

WP3: Testing, Activity 3.15 RES in rural environments - Sesimbra

Deliverable 3.15.1: Renewables for development of Sesimbra Nature park: nature protection and area development

Final version, December 2018

WP3 (TESTING) LEADER

Technical University of Crete, School of Environmental Engineering, Renewable and Sustainable Energy Systems Lab (TUC ReSEL)

RESPONSIBLE PARTNER: Energy and Environment Agency Arrabida (ENA)

DELIVERABLE 3.15.1: Renewables for development of Sesimbra Nature park: nature protection and area development, FINAL VERSION, December/2018

AUTHORS: Orlando Paraíba, Cristina Daniel

MPORTANT NOTICE: Reproduction of the content or part of the content is authorized upon approval from the authors and provided that the source is acknowledged.

Project co-financed by the European
Regional Development Fund

Table of Contents

1.	INTRODUCTION	. 4
2.	MAIN LESSONS LEARNT	. 8
3.	REPLICABILITY RECOMMENDATIONS AND IMPACT ASSESSMENT	10
4.	ANNEXES	11

1. INTRODUCTION

Deliverable number	Deliverable title	Type of deliverable	Target value	Finalisation month					
3.15.1	Renewables for development of Sesimbra Nature park: nature protection and area development	Method	1 Unit produced	02.2018					
	Description	Report will focus on the socio-economic approach implemented and lessons learned with the replicability recommendations and impact assessment of the pilot activity.							

The Sesimbra Natura Park is a project integrated in a rural exploitation area, aiming the development of eco-tourism and pedagogic according to the principles of sustainability of the local resources.

The vision and motives of the pilot operator/beneficiary are the establishment of a living lab that will be used for demonstrating the viability and success of RES and EE in rural areas among the local community, contributing for the valorisation of local energy resources, the energy independence and the development of new green business.

In order to promote the sustainability of Sesimbra Natura Park's activities, it is the objective of this pilot project to use RES to replace conventional forms of energy, for which the energy needs, the availability of RES and the economic viability of thr solutions were evaluated.

There are several uses of energy associated with the activities carried out at Sesimbra Natura Park. This uses where evaluated:

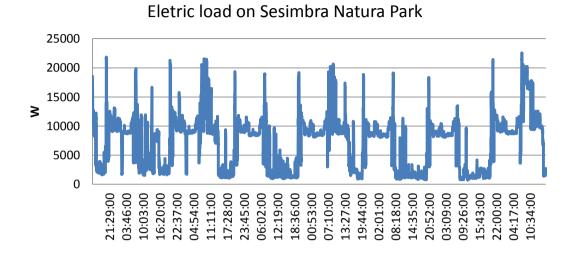
- Hot water for bathing, with big seasonality in the usage. The available wood chips are out of size to use in a conventional boiler;

- Water for irrigation, but with a complex distribution scheme, any intervention will be very expensive;

- Heat for buildings, with big seasonality in the usage and reduced consumption.

- Electricity for various uses, usable load profiles for self-consumption and resource available.

Considering the evaluation carried out, the production of electricity for self-consumption via photovoltaic it appeared as the most adequate solution.


An exhaustive measurement of the consumptions was carried out and the project to install the photovoltaic plant was developed. The PV plant as the following characteristics:

- 44 PV modules
- Unit nominal Power: 27 Wp
- Total power: 11,88 kWp
- Total used area: 71,9 m2

- Inverter: 10 kWac

The expected energy production and the consumption in the self-consumption regime, considering the initial load profile, is given by the following.

	GlobHor	T Amb	Globinc	GlobEff	EArray	E Load	E User	E_Grid
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh
January	75.3	10.95	109.0	103.1	1.191	5.142	0.965	0.189
February	87.8	12.13	113.5	107.6	1.232	4.644	0.949	0.245
March	138.4	14.23	164.4	156.3	1.762	5.142	1.235	0.469
April	179.8	15.30	195.8	186.3	2.066	4.976	1.255	0.617
Мау	221.7	18.23	225.5	214.2	2.349	5.142	1.492	0.776
June	232.5	21.36	229.7	218.5	2.360	4.976	1.432	0.786
July	244.9	22.81	245.1	233.4	2.502	5.142	1.532	0.882
August	216.9	23.37	230.4	219.5	2.353	5.142	1.466	0.805
September	164.9	21.31	190.3	181.5	1.968	4.976	1.218	0.589
October	118.3	18.59	150.2	142.7	1.583	5.142	1.147	0.384
November	79.5	13.90	112.6	106.7	1.213	4.976	0.925	0.249
December	63.6	11.63	95.5	90.0	1.038	5.142	0.850	0.155
Year	1823.7	17.01	2062.0	1959.9	21.619	60.538	14.465	6.145
egends: Glob	Hor Horizo	r Horizontal global irradiation				Effective energ	y at the output	of the array
T An	b Ambie	Ambient Temperature				Energy need of the user (Load)		
Glob						Energy supplied to the user		

