The northern valleys have an oceanic cli-
mate, whereas the rest of the region has a more continental one.
About half of the region's 2.2 million residents live in the Bilbao metro-
politan area; San Sebastián and Vitoria-Gasteiz are other major popula-
tion centers. The Santa Fe Fireshed, a region defined by shared social and
s in the k.LAB software package. Steps in blue are those taken to run existing Tier 1 models
ode, data resources, and scenarios.

Image of Fig. 1


Fig. 2. Land cover datasets used for each context: (A) Coordination of Information on the Environment (CORINE) 2012 in the Basque Country; (B) National Land Cover Database (NLCD)
2011 in Santa Fe Fireshed, New Mexico; (C) SERVIR 2010 in Rwanda; (D) European Space Agency-Climate Change Initiative (ESA CCI) 2010 in Burundi.
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ecological concern regarding the impacts of wildfires, is located in
northern New Mexico. Land ownership includes a mix of types includ-
ing tribal, private, public, and non-governmental organizations. The
fireshed boundary encompasses nearly 430 km2, and the study area ad-
dressed here extends this boundary to include the three watersheds to
which it is hydrologically connected, totaling ~22,300 km2. Amajority of
the populationwithin the study area resides in the cities of Santa Fe and
Albuquerque. Mid-elevation areas have historically featured open
stands of ponderosa pine (Pinus ponderosa), which tend to be shaped
by regularly occurring, low-severity fires, while higher elevation areas
are more susceptible to high-severity fires in the driest years
(Margolis and Swetnam, 2013). Rwanda and Burundi are two small
equatorial African nations totaling 54,172 km2. Both are densely popu-
lated nations that have experienced periodic civil unrest since indepen-
dence, though Rwanda has seen substantial economic development in a
period of stability dating to the early 2000s. Rwanda and Burundi are
situated within the Albertine Rift zone and have varied topography
and precipitation; land cover is dominated by cropland, with forests
and other natural land cover types found most abundantly within
protected areas. We modeled ES for Rwanda and Burundi building on
past national-scale ES modeling for Rwanda (Bagstad et al., 2018a).
Land cover data for ES modeling in Rwanda are available at 30 m reso-
lution through the Regional Centre for Mapping Resources for Develop-
ment (RCMRD), a GIS and mapping center working across Eastern and
Southern Africa. Such data are not available for Burundi, so the model
configurations for the two nations illustrate different levels of data cus-
tomization. The Santa Fe Fireshed andBasque Country applications offer
examples of greater levels ofmodel customization inmore data-rich re-
gions. All of our models use lookup tables to account for the role of land
cover in providing ES. For all ES but recreation, we provide global values
for lookup tables based on past studies, and customize the tables based
on context-specific researchwhen possible (Supplemental Information,
Table S3). Although global lookup table values may suffice for initial ES
estimates, locally derived lookup tables are essential for improving
model credibility and application for decision-making.

We applied the ES models at different spatial resolutions depending
on the size of the study area size and ES beingmodeled. For all ES except
pollination, the Rwanda and Burundi application was modeled at a
200m resolution, the Santa Fe Fireshed at 250m, and the Basque Coun-
try at 300m. The pollinationmodelwas run at 1 km resolution for all ap-
plications. We selected data inputs as close as possible to the year 2010,
and fully describe all input data in the Supplemental Information. More
detailed studies describing the application and results of these models
in different contexts can be found in other articles of this issue
(Barbosa et al., this issue; Domisch et al., this issue; Funk et al., this
issue).

2.1. Pollination

Pollination by animals is an essential ES that directly links natural
habitats to agricultural landscapes, as 70% of globally important crop
species depend to some extent on pollinators (Klein et al., 2007). The
pollination model produces spatially explicit, ranked estimates on the
supply and demand for insect pollination services based on land cover,
cropland, and weather patterns. All pollination analyses are run at
1 km, which is similar to the flight distance of most insect pollinators
(Danner et al., 2016; Gathmann and Tscharntke, 2002).

