

Activity report about field measurements in the pilot area Kraków

Deliverable D.T3.2.2 Updated database of	Template		
existing and additionally measured data			
at the pilot areas	01	2019	

MAREK HAJTO¹, GABRIEL ZĄBEK¹, BARTŁOMIEJ CIAPAŁA¹ & THE GEOPLASMA-CE TEAM.

¹ AGH University of Science and Technology

Contact details of author: mhajto@agh.edu.pl

The involved GeoPLASMA-CE team

PP 09	Marek Hajto, Gabriel Ząbek, Bartłomiej Ciapała

Content

1. Executive summary in English language
2. Podsumowanie
3. Introduction
3.1. Aim and scope of this report
3.2. Overview of the chosen strategy for field measurements
4. Documentation of field measurements
4.1. Hydrogeological measurements
4.1.1. Points for measurement selection
4.1.2. Measurements performed
4.1.3. Measurement device
4.2. Thermal conductivity of rock samples
4.2.1. Points for measurement selection10
4.2.2. Measurements performed11
5. Data processing
5.1. Data processing
5.1.1. Hydrogeological data processing12
5.2. Transfer of field data to the joint databases12
6. Results
7. Summary and conlusions14

1. Executive summary in English language

This report presents basic information about field measurements conducted in Kraków Pilot Area in the GeoPLASMA-CE project. The aim of performed activities was to gather data useful for literature information calibration and fill few gaps in knowledge.

Measurements divided in two parts: geological sampling for thermal conductivity measurements and hydrogeological measurements of groundwater temperature, electric conductivity and water table level.

Places of geological sampling were affected by accessibility of outcrops of rocks interesting from project point of view and borehole cores. Points of hydrogeological measurements were narrowed to anthropologically affected aquifers and chosen available wells and observation wells.

2. Podsumowanie

Raport przestawia podstawowe informacja o pomiarach terenowych przeprowadzonych dla obszaru pilotażowego Kraków w ramach projektu GeoPLASMA-CE. Celem przeprowadzonych działań było zebranie danych użytecznych w kalibracji danych literaturowych i dla wypełnienia występujących luk w wiedzy.

Pomiary podzielono na dwie części: pobieranie próbek geologicznych do pomiarów przewodności cieplnej i badania hydrogeologiczne wody gruntowej obejmujące pomiar temperatury, przewodności elektrycznej i poziomu zwierciadła wody.

Miejsca poboru próbek geologicznym podyktowane były dostępnością odsłonięć skał interesujących z punktu widzenia projektu oraz rdzeni wiertniczych. Punkty badań hydrogeologicznych zawężono do obszaru o silnym wpływie człowieka na wody gruntowe, a zostały wykonane w dostępnych studniach i piezometrach.

3. Introduction

3.1. Aim and scope of this report

This report describes the field measurements performed in the pilot area Kraków, which have been performed within the frame of Activity A.T2.3.2. It aims at a full documentation of the assessed field data, which will be published at the GeoPLASMA-CE web portal (www.geoplasma-ce.eu).

This report contains:

- An overview of parameters measured in the pilot areas for creating the aimed project outputs
- A brief description of the methods applied for measurement and data processing
- A documentation of the field measurements performed in the PA area.
- A short description of the results achieved and how these results contribute to the generation of thematic outputs.

