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Abstract—Internet of Things is the cornerstone of most of
the modern technological achievements and one of the biggest
sources of data. The petabytes of data generated by telemetry
sensors are already used for statistical analysis or the creation
of prediction models used in various applications in the area
of smart cities, smart building, smart health, smart energy, etc.
On the other hand, the expansion of IoT forced the need of
more standardized approaches such the ones used in industrial
automation. The Industrial Internet of Things (IIoT), as part
of Industry 4.0 concept, promotes the cyber physical systems
(CPS) as sensors and actuators that will build the modern
automation world in and out of the factories. This article studies
the IIoT reference architectures and the existing open source IoT
platforms for proposing an integrated architecture for installing
IIoT infrastructure that can collect and analyze big volume of
data, easy and with low cost. The approach is evaluated in a
smart building scenario.

Index Terms—IoT architecture, industrial IoT, open source
software, smart energy

I. INTRODUCTION

Internet of Things (IoT) technologies provide the ability
to establish complex systems that are able to sense, analyze
collected information, and respond in various environments
ameliorating living standards. Nowadays, more than 1600 IoT
projects have been realized word-widely in various sectors
such as smart cities, smart energy, smart health, etc. [1].
Exploiting the advantages of IoT technologies, the Industry
4.0 concept promotes the cyber physical systems (CPS) as
the key enablers for the Industrial Internet of Things, which
is extended beyond the manufacturing environments to every-
day automation infrastructure paradigms like smart buildings.
On the other hand, a lot of work in open source communities
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leads to the introduction of scalable and reliable open source
platforms that are able to contribute meaningfully to the
installation of IoT infrastructure.

This paper presents an approach to build an IIoT infrastruc-
ture which is based on the industrial reference architectural
model of Industrial Internet Reference Architecture (IIRA).
The presented use case concerns the installation of a small-
scale living lab for smart energy. The scope is the creation of
an innovation ecosystem where various technologies and ideas
can be integrated and tested in a real environment [2], [3].
As a demonstrator, an IIoT system is installed using various
networks, sensors and open source software at the premises of
a research institute.

The paper is structured as follows. Section II presents
the major reference architectures for the Industrial Internet
of Things. Section III provides a comparison of the most
commonly used open-source IoT platforms and section IV
refers to the most popular big data analytics platfomrs. Section
V presents the proposed installation of the living lab and its
association with the the Industrial Internet Reference Architec-
ture (IIRA). Finally, conclusions and future work are presented
in Section VI.

II. IIOT REFERENCE ARCHITECTURES

The Industrial Internet of Things is part of the general
IoT evolution. In fact, the impact of the integration of IoT
technologies in the manufacturing environment has led to
advancements deemed as the Fourth Industrial revolution. Ac-
knowledging the importance of this new and rapidly evolving
concept, several initiatives have attempted to define reference
architectures, that will standardize the architectural design of
IIoT applications. The Industry 4.0 Platform and the Industrial
Internet Consortium (IIC) are two of the mainstream initiatives
towards standardization of IIoT systems, supplemented by
further initiatives such as Japan’s Society 5.0 and Made in
China 2025.

The Industry 4.0 Platform is a high-tech strategy of the
German Government, promoting computerization in manufac-
turing. It has developed the Reference Architectural Model
Industry 4.0 (RAMI 4.0) [4]. This three-dimensional service-
oriented architecture combines all elements in a layer and life978-1-7281-3345-4/19/$31.00 ©2019 IEEE



cycle model. The three dimensions are Hierarchy, Architecture
and Product Life Cycle, which define the functional areas of
IIoT applications from the Smart Product to the Connected
World concept, the system architecture and the aspects con-
cerning the development and production phases of a product
respectively.