In its first step, themodel calculates pollination supply, or the ability
of the environment to support wild insect pollinators, as a function of
nesting suitability (NS), floral availability (FA) and proximity to fresh-
water bodies (i.e., rivers, lakes and streams). We assigned NS and FA
values to land cover categories using lookup tables based on expert
opinion from previous studies (Lonsdorf et al., 2009; Zulian et al.,
2014). The model assumes a positive effect on the probability of

Image of Fig. 2


2329J. Martínez-López et al. / Science of the Total Environment 650 (2019) 2325–2336
pollinator presence from freshwater bodies (due to assumed greater
floral resources in riparian areas, Zulian et al., 2013). The model maps
pollinator habitat suitability as a proxy for pollinator abundance, as
the product of NS and FA, given that both variables need to be simulta-
neously present to support pollinator populations. Then, to account for
the increase in habitat suitability to support pollinator populations in
areas close to freshwater resources, the inverse distance value to fresh-
water bodies is added to the result of the previous product. Insect forag-
ing can also be greatly affected by atmospheric temperature and solar
radiation, which can affect the number of active individuals (Corbet
et al., 1993).We thus calculated the proportion of active individuals for-
aging (A) as:

A ¼ −39:3þ 4:01� Tblackglobe ð1Þ

where Tblackglobe represents the temperature of an insect's body simu-
lated as a black spherical model as a function of annual mean ambient
temperature (T in °C) and annual mean solar irradiance (R in W m-2):

Tblackglobe ¼ −0:62þ 1:027� Tþ 0:006� R ð2Þ

We then normalized habitat suitability and multiplied normalized
values by the proportion of active individuals foraging to account for
spatial differences in pollinator activity levels.

Next, themodel estimates pollination demand based on the product
of the weighted sum of crop pollination dependencies (Klein et al.,
2007) and their production for 55 crop types requiring insect pollina-
tion for optimal yields (Monfreda et al., 2008). The model normalizes
pollination-dependent crop production based on the values found
within the user-selected spatial context in order to compute pollination
surplus/deficit. To simplify the computation, we assume the flow of the
pollination service to be restricted to the grid cell within which the pol-
linator resides (i.e., no supply is received from adjoining cells). Finally,
themodel subtracts demand from supply to produce grid cell-scale pol-
lination surplus/deficit values.

2.2. Carbon storage

The global vegetation carbon storage model follows the Tier 1 Inter-
governmental Panel on Climate Change (IPCC) methodology and quan-
tifies above- and below-ground carbon storage in vegetation in physical
units (T/ha), using a lookup table. The model's lookup table uses five
datasets as inputs, following Ruesch and Gibbs (2008): (1) land cover,
(2) ecofloristic region (FAO, 2000), (3) continent, (4) frontier forests–
a proxy for the degree of forest degradation (Potapov et al., 2008), and
(5) presence of a recent fire (i.e., within the last 10 years) (Tansey
et al., 2008). This model provides globally consistent estimates of the
amount of carbon stored in above- and below-ground vegetation
(IPCC, 2006; Ruesch and Gibbs, 2008). Additionally, soil carbon storage
estimates can be modeled, e.g., using global SoilGrids data (Hengl et al.,
2017).

2.3. Outdoor recreation

The recreation model is inspired by the ESTIMAP model of nature-
based outdoor recreation developed by Paracchini et al. (2014) for
Europe, and calculates supply and demand using ranked values. The
model computes recreation supply as a multiplicative function of natu-
ralness and the distance-driven accessibility of nature-based factors of
attractiveness, computed as Euclidean distance to protected areas (ex-
tracted from the World Database on Protected Areas; UNEP-WCMC
and IUCN, 2016), mountain peaks (extracted based on the top fraction
of terrain height values in the study area), and water bodies (including
streams, lakes and oceans). The model computes the degree of natural-
ness as a reclassification of land cover types into numerical values
ranging from 1 to 7, with higher values representing increasing land
use intensity/human influence (Paracchini et al., 2014).

Finally, the model discretizes normalized recreation supply values
into three recreation potential classes (b0.75, 0.75 to 0.88, and N0.88),
which produced values similar to those from the ESTIMAP implementa-
tion of the Recreation Opportunity Spectrum (ROS; Clark and Stankey,
1979; Joyce and Sutton, 2009; Paracchini et al., 2014). The ROS
reclassifies the landscape by recreation potential (i.e., recreation supply
as described above) and proximity to people. Themodel estimates prox-
imity to people based on travel time to the nearest city with ≥50,000 in-
habitants (Uchida and Nelson, 2010). We used a dataset for travel time
(Nelson, 2008), which we normalized and discretized into three classes
(easily accessible: ≤0.25; accessible: 0.25 to 0.5; and not accessible
N0.5).