12kW Balances and main results

GlobEff

Effective Global, corr. for IAM and shadings

EUser Ene E_Grid Ene

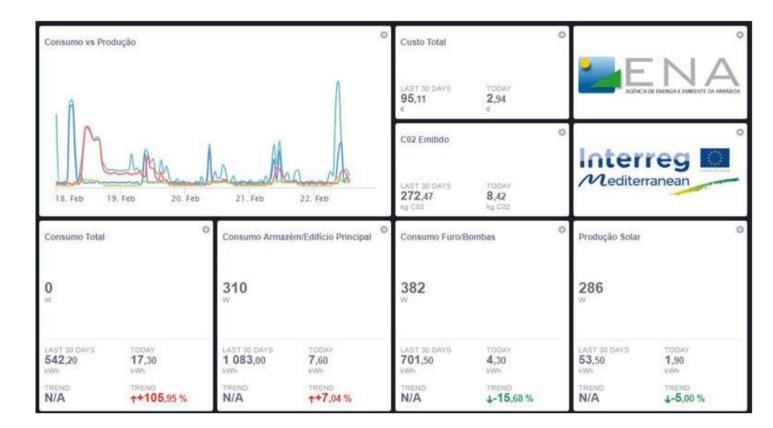
Energy injected into grid

Médias Anuais e Dia de Mínimos e Máximos

As can be seen from the graph, there are significant energy consumptions at night, as such not fed by the photovoltaic plant. These nocturnal energy consumptions are related to the irrigation system. As this irrigation system uses the drip irrigation technology, irrigation can easily be transferred to the daytime period, without negative consequences in terms of water consumption and plant health and so use all the energy produced in the PV plant.

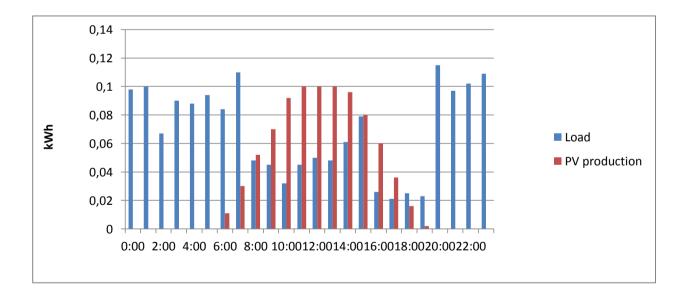
Once the feasibility of the project was verified, the photovoltaic plant was installed.

Pictures 1 and 2 – PV system for electrical energy production and consumption


In order to monitor, evaluate and communicate the results obtained, a system for monitoring consumption and energy production was also installed in Sesimbra Natura Park.

Picture 3 – PV control system

Picture 4 – Dashboard with data produced through the monitoring system

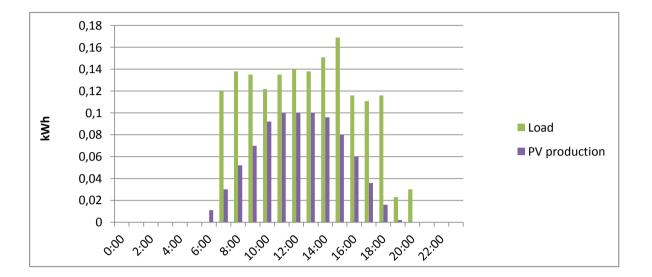

2. MAIN LESSONS LEARNT

In order to promote the sustainability of rural entities, it is important to identify the usable renewable energy sources, to understand how they can meet the energy needs of the organization and whether they are suitable for use.

In the case of Sesimbra Natura Park, biomass is widely available in chip form, there are heating needs that can be suppressed with the use of biomass, however the available chip format is not suitable for use in conventional boilers and its conversion is very expensive, therefore, biomass is not an adequate option to promote the sustainability of this rural entity.

In addition to identifying the most appropriate source of renewable energy, it is also very important to tailor the use of energy to ensure maximization of the use of the renewable source.