In parallel with Industry 4.0, the Industrial Internet Refer-
ence Architecture (IIRA) [5] was developed in the US by the
IIC, covering a broader range of possible application sectors
than plain manufacturing. Similar to RAMI 4.0, this archi-
tecture has a three-dimensional approach which uses however
a different perspective, covering the Product Life Cycle, the
Industrial Sectors and the Viewpoints. The Industrial Sectors
represent the various sectors where IIoT applications can be
implemented. The Viewpoints refer to the specific concerns
and different perspectives of industry stakeholders. There are
4 viewpoints in the reference architecture, namely:

• The Business viewpoint which refers to business-oriented
concerns such as business value, expected return on
investment, cost of maintenance and product liability;

• The Usage viewpoint which is concerned with how an
IIoT system realizes the key capabilities identified in the
Business viewpoint;

• The Functional viewpoint which focuses on IIoT System
functional components, structure and interrelation as well
as the necessary interfaces and interactions, and, finally;

• The Implementation viewpoint which is concerned with
the technical representation of an IIoT system and the
technologies and system components required.

Thus, the implementation viewpoint implements the activ-
ities and functions prescribed by the usage and functional
viewpoints. IIoT system implementations follow certain well-
established architectural patterns, such as a) Three-tier ar-
chitecture pattern, b) Gateway-Mediated Edge Connectivity
and Management architecture pattern and c) Layered Databus
pattern.

The three-tier architecture pattern comprises the edge, plat-
form, and enterprise tiers. These tiers play specific roles in
processing the data flows and control flows involved in usage
activities. They are connected by means of three networks, as
shown in Fig. 1.

• The edge tier collects data from the edge nodes, using
the proximity network. The architectural characteristics
of this tier, including the breadth of distribution, loca-
tion, governance scope and the nature of the proximity
network, vary depending on the specific use cases.

• The platform tier receives, processes and forwards control
commands from the enterprise tier to the edge tier.
It consolidates processes and analyses data flows from
the edge tier and other tiers. It provides management
functions for devices and assets. It also offers non-domain
specific services such as data query and analytics.

• The enterprise tier implements domain-specific applica-
tions, decision support systems and provides interfaces to
end-users including operation specialists. The enterprise

tier receives data flows from the edge and platform tier.
It also issues control commands to the platform tier and
edge tier.

Tiers are connected via different networks:
• The proximity network connects the sensors, actuators,

devices, control systems and assets, collectively called
edge nodes. It typically connects these edge nodes, as
one or more clusters related to a gateway that bridges to
other networks.

• The access network enables connectivity for data and
control flows between the edge and the platform tiers.
It may be a corporate network, or an overlay private
network over the public Internet or a 4G/5G network.

• Service network enables connectivity between the ser-
vices in the platform tier and the enterprise tier, and the
services within each tier. It may be an overlay private
network over the public Internet or the Internet itself,
allowing the enterprise grade of security between end-
users and various services.

III. IOT DIGITAL PLATFORMS

A. Open Source IoT Platforms

Production systems are progressively undertaking the digital
transformation of their processes, making increasing use of
data that has previously been impossible or unprofitable to
collect or use. Even though the vision and the will for this
digital transformation is a common ground among all the
stakeholders, the exact definition of an IoT platform and what
it contains and offers, varies according to the context and
the vendor. The IoT platform vendor strategies continue to
evolve and try to follow the evolution in areas like artificial
intelligence and machine learning and simultaneously embrace
innovative paradigms, like fog and edge computing. However,
in general, IoT platforms must share some common charac-
teristics like interconnecting and managing the IoT endpoints,
collecting and processing the data, providing data visualization
tools, and providing tools for IoT application development.

The selection of an IoT platform for a project is a difficult
task. There are several surveys that compare existing IoT
platforms [6]–[8], most of them focusing in performance
issues [9], [10] while others specialize in specific application
domains, such as smart buildings [11] or smart health [12]. For
the scope of this work, comparison of IoT platforms focuses
on engineering aspects like easy installation and configuration,
scalability and interoperability. Taking into account these
requirements, we identified and compared across the four most
prevalent open source IoT platforms, namely ThingsBoard1 ,
OpenHab2, DeviceHive3, and Kaa Project4. We performed a
thorough comparison on the basis of several key properties
which are important for the proper selection of a technological
solution. These criteria are presented in Table I.