In addition to ESTIMAP's ROS classification, ourmodel quantifies rec-
reation demand as an additive function of population density and
recreation-driven mobility. The latter describes how far an individual
is likely to travel for recreation on a day trip. The mobility function,
adapted from Paracchini et al. (2014) and originally based on Geurs
and van Eck (2001) models the probability of traveling to a site as a
function of distance, assuming high probability of trips within 30 Km
and very low probability at 80 Km:

f dð Þ ¼ 1þ Kð Þ= Kþ e a�dð Þ
� �

ð3Þ

where d is the distance from a site and K and a are parameters describ-
ing the shape (S-shape) and scale of the log-logistic function (Geurs and
van Eck, 2001), respectively. We further customized this function by
adding a dependency on estimated travel time (Uchida and Nelson,
2010):

• d is the distance to main cities (automatically queried in
OpenStreetMap at runtime); when travel time is N30 min, then d =
d+30 km. This creates a 30 kmbuffer for short trips aroundmain cit-
ies, where the likelihood of high recreation demand is much greater,
and

• the mobility function parameter values are set to K = 450 and a =
1.12E − 04, which combines the long- (80 km) and short-distance
(8 km) functions in Paracchini et al. (2014).

Recreation demand takes into account the likelihood of taking a day
trip to a certain point and the population density in the areas serving as
a source of visitors for that location, thus describing the relative number
of trips taken from each grid cell within the context. In this way, the
model uses estimated travel time to calculate the flow of recreation de-
mand from population centers to recreational sites.

In addition to the previously described ESsd analysis, we propose a
multiplicative Cobb-Douglas-type function to relate recreation supply
and demand, which takes the form (Fuleky, 2006):

f S;Dð Þ ¼ p∙Sx∙Dy ð4Þ

where p=1, x= y=½, and S andD are recreation supply and demand,
respectively. This estimates the spatial overlay of supply and demand
expressed with a weakly concave function representing landscape rec-
reational utility. It is a symmetric function with constant return to
scale (the service increases by that same proportional change as supply
and demand change) and diminishingmarginal utility. This output facil-
itates the identification of sites with high recreation supply and de-
mand, where outdoor recreation day trips are most likely to happen.
Such areas receive a value closer to one; areas with low supply or de-
mand receive values closer to zero.

In order to adapt the European-based recreation model for global
use, we made several simplifications that preclude the direct compara-
bility of results to European ESTIMAP recreation model outputs



Table 1
Priority weights (descending from 1 to 10) assigned to four hypothetical stakeholder
groups to each potential ecosystem service (ES) supply, used in the Spatial Multi-Criteria
Analysis.

Criteria/ES supply Citizens Farmers Local government Climate activists

Pollination 10 1 5 10
Carbon Storage 10 10 5 1
Outdoor Recreation 1 10 5 10
Flood regulation 1 5 5 5
Sediment regulation 10 2 5 5
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(Paracchini et al., 2014). These include the use of European-derived,
land cover-based estimates of naturalness and proximity thresholds,
which may differ by ecoregion and socioeconomic setting, respectively.
Both would be best informed by local parameterizations provided by
region-specific experts (Baró et al., 2016; Peña et al., 2015).We also ex-
cluded water quality from the recreation potential assessment, due to a
lack of global data. Finally, the concept of outdoor recreation and the
model's parameterization, which implies travel by vehicle to outdoor
recreation sites, makes the existing model most suitable to developed-
world contexts. However, the model's basic components (attractive-
ness, demand, and accessibility) could be adjusted to account for non-
vehicular access to green space in cities or tourist access to protected
areas, which may be useful in both developed and developing-world
contexts.