For Sesimbra Natura Park, photovoltaic electricity production was identified as adequate to promote its sustainability. Analysing the load profile we verify that there is a high consumption in the nocturnal period (around 9 kWh), as a result of the use of drip irrigation systems. The pumping system represents 66% of al electrical needs. For this load profile, the production of photovoltaic energy would only supply 30% of the electricity needs of Sesimbra Natura Park.



To ensure the maximum utilization of PV production the irrigation schedule will be changed to the daytime period. This change does not negatively affect the development of plants nor the consumption of water because it is a drip irrigation system.

This change in the load profile of the facility will allow that 51% of the energy used will be supplied by photovoltaic.

The proper adjustment between the renewable energy source and the energy use in the system is fundamental to maximizing the overall efficiency of the system.

Technological measures of energy efficiency should always be complemented by behavioural measures and organizational measures.

3. REPLICABILITY RECOMMENDATIONS AND IMPACT ASSESSMENT

Given the seasonality of photovoltaic production and irrigation needs, the impact of this pilot project can only be truly evaluated after a period of one year. For this purpose, a monitoring system has been installed to mediate the energy produced and the energy consumed in irrigation and other uses.

With the results of the monitoring it will be possible to continue the dissemination actions, but now with consistent information on the impact of the PV installation on the reduction of consumption of Sesimbra Natura Park.

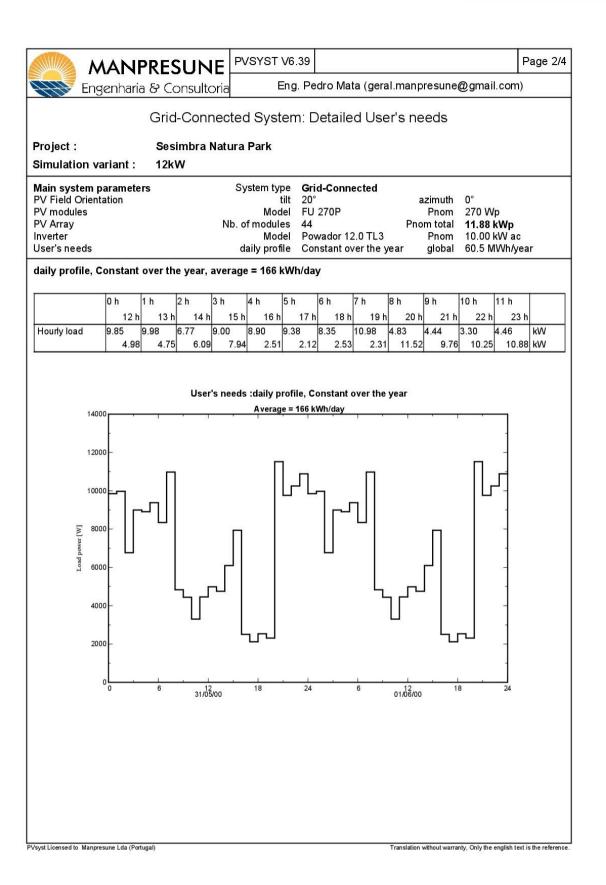
Sesimbra Natura Park as a large number of visitors who use the facilities annually and so efficiency message will be widely disseminated. Locally are installed one monitor that, in real time, informs about the energy produced via PV and the energy consumed in pumping and other uses.

For agricultural purposes, water pumping often has the main consumption of electricity. If the irrigation system is suitable for daytime irrigation or there is storage capacity for surface water, the use of photovoltaic energy can have a significant impact on the sustainability of the farm.

