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Abstract—Percentage of population living in cities is expected
to reach 60% by 2030, accounting for 60% - 80% of world
annual energy needs and making the impact of energy efficient
solutions in cities quite significant for environmental protection
and fighting climate change. The building sector uses about 40%
of European energy and emits approximately 1/3 of greenhouse
gas emissions. Black-box measurement based modeling methods
allow the estimation of consumption in buildings relying on
smart metering devices installed. Vast amount of data generated
poses new challenges with reference to their handling and timely
processing. The paper presents an approach related to building
energy load profiling utilising profile compression and clustering.
It discusses the application of different clustering algorithms
through their experimental evaluation.

Index Terms—Smart Cities, Smart Energy, Smart Building,
Load Energy Profiling

I. INTRODUCTION

The steady increase of worldwide energy consumption im-
poses several problems in terms of limited energy resources,
supply difficulties and environmental impacts. A common
challenge is to reduce energy consumption, mitigating at
the same time impacts on climate change [1]. The building
sector is responsible for approximately 40% of European
energy consumption, and 36% of CO, emissions. Buildings
are therefore the single largest energy consumer in Europe [2].
Residential buildings account for about 27% of EU energy
consumption [3]. With these numbers in mind, it is evident
that building energy efficiency is extremely important in terms
of both the economic and environmental positive effects it
induces.

Solutions to the aforementioned challenge can be distinct
according to their fields of application: a) technologies for en-
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ergy efficient building construction or renovation, and b) tech-
nologies that can be easily applied to existing infrastructures.
Especially with reference to the latter, use of energy profiling
is a powerful tool for estimating energy consumption, based
on specific static factors (building orientation, occupancy,
environmental conditions, etc.). Nevertheless, such profiles are
not based on real time data, and are not flexible to changes
in such factors as climate changes, building or apartment
renovations, and new application of energy technologies.
Nowadays, there is a strong orientation of energy providers
towards the utilisation of smart energy networks. Smart energy
networks, including smart grids, smart district heating net-
works, and smart natural gas networks, integrate new control
and sensor equipment to the traditional energy transmission
network, allowing the collection of data, its processing and
related automation in the control of the energy flow. With
currently existing technology, it is easy to install smart meters
and actuators in any residential building, either in the central
energy supply of the building/department, or even inside the
residence (smart plugs, smart light bulbs, etc.). Access to
accurate data about energy consumption provides the ability
of applying data science techniques for the identification
of the behavioural profile related to energy consumption of
residential buildings. The capacity of continuous monitoring
led researchers to design algorithms that can dynamically
provide energy profiles using modern methods based on data
mining, machine learning and advanced statistics. Outcomes
may be applied in various areas in the intelligent energy net-
work domain, such as demand forecasting, energy generation
optimization, energy pricing, monitoring and diagnostics [4].
The field of dynamic energy profiling, although witnessing
helpful results from the utilisation of conventional clustering
methods, experiences new challenges considering the introduc-
tion of new technologies in complex energy management sys-
tems. The major barrier is the vast amount of data, both real-
time and historical, that is generated by smart metering devices
and which has to be processed quickly. Such requirements
lead the research to new methodologies, like data dimension



reduction, and timeseries processing.

The motivation underlying in this work resolves around the
management of significant energy consumption imbalances
that occur between the maximum green energy production
time span and the peak energy demand also known as the
”Duck Curve” [5]. The proposed approach identifies in energy
consumption data, such factors as load demand statistics, peak
demand, and energy fluctuations. This space efficient proposed
approach is proven via appropriate experimental evaluation,
that is able to adequately identify clusters, which peak de-
mand timespan correlates with the production of “green” and
renewable energy.

The paper is structured as follows. Section II presents
briefly the benefits, challenges, and approaches of energy
load profiling. Section III describes the first step of the
proposed methodology, that deals with the compression of
energy consumption profiles, while Section IV presents the
clustering algorithm, that is used for the identification of
load profiles. The evaluation is based on experimentation
using daily measurements of energy consumption taken from
residential buildings, and presented in Section V. Finally,
conclusions and future work are presented in Section VI.