2.4. Flood regulation

This model quantifies ranked values for flood regulation supply and
demand, accounting for flood hazard probability, water retention by
soils and vegetation, and population density. Flood hazard probability
(FHP) is estimated based on: (1) topographic wetness index (TWI), a
steady-state wetness index based on slope and contributing area
(Kirkby and Beven, 1979; Manfreda et al., 2011), (2) mean annual pre-
cipitation, and (3) the mean temperature of the wettest quarter
(Hijmans et al., 2005). Temperature is included in the equation to ac-
count for the role of the Clausius-Clapeyron relationship (Trenberth
et al., 2003), which predicts greater rainfall intensity at higher temper-
atures. Based onUtsumi et al. (2011), themodel usesmean atmospheric
temperature in the wettest quarter to predict an increase in the
temperature-rainfall intensity relationship in polar regions (high lati-
tudes), a decreasing relationship in equatorial regions (tropics), and a
peaked relationship in temperate regions (intermediate latitudes). The
model computes flood regulation supply (FRS) using the Curve Number
(CN)method,which estimates the capacity of vegetation and soils to re-
tain excess runoff from rainfall. The CN is a function of land cover, hy-
drologic soil group data, and in some contexts slope (Zeng et al., 2017;
Soil Conservation Service, 1985). The model then reduces flood hazard
probability by the CN:

FRS ¼ FHP− CN � FHP=100ð Þ ð5Þ

Themodel estimatesflood regulation demandbymultiplying FHPby
population density, providing a ranking of the relative exposure of peo-
ple and property to flood risk. Finally, the model estimates ESsd as pre-
viously described. This value can be aggregated by watershed
(predefined or user-supplied) within the spatial context. This model
thus constitutes a simplification of previously published global or
continental-scale ones (Stürck et al., 2014; Ward et al., 2015), but is
fast and easily replicable even in data-scarce contexts.

2.5. Sediment regulation

Our sediment regulation model is an implementation of the com-
monly used Revised Universal Soil Loss Equation (RUSLE; Renard,
1997), and provides biophysical estimates of soil loss and retention by
vegetation (in tons of sediment per hectare per year). The RUSLE
model estimates annual soil loss based on five factors:

A ¼ R � K � LS � C � P ð6Þ

where A represents soil loss, R rainfall runoff erosivity, K soil erodibility,
LS slope steepness and length, C covermanagement, and P conservation
practice.

This implementation of RUSLE uses methods from Van Remortel
et al. (2004) to calculate LS, based on slope and contributing area,
Williams and Singh (1995) to calculate K, based on soil organic matter
and clay, sand, and silt fractions, and global studies for C and P factors
based on land cover type (Borrelli et al., 2017; Yang et al., 2003). By cal-
culating RUSLE twice–first using existing land cover, then changing all
land cover to bare soil–the contribution of vegetation to soil retention
(i.e., avoided soil erosion) can be estimated as an ES. The RUSLE equa-
tion used by this sediment regulation model has several well-known
limitations; most notably, it applies only to rill erosion, and does not es-
timate gully, streambank, or mass erosion. RUSLE was originally devel-
oped for agricultural lands in the U.S., though it has since been applied
in a wide variety of settings, including ES assessment (Sharp et al.,
2015) and global applications (Borrelli et al., 2017; Yang et al., 2003).
2.6. Spatial prioritization and trade-offs between ecosystem services

Assessments of landscape management alternatives often involve
themodeling ofmultiple ES to quantify ES trade-offs, hotspots, and sup-
port spatial prioritization according to different stakeholders' perspec-
tives, which could include specific ES beneficiary groups (Nelson et al.,
2009). To meet these challenges, ARIES includes an easy-to-use spatial
multi-criteria analysis (SMCA) module. Based on the approach devel-
oped by Villa et al. (2002), which builds on the Evaluation of Mixed
Data (EVAMIX) approach developed byVoogd (1983), the SMCA can in-
tegrate quantitative and semi-quantitative measures into a single score.