3.2. Overview of the chosen strategy for field measurements

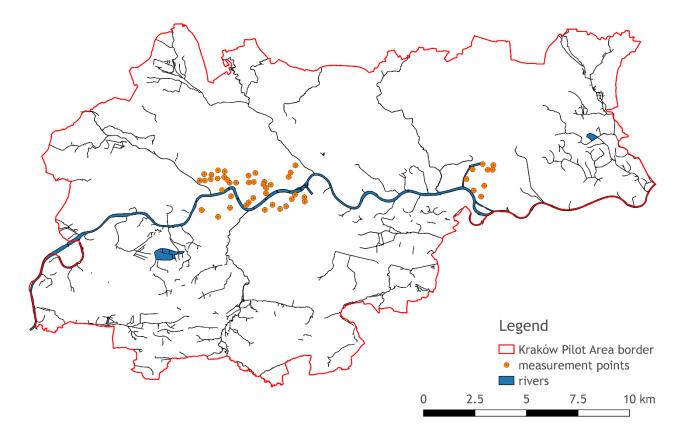
The general purpose of performed measurements was to fill in gaps in knowledge and provide data for literature values calibration. Thus, field measurements has been performed in places and intervals representative for the crucial parts of geological and hydrogeological models.

Purchased device allowed for simultaneous measurement of groundwater temperature, electric conductivity and groundwater head level. As most of water-bearing levels in Kraków area is confined, main effort was targeted to provide modern information about most variable and surface-dependant quaternary basin. Results of these measurements were compiled into comprehensive database containing relevant values for wide area covering vicinity of the Wisła River and Kraków Old Town, where significant anthropogenic changes may be observed. All the information is supposed to be used as input in hydrogeological model calibration and in numerical modelling validation.

Thermal conductivity of rock samples measurements were performed for hard rocks and soil samples of rocks. Intervals and places of sampling were selected so that relevant and representative rocks were examined. Obtained results are going to be used in 3D geological model parametrisation, in calculation of temperature within model layers and in map of BHE potential heat transfer rate. The compiled database consists of lithology description, sampled rock's GPS coordinates, position within the geological profile and measured thermal conductivity parameters.

4. Documentation of field measurements

4.1. Hydrogeological measurements


4.1.1. Points for measurement selection

Points for hydrogeological measurements were chosen among wells and observation wells that belong to reliable owners providing its accessibility and satisfying technical condition as well as documentation. Only observation wells were measured to the bottom, as they are devoid of infrastructure which might be potentially dangerous for equipment. Measured points allow for variability analyses and assessment of anthropologic influence on groundwater conditions.

Locations of measurement points are presented in Fig. 1. Structure of the compiled database is visible in Fig. 2.

Figure	1	Location	of	measurement	points.	Objects	are	mainly	located	in	places	where
intensi	ve	anthropog	eni	ic pression occu	ır.							

date	obiect name	lat	lon	meter beneath watertable	meter beneath terrain	pipe height	temperature (deqC)	electric conductivity (μS)	dog N	min N	sec N	deg E	min E	sec E
	ZUPEŁNIĆ		utomatvcznie	watertable	terrain	pipe neight	(dege)	UZUPE			360 14	uey L		360 L
Data	nazwa	wypennane a		metr poniżej		wsokość		0201 L1						
pomiaru	obiektu	Szerokość N			m ppt	obudow	temperatura	przewodność	stopnie N	minuty N	sekundy N	stopnie F	minuty F	sekundy F
11.06.20		50.0606		0										
11.06.20)18 P-1	50,0606	19,9117	1	3.65	0.5	11.5	1896	50	3.00	38	19	54	42
11.06.20	18 P-1	50.0606	19.9117	2	4.65	0.5	10.8	1921	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	3	5.65	0.5	10.5	1939	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	4	6.65	0.5	10.5	1953	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	5	7.65	0.5	10.5	1958	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	6	8.65	0.5	10.6	2320	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	7	9.65	0.5	10.7	2323	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	8	10.65	0.5	10.7	2353	50	3.00	38	19	54	42
11.06.20)18 P-1	50.0606	19.9117	9	11.65	0.5	10.8	2045	50	3.00	38	19	54	42
11.06.20)18 P-4/R	50.0603	19.9167	0	2.8	0.2	11.3	950	50	3.00	37	19	55	0
11.06.20)18 P-4/R	50.0603	19.9167	1	3.8	0.2	10.7	956	50	3.00	37	19	55	0
11.06.20)18 P-4/R	50.0603	19.9167	2	4.8	0.2	10.2	980	50	3.00	37	19	55	0
11.06.20)18 P-4/R	50.0603	19.9167	3	5.8	0.2	10	990	50	3.00	37	19	55	0
11.06.20)18 P-4/R	50.0603	19.9167	4	6.8	0.2	9.9	987	50	3.00	37	19	55	0

Figure 2 Structure of compiled hydrogeological database.