II. RESIDENTIAL BUILDING ENERGY LOAD
A. Building Energy Efficiency

An energy efficient building is described as having healthy
facilities designed and built in a resource efficient manner, us-
ing ecologically based principles [6]. This means that a build-
ing should have a minimal positive impact on the environment
through achieving an as low as possible energy consumption,
while maintaining the desirable living and working conditions
for its tenants.

Technological advances in recent years have provided the
building sector with new options to achieve a higher level of
energy efficiency. It must be noted however that although most
intervention options are considered as economically viable, the
rate at which investments are being made remains low in many
countries. This is attributed to socio-economic reasons, namely
recent economic crises, and low level of acknowledgement
of the current situation by potential investors and the general
public. This phenomenon is described as the energy efficiency
gap [7]. Below we try to briefly describe the current state of
the art in terms of available technologies for energy efficiency
interventions.

A huge part of the building energy consumption is used
for controlling its thermal comfort, meaning the operation of
the Heating, Cooling and Ventilation systems (HVAC). This
can be as high as 76% of the total building consumption
according to [8]. Solutions to reduce this consumption include
the use of new insulation materials for shielding the building
envelope, thus reducing the energy demand, as well as the
HVAC distribution system, or the installation of new HVAC
systems, such as heat pumps or condensing boilers, which
increase the overall efficiency of the system.

A reduction in the electrical consumption of the building
is also considered as a good practice for raising its energy

efficiency. Renewable energy sources, such as solar and pho-
tovoltaic panels, can hugely contribute towards this end, while
modern lighting systems and household appliances with better
energy ratings are also obvious choices as interventions.

Smart buildings driven by technological advances in the
Internet of Things sector are also emerging as technological
solutions for increasing energy efficiency in buildings. Smart
devices such as sensors can be utilized to monitor human
behavior, control building systems to adapt to that behavior
and even counter-measure some human actions with adverse
effects on energy consumption. When paired with newly
developed advanced control algorithms that allow building
simulations and energy consumption prediction, smart building
interventions represent a highly efficient and economically
viable set of interventions focused on building energy man-
agement.

Human behavior monitoring and analysis is critical both
for finding the best possible intervention to reduce energy
consumption and for evaluating the implemented retrofit. This
is because human behavior plays a vast role in the energy
performance of buildings and creates considerable variations
in their efficiency [9]. In fact, it is common for building users
to alter their energy consuming habits after a retrofit, even to
an extent that partially cancels the gains from the intervention,
an effect known as “backfire effect” [10]. This shows the
significance of energy profiling to correctly display and predict
user behavior for a particular case.

B. Standard Energy Profiles

Energy profiling for buildings is a very useful tool for
pointing out possible waste of energy that is attributed to
occupancy related actions. Occupant presence and behavior
in buildings has shown to have large impacts on space heat-
ing, cooling and ventilation demand, energy consumption of
lighting and space appliances, and building controls where
careless behavior can add one-third to a building’s designed
energy performance, while conservation behavior can save
a third [11]. This underlines the importance of a carefully
drafted energy profile that accurately depicts the building
energy behavior.

Profiles are constructed using interval data from the building
consumption. More data available means a higher accuracy
for the generated profile. By comparing the profile with the
building occupancy patterns while taking into account the
building particular usage, important details can emerge that
show discrepancies between the expected and actual energy
performance of the building. Another usage of energy profiles
is the possibility to correlate them with the building energy
demand pattern, which can be obtained through building sim-
ulation software that implements well established international
standards [12] [13] [14] [15].

Energy profiles for residential buildings can vary greatly for
a number of reasons. Number of occupants, behavior patterns
and daily schedules can affect the building energy profile. This
is particularly true for peaks in electricity demand, a factor that
is highly correlated with the presence of users in the building.