SMCA uses concordance/discordance analysis, where a set of obser-
vations with measured variables (in this case, the potential supply of
five ES) is ordered according to a concordance or discordance score
computed for each different ‘evaluation unit,’ described by values for
each variable considered. First, a 0 to 1 score is computed using sets of
weights that express the importance of each variable from a particular
stakeholder's perspective. Each perspective is defined by a ‘priority vec-
tor’ containing the weights assigned to each variable, e.g., by a specific
stakeholder type. The scores for all units constitute an ‘evaluation ma-
trix.’ This is too computationally intensive to calculate on a grid cell
basis, but is aggregated by variable values and discretized into a number
of intervals (by default the systemuses 10 intervals). As thefinal output,
a map of concordance values ranging from 0 to 1 is produced for each
stakeholder, distributing the computed scores to each cell. This map
represents how concordant the configuration of the landscape is with
an optimal landscape, based on a given stakeholder's perspective.

Inputs to the SMCA model include the list of variables to be consid-
ered (i.e., ES supply) and a set of importance weights characterizing
each criterion. Different stakeholder or ES beneficiary groups can have
diverse perspectives on the importance weights. Here, we demonstrate
the use of weights by four hypothetical stakeholder groups in the
Basque Country: citizens, farmers, local government, and climate activ-
ists (Table 1). For simplicity, we used weight values from 1 to 10, with
lower values having the greatest weight, but any scale can be used. In
the hypothetical example described here, citizens assign the highest im-
portance to recreation and flood regulation; farmers assign the highest
importance to pollination, followed by sediment regulation, and to a
lesser extent flood regulation; local government officials prioritize all
ES as equally important; and climate activists assign the highest impor-
tance to carbon storage, and secondary importance to flood and sedi-
ment regulation.



Fig. 4. Results of the carbon storage model in the Santa Fe Fireshed.
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3. Results

We computedmean values and the standard deviation of all ES indi-
cators for all application contexts and models (Supplemental Informa-
tion, Table S4). We interpret outputs for each ES model from one
selected application below. Additionally, we include locator maps for
geographic features mentioned in each application in the Supplemental
Information.

For pollination, supply and demand in Rwanda and Burundi are gen-
erally somewhat mismatched (Fig. 3). As land cover in both nations is
increasingly split between natural ecosystems (capable of providing
pollinator habitat and found within protected areas, Fig. 3A) and crop-
land outside of protected areas with demand for pollination (Fig. 3B),
these nations may face increasing spatial segregation between areas of
pollinator supply and agricultural demand (Fig. 3C–D). However, high
topographic and land cover heterogeneity and an abundance of small
farms may enable the persistence of some pollinator habitat at finer
scales than our model could detect.

The Santa Fe Fireshed region includes a significant amount of land in
public ownership,with the vastmajority heldwithin theU.S. Forest Ser-
vice (USFS) system. The highest carbon storage values within this study
region fall within USFS lands, particularly in the Sangre de Cristo Moun-
tains to the east of Santa Fe (in the Pecos Ranger District of the Santa Fe
National Forest) and in the Cibola National Forest east of Albuquerque
Fig. 3.Main outputs of the pollinationmodel in Rwanda (upper red polygon) and Burundi (lower red polygon): (A) supply, (B) demand, (C) surplus/deficit and (D) surplus/deficit status.

Image of Fig. 3
Image of Fig. 4


Fig. 6. Mean flood regulation service surplus/deficit (ESsd) by watershed in the Basque
Country, ranging from −1 to +1. Negative values indicate a flood regulation service
deficit, whereas positive values indicate a surplus.
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(Fig. 4). Carbon storage in these areas is not evenly distributed, how-
ever, due to the presence of both historically burned areas and ongoing
fire management, including forest thinning and controlled burns. Car-
bon storage on land other than publicly managed forests is lower due
to the land cover characteristics in these areas (e.g., urban areas, barren
lands, grasslands).

The Basque Country landscape is generally rich in potential outdoor
recreation opportunities due to the high density of seashores and
beaches, freshwater bodies, mountains, and a well-established network
of protected areas (Fig. 5A). Recreation demand is centered around
three main cities, with the greatest demand in the northwest around
the Greater Bilbao metropolitan area (Fig. 5B). Many valuable areas
emerge when considering both supply and demand (Fig. 5C), but the
greatest value was generated by: (1) beaches and their surroundings
near Bilbao and San Sebastián; (2) the coastal and riverine region be-
tween these cities, including a Biosphere Reserve (Urdaibai), and
(3) the Urkiola mountain range and related protected area, featuring
one of the most iconic mountain peaks of the region (Amboto,
1331 m). Other areas have high potential value, but less accessibility.
For example, the area surrounding the highestmountain peak (Gorbeia,
1481m) ranks high in potential value but it is outweighed by other des-
tinations once accessibility and demand are taken into account
(Fig. 5D).