4. ANNEXES

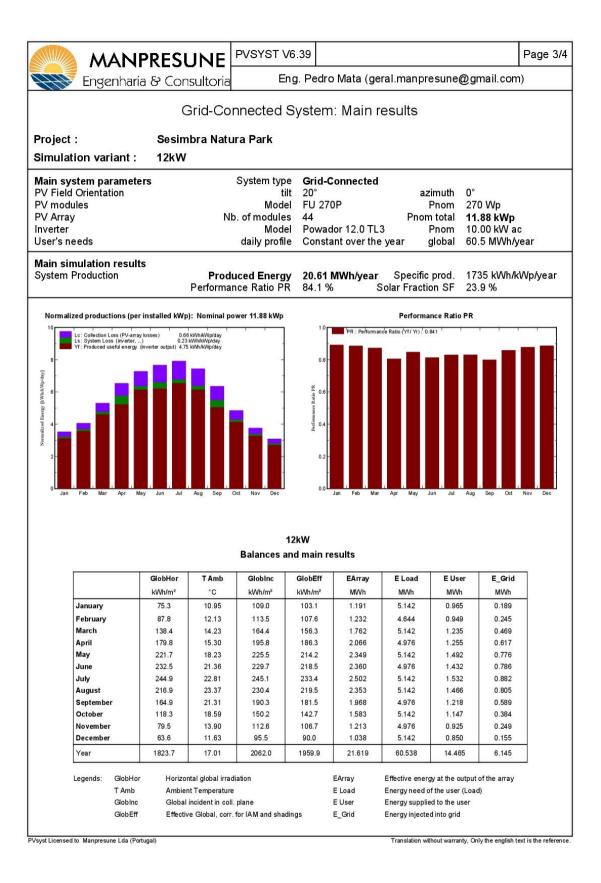
ANNEX I: Financial analysis

ANNEX II: Technical study


	E PVSYST V6	.39		Page 1/4					
Engenharia & Consultc		. Pedro Mata (gei	ral.manpresune	@gmail.com)					
Grid-Connected System: Simulation parameters									
Project : Sesimbra N	latura Park								
Geographical Site	Sesimbra, maçã		Country	Portugal					
Situation Time defined as	Latitude Legal Time Albedo		Longitude Altitude	9.1°W 122 m					
Meteo data:	Sesimbra	Synthetic - Meteor	norm 7.1 (1991-2	010), Sat=65%					
Simulation variant : 12kW									
	Simulation date	29/11/17 18h43							
Simulation parameters									
Collector Plane Orientation		20°	Azimuth	0°					
Models used	Transposition	Perez	Diffuse	Erbs, Meteonorm					
Horizon	Free Horizon								
Near Shadings	No Shadings								
PV Array Characteristics PV module Si- Custom parameters definition	ooly Model Manufacturer	FU 270P Futura							
Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area	In series Nb. modules Nominal (STC) U mpp Module area	11.88 kWp At 633 V	In parallel Jnit Nom. Power operating cond. I mpp	270 Wp					
Inverter Characteristics C	Model Manufacturer perating Voltage	Kaco new energy	3 Jnit Nom. Power	10.0 kWac					
Inverter pack	Nb. of inverters		Total Power						
PV Array loss factors		T units							
Array Soiling Losses Thermal Loss factor	Uc (const)	29.0 W/m²K	Loss Fraction Uv (wind)						
	Global array res.		Loss Fraction						
Module Quality Loss Module Mismatch Losses Incidence effect, ASHRAE parametrizatio		1 - bo (1/cosi - 1)	Loss Fraction Loss Fraction bo Param.	0.0 % 1.0 % at MPP 0.05					
System loss factors	Vires: 3x1.5 mm²			0.0.0/ 1.070					
Wiring Ohmic Loss V Unavailability of the system	22 m	Loss Fraction Time fraction	2.0 % at STC 1.0 %						
User's needs :	3.6 days, 3 period daily profile average	Constant over the 166 kWh/Day		1.0 70					
0 h 1 h 2 h 12 h 13 h 14 h Hourly load 9.85 9.98 6.77 4.98 4.75 6.05	3 h 4 h 5 h 15 h 16 h 9.00 8.90 9.3	6 h 7 h 17 h 18 h 19 h	4.83 4.44 3.3	22 h 23 h 30 4.46 kW					

PVsyst Licensed to Manpresune Lda (Portugal)

Translation without warranty, Only the english text is the reference.