1https://thingsboard.io
2https://www.openhab.org
3https://devicehive.com
4https://www.kaaproject.org



Fig. 1. Three-Tier IIoT System Architecture for IIRA.

TABLE I
IOT PLATFORM COMPARISON PROPERTIES

Property Description
Technical Characteristics HW requirements, programming lan-

guage, OS, installation method
Architecture Monolithic, microservices etc.
Services Device management, data visualization,

remote command execution etc.
Documentation User manual, developer manual, API

reference etc.
Supported Protocols MQTT, CoAP, HTTP, REST API,

OPCUA etc.
Device Management Firmware update, role support, device

control etc.
Security HTTP/SSL support, device authentica-

tion etc.
Data persistence technologies SQL, noSQL, Postgress, Cassandra DB

etc.
Data Pre-Processing Support of aggregation functions, filter-

ing, pipeline etc.
Data Visualization Widgets, Tables etc.
Data Analytics Connection with data analytics plat-

forms and tools
Scalability API or SDK for the integration or com-

munication with and other system

B. Comparison results

All four platforms examined cover the basic specifications
of a digital platform that would support an industrial internet
of things infrastructure. Each of them can interconnect IoT de-
vices and gather data from them. Furthermore, both relational
and NoSQL databases are supported to store the collected
data from the devices. All platforms under consideration are
JAVA-developed and provided under licenses that allow their

free use without limitations in various applications. They also
all support microservices architectures, allowing its use in
fog architectures. Nonetheless, the offerings of each platform
varies with respect to each property, so the appropriateness of
each platform is strongly dependent on the needs of individual
applications.

The Thingsboard [13] platform is the latest open source
effort with active presence and support in the open source
community. It can be considered as the most complete plat-
form, since its free version satisfies the requirements of
most properties, such as device management, collection, pre-
processing, editing and graphical presentation of the data. It
can be installed easily and it is easy to interconnect a new
device since it is accompanied by a gateway that allows the
two-way connection of devices with multiple communication
protocols and message structure. Furthermore, it supports
industrial protocols like the OPC-UA and Modbus. Finally,
it provides a complete graphical environment with a decision
engine that allows user and device feedback according to rules
on data values.

The openHab [14] platform is the most mature work in
the field of building automation using the Internet of Things.
It is supported by a large community, which also helps
in the development of plugins for interfacing with various
commercial devices. Moreover, it fully supports all the basic
data collection, processing and presentation functions. It lags
behind others in installation and customization complexity, and
in providing a friendly graphical environment. A multiplicity
of communication protocols are supported via the existing
plugins, yet industrial protocols are not supported. From a



security standpoint, it does not support device authentication
and graded access.

The DeviceHive [15] platform is another attempt from
the open source community. Its distinguishing feature is the
provision of an SDK in several languages which enables the
further extension of its functions. It does not support graphical
data representation and data analysis for which a third-party
application is required. The interconnection of a new device
may pose serious difficulties due to the lack of built-in support
of many known device interface protocols.

The KAA [16] platform is supported by a large group of
developers but lacks recent updates. The platform supports
specific data collection and storage functions. Data processing
and graphical visualization are only supported by the commer-
cial version.

Each platform has positives and negatives aspects, according
to which it can be considered satisfactory depending on the
specifications of each application use-case. In the context of
an industrial environment, in which it is necessary to integrate
various heterogeneous industrial network devices of things,
and where there is also a need for bidirectional communication
with the devices, the platforms must support multiple protocols
and interact with devices in an untroubled manner. In addition,
the degree of support by the community is a decisive factor
that must be taken into account. From this perspective, the
ThingsBoard and openHab platforms seem to be ahead from
the rest of the competition.