Flood regulation surplus in the Basque Country is greatest in water-
sheds where there is lower population density and abundant natural
vegetation that retains runoff (Fig. 6). The largest flood regulation defi-
cits are found in the most populated, impervious, and rainy watersheds
of the North, around Bilbao and San Sebastián, where the main rivers
discharge and higher flow accumulation occurs.

Avoided soil erosion is generally greatest where existing vegetation
protects soils in places thatwould otherwise be erosion prone, i.e., steep
Fig. 5.Main outputs of the recreation model in the Basque Country: (A) supply, (B) d
slopes with erodible soils and intense rainfall. Greater soil erosion con-
trol is thus found in western Rwanda, where moremountainous to hilly
topography and greater annual precipitation occur, and in theMitumba
Mountains of western Burundi–particularly in protected areas in both
nations that harbor dense natural vegetation. Less soil erosion control
is found in sparsely vegetated areas (i.e., annual croplands) and loca-
tions with inherently lower erosion risk, i.e., flatter areas of eastern
emand, (C) supply and demand and (D) recreation opportunity spectrum (ROS).

Image of Fig. 5
Image of Fig. 6
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Rwanda and northeast Burundi, and along the shores of Lake Tangan-
yika (Fig. 7).

SMCAconcordancemaps for theBasque Country incorporate ES sup-
ply results for all five ES models (Fig. 8). Under the assumption of equal
weighting that represents the local government interest (Fig. 8A), high-
value areas are scattered throughout the region. Based on the climate
activist stakeholder perspective (Fig. 8B), which placed the highest
value in areas with the greatest carbon storage, there is an important
east-west oriented area in the northern part of the study area, with
overlapping higher-value areas for sediment and flood regulation, and
one in the mountains located along the region's southern limit. The
map of the farmers' perspective (Fig. 8C) is largely explained by the de-
mand for pollination, where high importance occurs in agricultural
areas generally, and areas of sunflower seed production (within the
plains of Alava) specifically. However, the influence of sediment regula-
tion, also important for farmers (Fig. 8C), is also visible in areas where
natural vegetation contributes to soil retention, particularly in the
northeast portion of the region (e.g., south of San Sebastián, including
the Aiako Harria Natural Park). The Basque Country features significant
potential for outdoor recreation (prioritized by citizens, Fig. 8D); most
of the region is classified as of potential interest due to the presence of
coastline and other water bodies, mountains, and protected areas.
High-value areas emerge along a north to south gradient from the
coastal Biosphere Reserve (Urdaibai) down to the northernmost part
to the plains of Alava, including two large reservoirs and two natural
parks (Urkiola and Gorbeia). These parks also offer high levels of flood
regulation, making them yet more important to the citizen stakeholder
group (Fig. 8D).
4. Discussion

By applying simple but easily customized ES models to three appli-
cation contexts with diverse ecological and socioeconomic characteris-
tics and data availability, we illustrate ES supply and demand patterns
that correspond to expectations based on previous research (Bagstad
Fig. 7. Avoided soil erosion in Rwanda (upper red polygon) and Burundi (lower red poly-
gon) in t/ha/year. Values are in T/ha, transformed using log(x + 1).
et al., 2018b; CDSEA, 2016). However, the results shown above are gen-
erated using a specific set of input data, and in an age of rapidly growing
data, the standard for “best available data” changes quickly. ARIES pro-
vides a platform for quick customization and updating ofmodels as new
data become available and are shared on the cloud by a network of
modelers. Rather than focusing on specific results, our three applica-
tions are thus intended to show the flexibility of this approach in ad-
vancing more rapid ES modeling.