4.1.2. Measurements performed

In common, more than 400 measurements of temperature, electric conductivity for a given depth were performed. Each and every measurement was noted on the site along with object's name with GPS coordinates of the point, date of measurement and additional notes. An example field card is visible in Fig. 3.

Obiekt					Obiekt P - 4/ k	2	CEN	TRAL EUR	OPE
Współrzędne					Współrzędn				
500 31	38	N			50" 3'				
19 54)		1			19" 55'	1			
		temp [*C]					temp [°C]	przewodność	
ZWIERCIADŁO	3,15	1315	i	-0,5 Ma nunc	ZWIERCIADŁO	3 ru	11,3	350	-0/2 no
	+1m	11-	18.96	neng		+1m	1017	956	
	+2m	1-10	1921			+2m	10,2	380	
	+3m	1015	1930			+3m	10,0	990	
	+4m	10,5	1953			+4m	9,9	387	
	+5m	10,5	1958			+5m	10,0	388	
	+6m	10,6	2320			+6m	10,2	386	
	+7m	10,7	2323			+7m	10,3	795	
-	+8m	10,4	2353			+8m			
-	+9m	198	2045			+9m			
-	+10m					+10m			
	+11m					+11m			
	+12m					+12m			
	+13m					+13m			
-	+14m					+14m			
-	+15m					+15m			
-	+16m				-	+16m			
-	+17m				-	+17m			
-	+18m				-	+18m			
-	+19m				-	+19m			
_	+20m				-	+20m			
COMENTARZ 1- linio stup 1pmh i	730. a eleli NC m				ARZ paladon lo 47 - re			din On	

Pomiary wykonane w dniu 11,06.18

Wykonawcy: M. Hajto, B. Ciapała

Pomiary wykonane w ramach projektu GeoPLASMA-CE sprzętem TLC meter

4.1.3. Measurement device

All obtained values are The Model 107 TLC Meter, which consists of 3/4" (19 mm) diameter probe where temperature along with water electric conductivity is determined and tape indicating depth at which the probe is submerged. The device was calibrated with manufacturer's calibration liquids delivered together with the equipment.

4.2. Thermal conductivity of rock samples

4.2.1. Points for measurement selection

Thermal conductivity of rock samples measurements were performed for hard rocks and soil samples of rocks. Intervals and places of sampling were selected so that relevant and representative rocks were examined. Locations of measurement points are presented in Fig. 3. Structure of the compiled database is visible in Fig. 4. Fig. 5 show field work (sample capture).

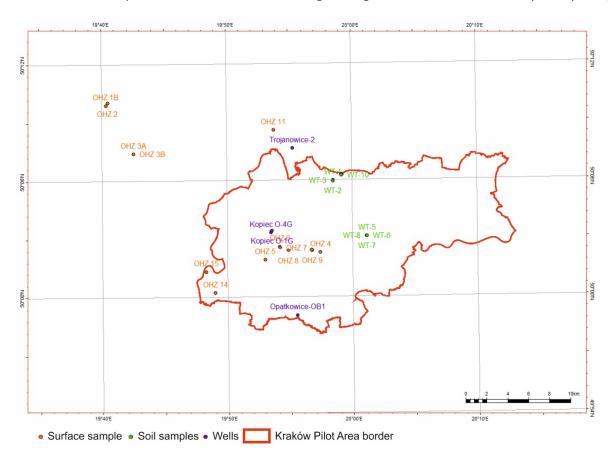


Figure 3 Location of measurement points.