Moreover, since, depending on the country, HVAC needs for
residential buildings can be mostly relevant during heating or
cooling seasons or both, profiles have a large dependence on
seasonality. A general norm shows much larger consumption
during winter. Finally, residential building profiles are different
during weekends and non-working days, since occupants are
usually inside the building for a larger portion of the day
compared to working days.

Several surveys have been conducted to compare profiles of
buildings in different countries and with different usage pat-
terns. In [16] several domestic building profiles are presented
and broken down into different appliance type usage during the
day. In [17] profiles from residential buildings from different
countries are presented, showing the consumption pattern
when it comes to domestic hot water usage and electrical
loads.

C. Electrical Energy Load Dynamic Profiling

The static energy profiling provides a good estimation of
the probable energy consumption for residential buildings, but
is rather inadequate for real time energy management. The
evolution of intelligent energy networks provides the means
for accessing real time energy consumption data, as well as for
the identification of accurate energy profiles. Data clustering is
usually deployed for creating dynamic energy profiles. Meth-
ods like Support vector machine (SVM), Neural networks,
K-Means, Gaussian process, Principal component analysis
(PCA), Independent component analysis (ICA), Non-negative
matrix factorization (NMF) and Learning vector quantization
(LVQ), are applied to the collected data, finding consumers
with similar behaviours [4]. AlI-Wakeel & Wu [18] utilise the
K-Means method to identify energy load clusters based on
daily customer energy consumption data. They conclude that
the minimum clustering ratio is highly correlated with the
shortest time window of segmentation, and that small number
of clusters can provide more accurate results. A comparative
study [19] on the clustering methods for energy profiling
reveales that hierarchical algorithms provide better results in
data containing daily energy load of a customer, but in terms of
execution time they lack against k-means approaches with few
clusters. Moreover, the same study concludes that new tools
are required to deal with the “big data” thread, which emerges
more evidently as the intelligent monitoring infrastructure
grows larger.

Furthermore, some researchers apply hybrid approaches that
combine additional data from external resources. In [20], the
authors examine energy consumption data in households with
the combination of door-to-door surveys related to occupant
behaviour. Then, they apply a hierarchical clustering method
concluding the three major groups of characteristics that
describe each cluster.

The challenge today is the handling of the amount of
data that continuously increases. Classical algorithms fail to
provide reliable solutions, so new approaches are employed
in an effort to tackle this problem. A multi-layered approach
is proposed in [21], where two layers of profiling are used:

a) a local profile derived from clustering data in a small and
specific area (apartment, building or block) and b) a global
profile based on the findings of the first layer. This approach
ensures an essential reduction in the computational complexity.
Ray & Pinson [22] create an adaptive and recursive clustering
method based on on-line k-means in order to continuously
evaluate and adjust their predictive model with the later
measurements. In another research effort [23] related to energy
load profiling for demand response (DR) programs, the authors
use a modified symbolic aggregate approximation (SAX),
which among other benefits, reduces the dimensionality of
data, increasing the performance of the clustering algorithms
that are used. Finally, a most recent approach [24] uses
image processing techniques to suppress excessive sensitivity.
Specifically, the authors create load profiles with conventional
methods and depict them to two-dimensional images. Then,
they apply filtering and thresholding techniques for optimizing
the results.

III. COMPRESSING ENERGY CONSUMPTION PROFILES

The ultimate goal of the algorithm at hand, is to present
a scalable method of handling time series, that represent
an energy consumption profile across a period of time, and
comprehend its properties in regards to load demand statistics,
peak demand, as well as energy fluctuations across a specific
time span.

Thus, this work demonstrates a methodology composed by
a set of steps, utilizing state of the art tools, in order to achieve
the aforementioned. Load profiles, in their essence, are time
series, that measure energy-based expenditure. Their span as
well as their rate of sampling is ever increasing in terms of
velocity and frequency, resulting into vast amounts of data
which are difficult to process in their entirety or save into
storage and access them efficiently.