Unlike other modeling platforms, k.LAB can directly link diverse
modeling techniques (e.g., system dynamics, agent-based models,
Bayesian networks, machine learning, GIS algorithms, analytical
models, lookup tables, and multi-criteria analyses) and types of knowl-
edge, including quantitative and semi-quantitative data sources and ex-
pert opinion (applications of other modeling techniques within ARIES
are described elsewhere; Bagstad et al., 2014; Balbi et al., 2015;
Willcock et al., 2018). As illustrated in this paper, ARIES models can
adapt to the user-selected spatio-temporal context to produce
context-dependent results by using the most appropriate data, models,
and model parameterizations. Data and model reusability is a funda-
mental characteristic of ARIES, where semantics support automated
workflows linking multi-domain models without requiring added
knowledge from the user (Villa et al., 2014). In all cases, data and
model provenance is maintained to provide full transparency regarding
the choicesmade during themodelingworkflow (Willcock et al., 2018).
ARIES also promotes a community-based, knowledge-drivenmodel de-
velopment strategy, inwhich data andmodels are networked, used, and
further developed by users, without compromising data confidentiality
when restrictions are needed. With the availability of the Tier 1 models
described here, ARIES offers sophisticatedmodeling capabilities to prac-
titioners and decision makers, without imposing a steep learning curve
on users, particularly after the forthcoming launch of the web-based
ARIES explorer interface.

Automating thematching of available data tomodel requirements is
relatively straightforward for data representing continuous numeric
values (i.e., including units of measurement). However, mediation of
categorical data, such as land cover, a key input to many ES models
(Eigenbrod et al., 2010), poses much more difficult representational
challenges for a semantic system. Land-cover mediation for the models
described here uses a simple hierarchical term-matching approach. Yet
the mediation of user-provided land cover datasets can be challenging,
and approaches are needed to appropriatelymediate between disparate
land cover categories (Ahlqvist et al., 2015; Hansen et al., 2013). The ex-
tension of the current linear reasoning approach in k.LAB to the fuzzy
reasoning required to handle such problems is a topic for future
research.

Currently, the models described here largely use population density
to assess ES demand, applying typical indicator-based approaches found
elsewhere in the ES literature that can raise awareness of spatial varia-
tion in demand, quantify access to ES and their flows, and explore
changes in ES supply and demand over time (Wolff et al., 2015, 2017;
Paracchini et al., 2014). In evaluating preferences for ES, SMCA can pro-
vide a broader view of stakeholder values than monetary valuation
alone. SMCA can thus act as a standalone approach to preference elicita-
tion or can complement monetary valuation approaches to ES quantifi-
cation (Spash and Vatn, 2006). Moving beyond population density-
based measures, beneficiary models for individual ES can and should
be further developed and customized to local conditions, using more
complex indicators and monetary valuation (Wolff et al., 2015, 2017).
A modeler could, for example, use per capita gross domestic product
(GDP) data to map vulnerable populations and address equity issues,
or to infer the economic value of infrastructure at risk (Arkema et al.,
2013; Laterra et al., 2016). OpenStreetMap data can also be directly
accessed from k.LAB and included in ES demand models (Willcock
et al., 2018).We also demonstrated simple aggregation of results bywa-
tersheds for hydrologic ES flows (Fig. 6). Similar aggregations could be
performed across other geographic units, in order to summarize data

Image of Fig. 7


Fig. 8. Spatial multi-criteria analysis (SMCA) concordance maps (from 0 to 1 showing increasing concordance) based on the supply of five potential ecosystem services, applied to the
Basque Country for four hypothetical stakeholders' groups: (A) local government, (B) climate activists, (C) farmers, and (D) citizens.
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or serve as simple proxies for ES flows that are not computationally
expensive.

Data and model customization is important to improve accuracy,
transparency, and trust in results used for local applications (Zulian
et al., 2018). Without proper documentation and semantic contextuali-
zation of participatory processes that generate local knowledge, how-
ever, such efforts typically only bear fruit for the initial study, limiting
the ability of others to reuse valuable information in future studies
(Gray et al., 2017). In addition to data and model customization, ARIES
allows users to quantify change through scenarios, substituting alterna-
tive spatial, temporal and tabular inputs or conditions formodel param-
eters and variables. For example, modelers can include climate change
scenarios in their simulations when running models dependent on cli-
matic variables, such as temperature or precipitation; currently, this
can be accomplished in ARIES for a variety of IPCC scenarios (Hijmans
et al., 2005).