Ingenharia SP Consultoria Ingenharia SP Consultoria Grid-Connected System: Loss diagram Project ::::::::::::::::::::::::::::::::::::		RESUNE	PVSYST VE	6.39				Page 4/4		
Grid-Connected System: Loss diagram Project : Sesimbra Natura Park Simulation variant : 12kW Main system parameters PV Field Orientation PV modules System type Model Grid-Connected It 20° azimuth Prom 0° PV Array Nb. of modules 44 Phom total 0° Inverter Model Powador 12.0 TL3 Pnom 11.88 KWp Inverter Model Powador 12.0 TL3 Pnom 10.06 KW ac User's needs Constant over the whole year global 60.5 MWhn/year Loss diagram over the whole year 1800 KWh/m** 72 m* col. Effective irradiance on collectors 1900 KWh/m** 72 m* col. Effective irradiance on collectors 1900 KWh/m** 72 m* col. Effective irradiance on collectors 23.32 MVh -0.5% PV loss due to irradiance level 1/1.4% Other wing loss Array nominal energy (# STC effic.) 21.65 MWh -2.2% Inverter Loss during operation (efficiency) 0.0% Inverter Loss due to valage threshold 0.0% 0.0% Inverter Loss due to valage threshold 0.0% 1.1.4% Obmic			En	g. Pedro	Mata (geral.m	anpresune	@gmail.con	י. ר)		
Project :: Sesimbra Natura Park Simulation variant :: 12kW Main system parameters PV Field Orientation PV modules System type Model Grid-Connected FU 270P azimuth Pnom 270 Wp Pnom 270 Wp Pnom total 11.88 KWp Pnom total Inverter User's needs Nb. of modules 44 Pnom total 11.88 KWp Pnom total User's needs Loss diagram over the whole year global 60.5 MWh/hyear Loss diagram over the whole year Horizontal global irradiation +13.1% Global incident in coll. plane +3.0% IAM factor on global -2.0% Solling loss factor 1960 KWh/m* *72 m* coll Effective irradiance ency (at STC effic.) +0.5% PV loss due to irradiance level 4.5% PV loss due to irradiance level 4.5% PV loss due to temperature 4.5% PV loss due to temperature 4.6% Module array mismach loss 21.65 MWh Array omina energy (at STC effic.) +0.1% Inverter Loss during operation (efficiency) +0.1% Inverter Loss during operation (efficiency) +0.0% Inverter Loss during operation (efficiency) +0.0% Inverter Loss during operation (efficiency) +0.0% Inverter Loss during operati										
Simulation variant : 12kW Main system parameters PV Field Orientation PV modules System type till Crid-Connected 20° azimuth Wodel 270 Wp PV Aray Inverter Nb. of modules 44 Phom total 11.38 kWp User's needs Model Powador 12.0 TL3 Phom total 11.88 kWp User's needs Model Powador 12.0 TL3 Phom total 11.88 kWp User's needs Model Powador 12.0 TL3 Phom total 11.88 kWp 1860 kWh/m* Constant over the whole year Global incident in coll. plane 1960 kWh/m** 72 m* coll. Horizontal global irradiation 1960 kWh/m** 72 m* coll. Horizontal global incident in coll. plane 1960 kWh/m** 72 m* coll. Horizontal global incident in coll. plane 23.32 MWh -0.5% PV conversion 21.85 MWh Array rominal energy (af STC effic.) 21.85 MWh -2.2% Inverter Loss during poration (efficiency) 11.4% Wh 14.47 MWh 615 MWh Horizon and gid reinjection		Grid-Con	nected Sy	/stem:	Loss diagra	am				
Main system parameters PV Field Orientation PV modules System type tit Grid-Connected 20° azimuth PV module Pownout 0° PV Array Inverter Nb. of modules daily profile 44 Prom total Powador 12.0 TL3 Pnom 10.00 kW ac User's needs daily profile Constant over the year global 60.5 MWh/year Loss diagram over the whole year Horizontal global irradiation +13.1% 1824 kWh/m* Horizontal global irradiation +13.1% 1960 kWh/m** 72 m* coll. Effective irradiance on collectors PV conversion Array ominal energy (at STC effic.) PV loss due to irradiance level +1.0% Array orimal energy at MPP Inverter Loss due to poration (efficiency) Inverter Loss due to organial inv. power Inverter Loss due to over nominal inv. yower Inverter Loss due to over nominal inv. yower Inverter Loss due to over nominal inv. yower Inverter Loss due to over threshold Available Energy at Inverter Output 46.07 MWh 46.07 MWh 46.07 MWh	Project :	Sesimbra Natu	a Park							