It is essential that the scalability of the algorithmic proce-
dure must be ensured. The essential approach for this step,
is to develop means of compressing time series. A general
challenge for Internet of Things related datasets, is their sheer
volume. Handling time series that pertain days or even months,
for example with a sampling rate of 2 or even 4 records per
minute, could lead to extended processing times, slower and
inefficient systems. Compression introduces the concept of
loss during the reconstruction, however the utmost ambition
of a compressing procedure is to achieve a beneficial trade-
off between the error of the algorithm, and the amount of data
condensation it bestows to the system.

A. Compression through Auto-Encoders

A compression algorithm, that takes advantage of state of
the art solutions such as neural networks, having proven their
robustness and efficiency in handling patterns in vast amounts
of data, is the Variational Autoencoders, which belongs to the
family of unsupervised learning [25] [26].

Variational Autoencoders are fundamentally foundationless
of compression. They extend the classic Autoencoders, which
consist of two modules: one process that encodes the incoming



data into a latent feature space whose size is significantly
smaller than the dimensions of the input data, and then another
process which consists of a decoding module that extracts the
compressed data from the median neural layer, and projects
it into a dimensional space identical to the input size [27].
The distinctive feature that separates Variational Autoencoders
from classic Autoencoders, is the reparameterization trick that
occurs to the data record when it reaches the median layer, in
order to better rearrange the latent space and avoid cases of
overfitting during the training phase of the algorithm [28].
Thus, the loss function of such an algorithm is conceived
through two parts. Initially, since Variational Autoencoders
pertain to a reconstruction process, the input data has to
be as similar as the output, hence the first part of this
loss function consists of this difference between input and
output values. The second part of the function, is inevitably
introduced through the reparameterization trick. Since the
algorithm aims at learning a distribution in the latent space, the
difference between the learned distribution and the standard
normal distribution represents another part of loss and is best
expressed by the Kullback-Leibler divergence [29].

L = —Dgr(a(z[z")]|p(2)) + Eyzaillogpe(a*]2)] (1)

where z represents the latent layer, ° is the input datapoint
and q is the learnt distribution which is compared to distribu-
tion p, where 6 denotes the characteristic properties of p.

However, due to the fact that the energy consumption
profiles are measured as a function of time, an alternative
neural network approach for the encoding and decoding
modules is considered. More precisely, the introduction of
recurrent neural networks ( RNNs ) in the autoencoding of
timeseries data can be deemed very helpful [30]. RNNs can
detect patterns of non-coherent timespan in a more accurate
manner than classic feedforward neural networks, as well as
handle non-stationarity, a characteristic which is often met in
timeseries datapoints.

Furthermore, RNNs introduce a flexibility in the size of
the input, since they do not demand timeseries of the same
dimensions. The training phase also meets an advantage, since
RNNs outperform the drawbacks of linearities during the
learning process.

B. Auto-Encoding Process Implementation

For the implementation of the aforementioned autoencoding
pipeline, a number of neural network schemas were deployed,
with different hyperparameter values each time the experiment
was reproduced, so as to finetune the process and determine
which values lead to a more efficient training of the autoen-
coding algorithm.

Firstly, the initial neural network deployed was a classic
autoencoder with zero additional fine-tuning logic attached to
its schema. As a consequence of the data used in this work
which maintained a half-hourly sampling rate of residential
energy consumption, the outer layers of the autoencoder were
of size 48. The inner structure of the encoding and decoding

modules were identical and symmetrical, with a hidden layer
of size 24 leading to and from a middle layer of latent space
that amounted to 5 dimensions, resulting to a total layer size of
(48)—(24)—(5)—(24)—(48). The decision for the layer
sizes was adjudged heuristically. The experiments, as shown
in the following sections, were repeated multiple times with
various layer sizes for the hidden and middle layers, in order
to deduce the size that presents the most beneficial loss; in
this case, being 24 and 5 accordingly.

The schema of the Variational Autoencoder preserved a very
similar structure, only differentiating in its fundamental action
that requires a double latent layer in order to implement the
reparameterization trick.