IV. DATA ANALYTIC PLATFORMS

A. Overview of modern data analytics

The industrial IoT is characterised strongly by the hallmark
3Vs of Big Data, as described in the classical definition
of Big Data by Laney [17]: Volume, Variety and Velocity.
Labrinidis and Javadish [18] define the process of managing
big data as consistent of two distinct levels, namely Data
Management (where data is acquired and subsequently pre-
processed, e.g. for the purposes of cleaning, transforming,
integrating, aggregating etc., and Analytics (where data is
modelled and analysed, leading to interpretations and knowl-
edge). As explained by Tsai et al. [19], the process of data
analysis (or data analytics) utilizes the outputs of the data
management process as input, in order to find hidden patterns,
rules and information from the data. For this purpose, a range
of statistical techniques is often used to mine data, though
more recently, other analytics methods, such as supervised
and unsupervised machine learning techniques, have begun to
rapidly gain ground, used either exclusively, or in conjunction
with statistical processing techniques. Big Data analytics are
typically classified as Descriptive, Predictive and Prescriptive
analytics [20]. In the context of the IoT, analytics can also be
applied in real-time (i.e. upon the incoming stream of data),
or off-line (on stored data).

Although data analytics can be applied for a wide range
of purposes, Gandomi and Halder [21] outline some of the
most common uses for multimodal data analytics. In text
analytics, typical uses are information extraction (structured

data and relationships from unstructured texts), summarization
(from single documents or collections), question answering
(responses to questions posed in natural language) and sen-
timent analysis. Another type of use case is audio analyt-
ics, either applied to sounds or speech, in order to extract
structured information (e.g. audio features to help recognise
and classify sound, or extract semantics and sentiment from
speech). Video analytics refers to the extraction of information
from static images or video streams (e.g. image classification
and content description, detection of presence). Social network
analytics includes several techniques found in text and mul-
timedia analytics (content-based analytics), but also focuses
on the relationships between users and entities, since social
networks are typically represented as graph structures (e.g.
community detection, social influence and link prediction).
Finally, predictive analytics is a modern trend that attempts
to provide predictions on the future values of certain data, by
generating data models trained on historical data. Common
examples of these could be predicting a user’s interest in
particular products, forecasting the electricity demands of a
region, or inferring the likely remaining time-to-failure of a
hardware component.

B. Open Source Big Data Platforms

To address the challenges of Big Data in the IoT, the concept
of scalability is fundamental. In this respect, there are two
major approaches, namely to horizontally scale a system (i.e.
add more servers to increase storage capacity and distribute
computational loads), or to vertically scale a system (i.e. add
more hardware resources to existing servers, such as more
RAM, processors or GPUs).

Whether one choses horizontal or vertical scalability, in
the open-source world there are few product offerings that
combine all the necessary components for Big Data analytics
(storage, pre-processing, analysis) in one single package. In-
stead, most solutions based on open-source software, depend
on a range of base components that manage data storage,
querying and program execution, upon which further com-
ponents for data analytics can be installed and executed. This
allows system developers to adopt a mix-and-match approach,
depending on their needs and available expertise. In the next
section, we present the most well-known such components.

C. Base components

The most well-known Big Data platform is Apache Hadoop
[22]. This consists of a distributed file system (HDFS) for
storage across a large number of nodes, and a resource
management layer (YARN) which schedules jobs across the
node cluster. The MapReduce programming model allows
parallel execution of data queries, which can be simplified
by using other components such as Apache Hive or Apache
Pig, which offer SQL-like capabilities to programmers.

Hadoop is well-suited to batch processing of large datasets,
however it suffers from a speed disadvantage, since at every
processing step, the results are written to and read from



hard drive storage. Apache Spark5 is a more recent platform
for big data management, which relies on the storage of
immutable datasets in RAM, instead of hard drives. Its opera-
tional concepts are very similar to Hadoop, however it offers
a tremendous speed advantage, at the cost of more expen-
sive hardware requirements [23]. Spark’s speed improvements
make it suitable for batch processing, as well as, to some
extent, stream processing.