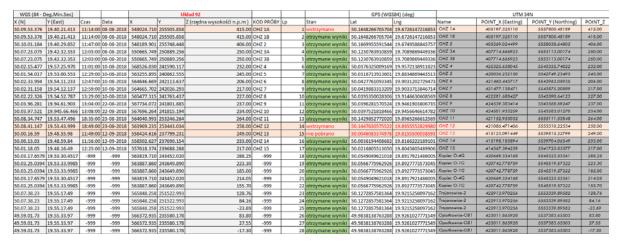


Figure 4 Structure of compiled database.

Fig. 5 Sample catching from surface and well

4.2.2. Measurements performed

37 samples were delivered to PP08. The measurements has been done and sent (Fig. 6) to AGH-Team. The results were connected with GPS coordinates and depth for preparation of the location in D.T3.2.1_Database

SAMPLE	CROSS	RUN		TC [W/	mK]		G (standard deviation)	Inhomogonity	Starting	Ending
SAIVIPLE	SECTION	NUN	mean LONG	mean	min	max	G (stanuaru deviation)	minomogenity	point	point
ohz1b	LONG	1	2.442	2.456	2.287	2.741	3.358	0.185	237.9	386.7
ohz1b	LONG	2		2.407	2.241	2.54	2.299	0.124	237.9	386.7
ohz1b	LONG	3		2.462	2.332	2.583	2.238	0.102	237.9	386.7
ohz2	LONG	1	2.460	2.461	2.256	2.794	4.641	0.219	89.900	167.5
ohz2	LONG	2		2.456	2.268	2.778	4.101	0.208	89.900	184.4
ohz2	LONG	3		2.464	2.293	2.688	3.852	0.160	89.900	184.4
ohz3a	LONG	1		1.744	1.508	1.976	6.177	0.268	285.100	442.9
ohz3a	LONG	2	1.743	1.733	1.509	2.016	6.651	0.293	285.100	442.9
ohz3a	LONG	3		1.753	1.508	1.949	5.992	0.251	285.100	434.8
ohz3b	LONG	1		1.552	1.375	1.757	6.333	0.246	243.200	352.9
ohz3b	LONG	2	1.564	1.568	1.393	1.767	6.662	0.239	243.200	348.4
ohz3b	LONG	3		1.572	1.376	1.743	6.044	0.233	243.200	348.4

Figure 6 Structure of results table.

5. Data processing

5.1. Data processing

5.1.1. Hydrogeological data processing

Raw measurements (temperature, electric conductivity and distance from well's edge) was inserted into spreadsheet, where distance was recalculated into depth below ground and level below water table. GPS coordinates were recalculated into decimal.

5.1.2. Thermal conductivity data processing

For joint database all the TC results were recalculated into average values, as required.

5.2. Transfer of field data to the joint databases

In a last step, the processed field data have been summarized and documented for a transferring them to the following databases:

- Metadata database of relevant input data (D.T3.1.2) for a full documentation of the achieved datasets.
- Key value database for publishing the achieved results (D.T3.2.1).

The metadata description of the produced datasets follows the joint concept on geodata management, which is described in Deliverable D.T2.3.1.

The summarized of datasets, shown in the key value database are characterized by:

- Number of individual measurements (\geq 1)
- Presentation of either alpha-numeric (e.g. <0,01 mg/l) or numeric values</p>
- The dataset is characterized by a single or mean-, minimum- and maximum value as well as by the standard deviation (in case of at least 3 single datum points).
- All presented values are allocated to a measurements period, a surface location and a depth interval of the measurements.

6. Results

The compiled database consists of lithology description, sampled rock's GPS coordinates, position within the geological profile and measured thermal conductivity parameters. The results were imported to Petrel database project for further works eg.3D model parametrization.

7. Summary and conlusions

Obtained results from trt measurements are going to be used in 3D geological model parametrisation, in calculation of temperature within model layers and in map of BHE potential heat transfer rate.