Regarding the rest of the hyperparameters of the training
process, the optimization algorithm selected was the RMSProp
based Adam, which calculates the gradient’s exponential mov-
ing average as well as parameters that manage the decay rate
of this moving average [31]. For the learning rate, the initial
value amounted to 5 — e4, with the adoption of an adaptive
learning approach in order to push the training process out of
potential local minima sinkholes.

For the adaptation of the recurrent neural networks inside
the autoencoding schema, the encoder and decoder modules
had to be altered to a degree. Instead of the classic feed-
forward neural networks, the encoding and decoding processes
are handled by a specific type of recurrent neural networks
called Long-Short Term Memory Neural Networks (LSTMs)
[32]. The pipeline of this schema uses also datapoints of the
same dimensions, although the hidden layer that is passed
to the latent stage is the last layer of the LSTM stack. The
encoding to the latent space is still implemented through a
linear feed-forward process, and outputs another hidden layer
which feeds the decoding LSTM, before the outer dense
layer containing the initial 48 dimensions, as also depicted
in Figure 1.

The loss function utilized for all the schemes is a Binary
Cross Entropy function with logits introduced through a sig-
moid activation function [33].

IV. CLUSTERING FOR LOAD ENERGY PROFILING

With the conclusion of the encoding step, the algorithmic
pipeline presents the time series data compressed to a much
smaller feature space, whereas the velocity of processing
their characteristics, clustering them or analyzing them in
general, significantly increases. The next step of the procedure
consists of dividing the available encoded load profiles into
separate groups ( clusters ) which according to the clustering
hypothesis, will possess similar features. More specifically,
any load profile that is assigned to a cluster must be able
to roughly describe the characteristic behaviour of the rest of
the cluster’s time series.

A. Classic Clustering Algorithms

The first attempt in clustering the encoded time series took
place with the exploration of classic clustering solutions such
as K-Means or density based clustering algorithms, in order
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to pinpoint potential problems that they present, or possibly
highlight insightful information.

K-Means was preferred as an algorithm that can quickly
produce a rough abstraction on how the data behaves on
several different values for the clustering hyperparameters.
The clustering was repeated multiple times, each time picking
a different value for the number of clusters K, as well as
the initial centroids. After each repetition, an analysis was
performed regarding the assignment of time series with similar
hours of peak demand of electricity [34].

However, predetermining the number of clusters naively as
it happens with the K-Means algorithm, without any infor-
mation that could better dictate the procedure of dividing the
input data in clusters, could be characterized as insufficient.
The optimal number of clusters to divide the load profiles into,
cannot be known a prior:. Thus, the need for a clustering
algorithm that does not demand a specific number of clusters
emerges in advance.

This problem is efficiently solved with a density based
algorithm such as DBSCAN or Spectral Clustering [35].
With DBSCAN, the hyperparameters change, and instead of
being the number of cluster centers, the algorithm takes as
parameters a) the maximum distance between two samples
for one to be considered in the neighborhood of the other,
also called epsilon, and b) the minimum number of samples
in a neighborhood for a point to be considered as a core point
(minPts), including the point itself [36]. Similarly, Spectral
Clustering is a generalized version of DBSCAN, which utilizes
eigenvalues for the dimensionality reduction. The usage of
such algorithms in timeseries is also highlighted in the work
of Jiang et al. [37], where similar challenges are tackled with
density-based techniques.

The result of such a procedure, will be a set of clusters that
do not have strictly similar silhouettes. In contrast, each cluster
will expand accordingly in a more sensible way with the
corresponding data points that are in proximity. This process

highly depends on the finetuning of the hyperaparameters,
and could either result in many clusters, or even in one
single cluster in specific occasions, where the datapoints are
exceptionally dense.

B. Predetermined Cluster Representatives

An alternative to the aforementioned clustering methods,
which are presented as part of the contribution of this work,
is to carefully predetermine the number of clusters, which
the encoded time series will be assigned to, as well as a
representative feature vector, that will be the reference point
for the assignment of a datapoint to a cluster.

