

- Final meeting 9-10 June 2020
- Nagykunság River Basin and Analysis with FramWat tools, results of dynamic tool
- FramWat _MTDWD_ Péter Sólyom

TABLE OF CONTENTS

1.

Nagykunsági River Basin -Catchment characteristic 2

FroGIS results

3

Selection and placement of natural small water retention measures

4

Results of static tool

5.

Results of dynamic tool

6.

Conclusions

Catchment characteristic

Nagykunsági River Basin

Agriculture area	%	73
Urban area	%	5
Forest area	%	5
Open water area	%	1

Irrigation canal: 430 km,

Drainage canal: 2030 km,

Pump stations: 68 pcs (tot. cap.: 95,0 m³/s.)

2 emergency reservoirs with total capacity of 196 million m³.

- Lowland catchment,
- Natural flow is small: artificially influenced,
- Mainly agricultural area,
- Flood, Drought and excess water risk.

Spatial Planning Units

SPU's: Sub-basins: (28 basins)

059. Örvény-Abádi

060/a. Mirhó-Gyócsi

060/b. Ledencei

060/c. Tólaposi

60/d Gyenda-Tiszabői

61/c Kakati

62/d Örményes I.

63/c Örményes II.

64/a Fegyverneki

049. Hortobágyi

61/a Karcagi

61/b Villogó

64/b Óballai

64/c Szajoli

64/d Alcsi-Tenyő-Kengyeli

64/e-f Rákóczifalva-Szandai

65/a Cibaki

65/b Tiszakürti

65/c Tiszaugi

66/b Kungyalu I.

66/c Tóközei

66/d Tőkefoki

62/a Túrkeve - Kiserdei

62/b Mezőtúr - Álomzugi

62/c Mezőtúr - Halásztelki

63/a Mesterszállás-Bartap.

63/b Szenttamási

66/a Kungyalu II.

FroGis results

Final valorisation maps

General

(Five classes/Natural breaks classification, variable indicator weight)

Drought mitigation

(Five classes/Equal classification, variable indicator weight)

Water quality

(Five classes/Natural breaks classification, constant indicator weight)

Selection of N(S)WRM's- Concept plan

Code	Sector	Measures type (NWRM/NSWRM)
A01	Agriculture	Meadows and pastures
A02		Buffer strips and hedges
A06		No till agriculture
A07		Low till agriculture
80A		Green cover
A15		Deep plowing or Deep ripping (removing the plow's sole)
N02	Ukadas	Wetland restoration and management
N07	Hydro- morphology	Reconnection of oxbow lakes and similar features
F01	Forestry	Forest riparian buffers
D01	Drainage area	Regulated outflow from drainage systems
D02		Water damming in ditches, wires with constant crest (valleys)
D03		Active water management on a drainage system (river valleys)
D04		Construction of micro reservoirs on ditches
D07		Construction of reservoirs on outflows from drainage systems
D08		Construction of small reservoirs on rivers (dammed reservoirs)

Placement of N(S)WRM's. Examples

A01 Meadows and pastures- Land use change from arable into meadow or pasture.

Selection criteria:

- Poor quality arable,
- High risk of pluvial flood.

Geodatabase:

- Arable quality map,
- Pluvial flood risk area map.

A15 Deep plowing (removing the plow's sole) (Deep ripping)

Selection criteria:

- Good quality arable,
- High risk of pluvial flood.

Geodatabase:

- Arable quality map,
- Pluvial flood risk area map

Placement of N(S)WRM's from National Irrigation Strategy

Technical measures:

- Water retention in drainage-irrigation system,
- Developing the existing irrigation network,
- Oxbow lakes: water storage capacity increase, revitalization,

Static tool results

Code	Sector	Measures (NWRM/NSWRM)	Aggregated measures for testing Static method
A01		Meadows and pastures	A01
A02		Buffer strips and hedges	A02
A06		No till agriculture	WRAL
A07	Agriculture	Low till agriculture	
80A		Green cover	
A13		Mulching/fertilization	A13
A15		Deep plowing (removing the plow's sole)	A15
N02	11. 1	Wetland restoration and management	N02
N07	Hydro- morphology	Reconnection of oxbow lakes and similar features	N07
F01	Forestry	Forest riparian buffers	F01
D01		Regulated outflow from drainage systems	
D02	Drainage	Water damming in ditches, wires with constant crest (valleys)	BPDA
D03	z. a.nage	Active water management on a drainage system (river valleys)	
D04		Construction of micro reservoirs on ditches	

TAKING COOPERATION FORWARD

10

Results of dynamic tool 1D HEC-RAS

Impact of excess water retention on floods level of Hortobágy-Berettyó River

Results of dynamic tool 1D HEC-RAS

Impact of excess water retention on floods level of Hortobágy-Berettyó River

Simulation period: Winter 2011

Cumulative effects of:

- Temporary excess water storage in fields:
 D01/A01 measures,
- Soil water retention increase with deep plowing/ripping (A15)
- Water retention in drainage canal system (D02) and oxbows (N07)

G COOPERATION FORWARD

Results of dynamic tool 1D HEC-RAS

CENTRAL EUROPE European Regional Development Fram Wat

Impact of increasing water retention on drought period

Results of dynamic tool

88.1

88.05

88 87.95

7/30/12

date

7/20/12

Effect of water storage on drought period

Modelling period: Summer 2012.

Baseline scenario

- 2) Increasing water retention (Water level increase 0,5, 1,0 m)
- 3) Increasing water retention and discharge (Water level increase 0,5, 1,0 m, discharge increase 5-20 m³/s.)

OPERATION FORWARD

Flow - NK +1

-Flow - NK +1 5

-Flow - NK +1 20

30

Ω

9/28/12

Results of dynamic tool

Modelling water supply to dry areas using existing drainage network.

Water supply to mitigate the effects of drought,

Impact of water retention for drainage canal system,

Results of dynamic tool

20000 Main Channel Distance (m)

10000

Conclusions

- Water retention options in lowland catchments area are limited,
- Using the storage capacity of the soil profile is extremely effective in this kind of catchment.
- FroGis application is suitable to support planning process of N(S)WRM, identifying areas for water retention, for prioritization on river basin.
- Static tool is suitable for comparing variants in the pilot catchment without using detailed hydrological and hydraulic models of the analysed catchment.
- HEC-RAS 1D model as dynamic tool is suitable to model hydrodynamic processes. We analysed some of the process indirectly, in a few watercourses.
- The beneficial effects of small water retention is wider, e.g. local microclimate, habitat for aquatic communities, good ecological status, landscape attraction.

MTDWD FramWat

www.interreg-central.eu/framwat

solyom.peter@kotivizig.hu

+36 30 748-4167

Thank you for your attention!