Finally, we mention here two horizontally scalable database
platforms, which offer NoSQL database storage and querying
components. The most well-known examples are MongoDB
and Apache Cassandra, both of which offer rapid performance
in querying and fault tolerance through distributed database
storage. Extending the suite of options, Neo4j is perhaps the
most commonly used graph database, allowing the represen-
tation of semantically linked data.

D. Data analytics components

Most of the open-source solutions in data analytics offer
bolt-on compatibility with base components such as Hadoop,
and are typically offered alongside a more feature-rich paid
version. Many implementations refer to “data analytics” in
the context of visualizing data and generating reports. While
these techniques offer valuable services, we focus on those
implementations which include machine-learning algorithm
integrations, aligning with the data analytics definition in [21].
For the purpose of this work, we selected three machine learn-
ing supporting open-source platforms for Big Data analytics.
These offerings are the Knowage6, the H2O7 and KNIME8. A
summary of the features found in each offering is shown in
Table II. Notably, the Apache Spark platform also offers its
own suite of machine-learning tools (MLlib).

TABLE II
IOT PLATFORMS COMPARISON CHARACTERISTICS

Software
Platform

Base sup-
port

Feature
set

Data pro-
cessing

ML algo-
rithms

Knowage Spark Limited Yes Yes
H2O Hadoop,

Spark
Full No Yes

KNIME Hadoop,
Spark

Full Yes Yes

Further from the above, data analytics solutions developers
may base their solutions on popular programming languages
(such as R, Python) which include many pre-compiled libraries
for statistical and machine learning processing. These also
include libraries for connecting to popular base components
such as Spark and Hadoop, making data integration easy.
Software libraries for common programming languages (e.g.
Weka for the Java language) can also be employed to this end.

5https://spark.apache.org/
6https://www.knowage-suite.com
7https://www.h2o.ai
8https://www.knime.com

E. Complete platforms

In this section, we discuss platforms that offer a complete
suite of features for data analytics, integrating storage, pro-
cessing, querying and analysis tools. Apache Spark [24] is
considered the next step up from Hadoop and it also provides
a scheduler, query optimizer and execution engine, which
can run either standalone, or on top of an existing Hadoop
installation (replacing Hadoops YARN). As mentioned, one
advantage of Spark is that it comes not just with data query
capabilities, but a full machine-learning library, which contains
classification, regression, clustering and other ML algorithms,
optimized to run under Sparks parallel execution environment.

We also note here the HPCC9 platform, which is a complete
big data storage and analysis platform, similar to Spark,
offering a suite of tools for data pre-processing (Thor), data
querying (Roxie), job scheduling and automation and finally
processing via distributed execution machine learning algo-
rithms, over commodity computing clusters. HPCC claims
superior performance compared to Spark and Hadoop, since
it supports three types of parallelism: Data (division and
processing), Pipeline (two operations on the same dataset si-
multaneously), and System (parallel execution of independent
operations).

V. A LIVING LAB FOR ENERGY EFFICIENCY

A well-known source of energy inefficiency in a building
reality is human behaviour. For example, while opening a
window for one minute can be seen as a decision of negligible
impact from the building user point of view, the actual
impact of a simple action like this, depending on the external
environmental conditions, could be drastic in terms of thermal
dispersion and thus energy costs. It is then clear that any ex-
pression of the simplest user freedom in a building can impact
considerably on the overall building energy consumption.

Following the concept of living labs, an IIoT infrastruc-
ture has been installed at our research institute’s premises
(Industrial Systems Institutes - ISI), in order to examine new
approaches to the energy efficiency based on automation and
human factors. The open source platform Thingsboard has
been chosen as the central IoT platform that implements an
IIRA driven architecture.