More specifically, the definition of the cluster representa-
tives takes place while taking into consideration the algo-
rithm’s fundamental objective, which is to efficiently manage
energy’s peak demand in residential smart buildings. Thus,
ideally, there should be as many clusters created as the number
of time zones that best describe advantageous periods of time,
additionally to the timespans whereas the peak demand resides
in non-optimal places.

The foremost time period that calls for a well defined
cluster representative is the period, which consists of the
late morning hours, noon hours, until late afternoon, when
the percentage of energy that is generated through renewable
sources, such as solar energy, is high. In the contest of
this paper analysis, other renewable energy sources, such as
wind energy or geothermal energy are not being taken into
account. Considering further renewable energy sources might
add further cluster representatives in our approach.

Furthermore, after subtracting the aforementioned period of
high given green energy, there are two periods left within the
24-hour span of the day: the one that begins at midnight, when
the day begins until the beginning of the high green energy
timespan, and from the end of the high green energy timespan
until the end of the corresponding day. Statistically, the vast
majority of residential buildings have traditional behaviours
during these hours. During the hours after midnight, the energy
consumption as well as the energy demand remains low, as a
consequence of their sleep schedule. Demand side manage-
ment scenarios are not taken into account in our approach;
yet this does not affect its genericity, as in the case of their
presence the time interval referred to in the next paragraph
would increase.

The last period of the day is the most ambiguous, and is
the one that presents the most load balancing issues. The
foundation of these problems, lies in the following events.
Firstly, the sheer load demand upright increases during the
beginning of this period, due to the fact that most inhabitants
of residential building have fulfilled their daily work and have
time to invest in household activities. Moreover, the beginning
of this period signifies the end of the daily generation of green
energy, thus this increase in the energy demand is completely
covered by non-renewable sources of energy.

C. Custom Clustering Representatives Implementation

The fundamental idea behind the custom cluster implemen-
tation heavily relied on the manner of creating the representa-
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tives for each cluster. As mentioned in the previous sections,
the constitutional timespans within one day can be broken
down to the period during which the renewable energy is
plentifully available in the power grid, and the second period
being the rest of the day hours, from late afternoon till the
next dawn.

V. EXPERIMENTAL EVALUATION
A. Experiments and Results
B. Dataset

Taking into account statistics regarding the daily solar
radiation, the first cluster profile is modelled accordingly
[38]. Firstly, the median value of the dataset’s maximum
registered energy is extracted. A single value is needed that
will serve as the maximum of the custom cluster’s profile peak
demand absolute value. The index of the peak demand will be
correlated with noon time, and the values for the rest of the
profile will be a percentage of the maximum value with an
exponential decay, spanning between 7:00 am and 18:00 pm.
The rest of the values will be set to zero.

The second profile will be the complementary of the first,
with the same max values but in different time zones for the
peak demand, this time during the late afternoon and the hour
around dawn. Afterwards, these vector profiles will be folded
together with the rest of the dataset in order to be properly
and similarly scaled.

After extracting the two scaled profiles, and having finished
with the encoding process, the profiles must be encoded as
well, in order to have the same dimensions with the input
data points. By having both profiles and the list of time
series in a comparable form, the next step of the algorithm
pertains a similarity measure between each timeseries and the
two profiles, in order to determine its class. The function
that was utilized was the Mean Square Error, meaning that
the comparison with the smaller value decides whether the

Custom Cluster Representative Method Results
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Percentage of Clustered Timeseries | Hour of Peak Demand

12-00
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Fig. 3. Custom Cluster Representative Method Results

timeseries’ peak demand belongs to the renewable energy
compliant cluster or to the second one.

Finally, after concluding the extraction of the classes for
each timeseries, the encoded timeseries can be pipelined into
a feed-forward neural network with 2 hidden layers of 100
and 10 nodes each. The outer layer that pertains to the input
must have the same dimensions as the latent space, since the
encoded timeseries are directly fed to this classifier, while the
outer layer of the neural network maintains two nodes, one
for each class of the aforementioned representatives. Between
each layer there are interset ReLU activation functions, a
dropout hyperparameter set to 0.2, as well as batch normal-
ization layers [39] [40] [41].