PV Field Orientation till 20° azimuth 0° PV modules Nodel FU 270P Pnom 10.00 kW ac User's needs daily profile Constant over the year global 60.5 MWh/year Loss diagram over the whole year Horizontal global irradiation 1824 kWh/m² Horizontal global irradiation + Soling loss factor Effective irradiance on collectors PV loss due to irradiance level - 2.0% Module array mismatch loss Ofmic officiency PV loss due to irradiance on collectors PV loss due to irradiance on collectors PV loss due to temperature - 2.0% Ofmic officiency <th>Simulation variant :</th> <th>12kW</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Simulation variant :	12kW								
1824 kWh/m² Horizontal global irradiation +13.1% Global incident in coll. plane +13.1% Global incident in coll. plane -2.0% Soiling loss factor efficiency at STC = 16.56% PV conversion 23.32 MWh -0.5% 23.32 MWh -0.5% 21.65 MWh -0.5% 21.65 MWh -2.2% Inverter Loss during operation (efficiency) -0.1% Inverter Loss due to power threshold 0.0% Inverter Loss due to voltage threshold 11.14 MWh 515 MWh 46.07 MWh 14.47 MWh 6.15 MWh Dispatch: user and grid reinjection	PV Field Orientation PV modules PV Array Inverter		tilt Model of modules Model	20° FU 2701 44 Powado	5 or 12.0 TL3	Pnom Pnom total Pnom	270 Wp 11.88 kWp 10.00 kW a			
+13.1% Global incident in coll. plane +13.1% Global incident in coll. plane -3.0% IAM factor on global -2.0% Soiling loss factor efficiency at STC = 18.56% PV conversion 23.32 MWh -0.5% 23.32 MWh -0.5% 21.65 MWh -0.5% 21.65 MWh -2.2% Inverter Loss due to power threshold 0.0% Inverter Loss due to oltage threshold 0.0% Inverter Loss due to voltage threshold 0.0% Inverter Loss due to soltage threshold 0.0% Inverter Loss due to voltage threshold 0.0% Inverter Loss due to voltage threshold 0.0% Inverter Loss due to soltage threshold 1.1.3% System unavailability		Los	s diagram o	ver the w	hole year					
efficiency at STC = 16.56% PV conversion 23.32 MWh Array nominal energy (at STC effic.) 23.32 MWh -0.5% PV loss due to irradiance level -4.5% PV loss due to temperature -1.0% Module array mismatch loss -1.4% Ohmic wiring loss Array virtual energy at MPP -2.2% Inverter Loss due to power threshold 0.0% Inverter Loss over nominal inv. power 0.0% Inverter Loss due to voltage threshold 0.0% Inverter Loss due to power threshold 0.0% Inverter Loss due to voltage threshold 1.14 MWh -1.3% System unavailability -1.2% AC ohmic loss 46.07 MWh 14.47 MWh 6.15 MWh		1824 kWh/m		-3.0%	Global incident i	in coll. plane bal				
23.32 MWh Array nominal energy (at STC effic.) PV loss due to irradiance level PV loss due to temperature -4.5% PV loss due to temperature -1.0% Module array mismatch loss 21.65 MWh -1.4% Ohmic wiring loss Array virtual energy at MPP -2.2% Inverter Loss during operation (efficiency) -0.1% Inverter Loss over nominal inv. power 0.0% Inverter Loss due to voltage threshold 1.14 MWh -1.3% System unavailability 46.07 MWh 14.47 MWh 6.15 MWh Dispatch: user and grid reinjection		1960 kWh/m² * 72	m² coll.		Effective irradiar	nce on collecto	ors			
46.07 MWh 14.47 MWh 6.15 MWh 6.15 MWh PV loss due to irradiance level 46.07 MWh 14.47 MWh 6.15 MWh Dispatch: user and grid reinjection		efficiency at STC =	16.56%		PV conversion					
46.07 MWh 14.47 MWh 6.15 MWh Module array mismatch loss 46.07 MWh 14.47 MWh 6.15 MWh Module array mismatch loss Array virtual energy at MPP -2.2% Inverter Loss during operation (efficiency) -0.1% Inverter Loss over nominal inv. power 0.0% Inverter Loss over nominal inv. voltage 0.0% Inverter Loss due to power threshold 0.0% Inverter Loss due to voltage threshold 21.14 MWh -1.3% System unavailability -1.2% AC ohmic loss		23.32 MW	-0.5% PV loss due to irradiance level							
46.07 MWh 14.47 MWh 6.15 MWh 6.15 MWh Dispatch: user and grid reinjection		1	-1.0%	Module array mise Ohmic wiring loss	match loss					
46.07 MWh 14.47 MWh 6.15 MWh Dispatch: user and grid reinjection		21.14 MWh			Inverter Loss over Inverter Loss due Inverter Loss over Inverter Loss due	r nominal inv. po to power thresh r nominal inv. vo to voltage thresh	ower hold oltage shold			
46.07 MWh 14.47 MWh 6.15 MWh Dispatch: user and grid reinjection			N-	1.3%	System unavailab	oility				
	,		9-	1.2%	AC ohmic loss					
From grid User to grid	46.07 MWh	14.47 MWh	6.15 MWh		Dispatch: user a	nd grid reinjec	tion			
	From grid	User	to grid							