Data sources that allow redistribution are accessible to all users on
the ARIES network. The use of the k.LAB software requires a user certif-
icate, which is free to non-commercial users. Data sourceswith redistri-
bution restrictions are, naturally, restricted for public use. For instance,
models that rely on WorldClim data (e.g., flood regulation and pollina-
tion models), rainfall erosivity data (sediment regulation model), and
global cropland data (pollinationmodel) which do not allow redistribu-
tion, will allow models to be computed as derived products, but visual-
ization or export of input data will not be allowed. The ARIES models
refer to data through uniform identifiers (URNs) that are resolved by
network servers after user authentication, allowing fine-grained data
access permission and giving owners full control of the allowed use of
their data or models, either by end users or by other models. Datasets
with no restrictions on redistribution can be fully viewed and exported.
Whenever possible, the use of open data and models is most advanta-
geous; open data provide transparency and trust in modeling, while re-
liance on restricted data makes it more difficult to understand model
outputs and troubleshoot any issues that may arise, as access to source
information is limited. Although not yet widely discussed in the ES re-
search community, our work on data and model linking and reuse
meshes well with initiatives to improve scientific workflows and repro-
ducibility, e.g., through the Findable, Accessible, Interoperable, and Re-
usable (FAIR) principles (Stall et al., 2017; Wilkinson et al., 2016).
5. Conclusions

Sustainability science needs to account for the dynamic relationships
and feedbacks between ES, human well-being, and economic activities
(Willcock et al., 2016). The ES models developed in this study, although
simple, can be applied in any study area globally without added input,
yet can be easily modified to customize models or evaluate the effects
of different landscape management alternatives across multiple scales.
Additionally, as new datasets for model inputs with greater accuracy,
spatial resolution, and temporal density are released, ES models can
be quickly updated by users by annotating new datasets and rerunning
the models (Bagstad et al., 2018b; de Araujo Barbosa et al., 2015;
Martínez-López et al., 2016; Pettorelli et al., 2017; Buchanan et al.,
2018). Given the increasing amount and quality of available spatial
data, ARIES thus offers a way to keep ES model results as timely as pos-
sible. At the same time, ARIES' data andmodel sharing architecture pro-
vides a mechanism for data synthesis and reuse that with wider use

Image of Fig. 8
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provides greater benefits to the broader ES research and policy
communities.

The open data and semantic modeling paradigm–storing data and
models on the cloud and sharing them with the scientific community
to encourage their linking and reuse–will be most effective as new
users join, contribute, and share their own data and models. To this
end, the models described here provide a starting point for ES assess-
ments, improving the usability of ARIESmodels by new users. Short, ac-
cessible training courses and documentation, along with user-friendly
interfaces, can help introduce more modelers to the ARIES approach,
contributing to enlarging the user community.

The customizable Tier 1 models presented in this paper are just a
starting point for more sophisticated, flexible, community-driven
modeling. Future research directions include the completion of addi-
tional Tier 1 ES models, seamless incorporation of agent-based models,
and assessment of ES flows, processmodels, and other Tier 2models ca-
pable of more sophisticated, dynamic analyses where data exist at ap-
propriate spatio-temporal scales. In many cases, Tier 2 models will
replace indicator-driven approaches with physically based ones that
are amenable tomodel calibration and can producemore useful predic-
tions through scenario analysis. For example, a Tier 2 version of the pol-
linationmodel under development is computed continuously over time
to quantify monthly and seasonal changes in pollination. This approach
would be suitable for localized analysis and is better able to predict both
seasonal and interannual effects of climate change on pollination. At the
same time, the Tier 1 pollination model will remain usable to provide
rapid ES assessment across large spatial extents and/or in data-poor
regions.

As we demonstrate in this paper, cloud-based and context-aware ES
models offer a way for users to perform quick assessments using an
existing base of global data and models (e.g., Burundi) or to customize
model structure, inputs, and parameters where data are available (to
an increasing degree for Rwanda and the Basque Country and Santa Fe
Fireshed applications). By more efficiently collaborating and reusing
ES knowledge, this approach offers a path towards making ES assess-
ments more accessible, transparent, and rapid, overcoming key road-
blocks that have limited the widespread use of ES information in
decision making to date.
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