The data that was utilized in the current work, represents
daily measurements of energy consumption taken from res-
idential buildings in London, whereas the dataset contains
unique identifiers for each residence, the specific date and time
of the measurement as well as consumption in kilowatt-hour
(kWh) !. The sampling rate of the available data amounted

Ihttps://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-
households
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to a halthourly rate of two samples per hour, thus resulting
in vectors of size 48 in order to model the profile of one
single day for each residency. After the aforementioned pre-
processing steps, the final dataset resulted in containing three
million daily energy consumption profiles across the span of
two years, representing approximately five thousand and five
hundred residential buildings.

The first line of experiments pertains to the training of
the autoencoding neural networks which has to be performed
before proceeding to the rest of the algorithm. Thoroughly
represented in Figure 2, is the comparison between three
versions of the autoencoder neural network : the classic
Autoencoder, the Variational Autoencoder, and Variational
Recurrent Autoencoder, which is a Variational Autoencoder
enhanced with LSTM neural networks in the encoding and
decoding modules.

The performance of each algorithm is within the expected
results, as perceived by the theoretical foundations of each
corresponding algorithm. The Variational Autoencoder outper-
forms its classic version in terms of loss, while the LSTM-
enhanced encoder succeeds as the most efficiently trained
neural network. All measurements and training results are

K-Means and Spectral Clustering Performance on detecting Peak Demand Clusters
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Fig. 5. Classic Clustering Algorithms Results

averaged over five different folds of the training data, while
further repeating the training experiment three times per fold.

Subsequently, the percentage of timeseries data from each
fold that was withheld as a testing set, is now being en-
coded into latent space of five dimensions and clustered
with their corresponding predetermined manner. Taking into
consideration the Custom Cluster Representative logic, the
experimental clustering is being performed with a number of
clusters K = 2, as many as the energy consumption profiles.

In Figure 3, the level of distinguishability between the char-
acteristics of each cluster is being highlighted. Our proposed
algorithm of assigning each timeseries to a predetermined
vector of elements modelled against daily solar radiation
and encoded in the same manner as the input data, is able
to efficiently disambiguate which cluster has captured the
patterns of timeseries which peak demand timespan correlates
with the production of “green” and renewable energy, and
which is not.

As also seen in Figure 4, a few representative example time-
series from each cluster clearly correlate with their assigned
cluster profile.

In contrast, the performance of the classic clustering al-
gorithms didn’t manage to deliver an efficient separation of
the timeseries, in terms of detecting their specific hour of
peak demand and grouping them together in a cluster of
well-determined characteristics. As seen in Figure 5, neither
K-Means nor Spectral Clustering algorithms managed to
captivate a cluster that evidently represents timeseries of users
with renewable energy compliant patterns.

VI. CONCLUSIONS

The paper presents a method for managing load profile of
time series that represent building energy consumption data,
and for dynamically detecting fundamental characteristics such
as their peak energy demand through state-of-the-art deep
learning techniques. Smart metering solutions make this fea-
sible at a cost of vast datasets that need to be efficiently
dealt with on real time. To this end, our work focuses on
compression algorithms and clustering encoded time series.
Experimentation shows that Variational Recurrent Autoen-
coder enhanced with LSTM neural networks in its encoding
and decoding modules produces less loss per epoch with



reference to classic and Variational Autoencoders. This paper’s
Predetermined Cluster Representatives algorithm performance,
proves its efficiency and is able to accurately disambiguate
peak demand hours in timeseries thus managing to detect load
profiles that heavily overload a regional grid’s "Duck Curve”
problem. The concentration of future work for this project, will
pertain to the inclusion of new dimensions for each timeseries
such as weather statistics, or the socioeconomic status of the
residential buildings. These new features, will further aid the
machine learning models in their objective of properly identi-
fying homogenous groups of similar consumption behaviours.
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