A. IoT Devices and Networking

ISI occupies three different independent offices at the build-
ing of Patras Science Park10. Due to building administration
constraints, we were not able to install smart energy meters
at the central energy infrastructure, therefore our energy use
monitoring installation comprises of smart plugs and power
switches.

Both commercial solutions and hardware open source cus-
tom projects are used as IoT sensors in our installation. For
the smart plugs, the products of the MEAZON SA11, a Greek

9https://hpccsystems.com
10http://www.psp.org.gr
11https://meazon.com



Fig. 2. IIRA-based Three-Tier IIoT System Architecture at the ISI living lab.

company with an open telemetry protocol and Sonoff12, a
series of products from the Chinese company ITEAD with
open source firmware, were used. For monitoring the en-
vironmental parameters (temperature, sensitivity, light, etc.)
and room occupation (motion detection), custom multi-sensor
prototype devices based on Arduino boards were used.

For the networking of IoT sensors and the aggregation
of the telemetry, the existing WiFi and Ethernet network
infrastructure was leveraged. Furthermore, in each room a
ZigBee gateway was installed, creating a proximity network
for the MEAZON smart plugs to eventually communicate with
the central IoT platform. Furthermore, Intel RealSense13 depth
cameras have been installed in some of the room identifying
human presence and counting the number of people that co-
exist in the monitored area. The depth cameras are connected
with a embedded system implemented using the Raspberry Pi
3 Model B+14 platform. It’s role is to processes the image
from the camera and extract the required information and to
sent them to the IoT platform.

This setup simulates the heterogeneity of devices and
communication protocols encountered in the IIoT, includ-
ing a range of commercial-off-the-shelf (COTS) devices and
custom-built hardware, communicating over a range of diverse
wireless and wired network infrastructures. We use the MQTT

12https://sonoff.itead.cc/en
13https://sonoff.itead.cc/en
14https://www.intelrealsense.com/

protocol over all network connections to manage latency and
reliability issues that emerge through the heterogeneity. The
device abstractions afforded through the ThingsBoard platform
allow for the easy integration of any type of device, as long
as it can support two-way communication via MQTT.

B. IoT Architecture

The proposed architecture follows the three-tier model sug-
gested by IIRA. Thingsboard platforms services were used for
the implementation of both platform and business layer. Fig. 2
shows the functional components that are used for installing
the proposed living lab.

At the edge tier, the IoT devices are communicating through
the WiFI, Ethernet and ZigBee networks to a central server
where the ThingsBoard Platform is used. The devices are
communicating using both MQTT protocol. At the central
server (Platform tier), two MQTT brokers are installed. One
is used by the Thingsboard platform as the endpoint of
input and output of data.The second broker is an Eclipse
Mosquito broker running on a NodeRed service, which is
used for communicating with devices that do not support the
message content defined by the IoT Platform, thus affording
additional abstraction capabilities to allow the integration of
COTS devices. For IoT devices with programmable firmware,
we implemented the exchange of data with platforms native
MQTT. This data contains messages for sending telemetry as
well as receiving commands from the platform (i.e. turn off a



Fig. 3. Screenshot of the overall dashboard with Living Labs power metrics.

plug). For the rest of the devices that follow their own mes-
sage structure, we developed an extensible data transforma-
tion pipeline management software (NodeRed broker service),
which is used as gateway that translates the from and to the
devices messages to ThingsBoard’s messages structure. The
platform tier consists of the modules of Thingsboard platform.
The in-built Rule Engine is used for Data Transformation and
Analytics, where the incoming and outgoing data is filtered
or transformed following a rule-based logic. The transformed
data is forwarded to the ThingsBoard core module for storage
to the local database, leveraging the platform’s in-built Kafka
stream management services. A Cassandra No SQL database
is used for storing the telemetry and device configuration data.
Additionally, ThingsBoards core module provides assets man-
agement and user authorization and authentication services as
part of the operations capability defined by IIRA.

Finally, at the Enterprise tier, a web interface allows the
creation of dashboards with visualization of the telemetry data
in interactive charts. An example is shown in Fig. 3.

C. Big Data Analytics

The ThingsBoard platform offers the ability to produce
outgoing datastreams to external applications, through the
integration module with Apache Kafka15 service. This can
be configured through the platform’s rule engine, effectively
setting-up a data forwarding mechanism to third party appli-
cations. In addition, it is possible to configure access to the
NoSQL database for external applications so that data can
be obtained in bulk for batch processing. As a result, it is
relatively straightforward to implement an external processing
pipeline for big data analytics, in a number of configurations.

For this, we implement an Apache Spark instance, which
can be used to perform various data analytics functions. As an
example, Spark’s MLlib can be used to configure, train and
deploy machine-learning based applications, which can offer
classification-based services, such as anomalous event detec-
tion on the monitored IIoT system (e.g. abnormal operating
conditions, inappropriate system states during rule operation).
Another type of use is applications that offer regression-based

15https://kafka.apache.org

predictive services, for example, forecasting energy demands,
recommending device (plug) state configurations based on
external current and forecasted weather conditions, etc. To
this end, data from the ThingsBoard platform needs to be
processed both in batch mode (large, historical datasets) and
stream mode (incoming streaming data).

• Batch processing using ThingsBoard storage: Spark ap-
plications can read directly from the Cassandra database,
obtaining subsets of the data which can be used to
train machine learning models on the Spark instance.
Models can be updated off-line at regular intervals, using
recent data stored in the ThingsBoard platform. Long-
term forecasts can be made using these historical data
values only, and they can be invoked on-demand or
automatically produced at regular intervals.

• Batch processing using Spark storage: For batch ML
model training and prediction, another approach is to
replicate incoming data streams by feeding them, through
the Kafka service, into independent storage on the Spark
instance. This can allow the periodic overwrites of data,
keeping local subset copies on the Spark instance without
the overhead of querying and retrieving directly from
the ThingsBoard platform storage. This enhances data
integrity through increased security and replication.

• Stream processing: Spark can receive data directly from
Kafka and perform classification and regression tasks on
the data as it arrives, using stored models built earlier
through batch processing. The results of these predictions
can be fed back to the ThingsBoard platform, again using
the Kafka service, in order to drive rules in the Rule
Engine, or allow the display of real-time forecasting on
the Enterprise Tier web UI.

VI. CONCLUSIONS AND FUTURE WORK

The proposed work presents a practical paradigm for ap-
plying an IIoT reference architecture in our case the IIRA
utilising open source software in combination with industrial
products that can been found in the market. As a use case,
a small scale Living Lab was installed at the premises of
Industrial Systems Institute. Through this use case, we demon-
strate that the implementation of reference IIoT architectures
using open-source software is not only feasible, but in fact a
highly scalable and flexible approach to IIoT implementation,
combining custom and COTS hardware. As future work, an
extension of this Living Lab is scheduled, mainly in the
Enterprise Layer, where the additional platform for big data
analytics including Apache Spark will be deployed in a cloud
computing infrastructure. This platform will enable the users to
proceed with complex data analysis tasks and use the results to
create new rules which will feed the IoT platforms rule engine.
More importantly, we are looking at distributing the data ana-
lytics intelligence capabilities to reduce the reliance on single-
points of failure and increase the robustness, responsiveness
and scalability of the system. For this, we are investigating the
implementation of multi-tier fog-based analytics, in the form
of a hierarchy of individual AI-enabled boards at the edge



(e.g. Google Coral or Raspberry Pis with AI hats working at
the room level), local analytics using Spark on Raspberry Pi
nano-clusters (e.g. at floor level), and global analytics using
the cloud Apache Spark configuration described in this paper
(e.g. at building level).
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