

Etude technique du projet d'autoconsommation collective de Saint-Julien-en-Quint

Projet PEGASUS

Juillet 2019

Rédacteurs

Hubert REMILLIEUX et Romain CAILLERE, Cabinet NOVENER Noémie POIZE, AURA-EE

Contributeurs

Bruno BLANCHARD, Territoire Energie Drôme Gérard DELLINGER et Olivier GIRARD, ACoPrEV

.....

Résumé (contexte et objectifs du document) :

A partir de données de consommation collectées pendant 1 an sur une partie du village de Saint-Julienen-Quint, différentes simulations techniques ont été menées pour dimensionner un projet d'autoconsommation collective. Les solutions ont été modélisées en fonction de la quantité de photovoltaïque installée, de la mise en place de solutions de stockage ou de décalage des charges. A chaque fois l'optimum en termes de taux d'autoconsommation et d'autoproduction a été évalué.

Ce travail a été mené dans le cadre du projet européen PEGASUS, avec le soutien du syndicat d'énergie de la Drôme et de la Région Auvergne-Rhône-Alpes. PEGASUS vise à promouvoir le développement de microréseaux connectés au réseau dans les pays du pourtour méditerranéen.

Avec le soutien de :

SOMMAIRE

1	INTE	ODUCTION	3
2	TRA	ITEMENT DES DONNEES DE MONITORING	3
	2.1	Perimetre de l'etude	3
	2.2	Rappel des mesures de terrain effectuées	4
	2.3	Le traitement des données	4
	2.4	L'analyse des données	5
3	НҮР	OTHESES DE MODELISATION	8
	3.1	Réseau existant	8
	3.2	Production photovoltaïque	9
	3.3	Consommations	10
	3.4	Stockage	10
4	ANA	LYSE DES SCENARIOS	11
	4.1	S1 : exploitation maximale du potentiel photovoltaïque	12
	4.2	S2 : Réseau actuel avec PV optimisé pour l'autoconsommation	14
	4.3	S3 : Autoconsommation optimisée avec stockage	18
	4.4	S4-1 : Autoconsommation optimisée et décalage de charges	20
	4.5	S4-2 : Autoconsommation optimisée avec stockage mutualisé	22
	4.6	Tableau récapitulatif des scénarios	26
5	MICE	RO-HYDRAULIQUE ET STATION HYDROGENE	31
	5.1	Micro-hydraulique	31
	5.2	Station hydrogène	32
6	IMP/	ACT RESEAU	32
	6.1	Tension et insertion PV	32
	6.2	Intensité et dimensionnement des câbles	38
7	Con	ICLUSION ET PERSPECTIVES	41
TAE	BLE DE	S ILLUSTRATIONS	42
A 5.11	JEVE	A CONSOMMATIONS OF FOTDIGUES DESCRIPTO	42

1 INTRODUCTION

Dans le cadre du projet européen PEGASUS, un projet de « microréseau » électrique est étudié sur le bourg de Saint-Julien-en-Quint. Il s'agit en réalité d'étudier dans quelle mesure une production d'électricité renouvelable locale peut alimenter en autoconsommation collective la quarantaine de consommateurs raccordés au poste de distribution central du village. Ce site pilote se situe en milieu très rural, avec un réseau électrique de faible section, dont la partie aérienne est vulnérable aux intempéries qui génèrent souvent des coupures de plusieurs jours. Le village fait par ailleurs l'objet d'une dynamique locale forte en matière de transition énergétique, avec l'association ACOPREV et la société SAS ACOPREV Centrales Villageoises du Val de Quint qui fédèrent la population locale derrière un ambitieux programme de production d'énergie renouvelable et de mobilité hydrogène.

Suite à une instrumentation de la zone étudiée effectuée pendant une année, des simulations ont été menées par le cabinet NOVENER, correspondant à différents scenarios d'autoconsommation collective, avec ou sans stockage.

La première section présente la collecte et la méthode de traitement de ces données, issues des mesures de terrain effectuées par la société OMEGAWATT.

La deuxième section présente les différents éléments du réseau modélisés : réseau électrique, charges, production photovoltaïque, système de stockage.

La troisième section fournit les résultats des analyses des cinq scénarios étudiés, allant d'une exploitation maximale du potentiel photovoltaïque à une exploitation optimisée pour l'autoconsommation, avec prise en compte de différentes solutions de flexibilité (décalage de charges, stockage, fonctionnement en mode îloté).

La quatrième section fournit un premier niveau d'évaluation de l'impact de la production photovoltaïque sur la tension du réseau.

En conclusion, les principaux résultats sont rappelés et les perspectives de développement du projet de Saint-Julien-en-Quint sont présentées.

Figure 1: localisation du site pilot de Saint Julien-en-Quint

Figure 2: Vue aérienne du village

2 TRAITEMENT DES DONNEES DE MONITORING

2.1 PERIMETRE DE L'ETUDE

L'étude porte sur le bourg de Saint-Julien-en-Quint et plus particulièrement sur la section de réseau basse tension reliée au poste HTA/BT du bourg. 45 clients ont été identifiés sur ce poste, parmi lesquels un tiers représente des charges très faibles (résidences secondaires ou inoccupées). L'instrumentation a donc porté sur 31 consommateurs. Par ailleurs, les 2 sites qui ont refusé l'instrumentation mais dont les

consommations sont estimées comme significatives, ont été modélisés, ce qui porte à 33 le nombre de consommateurs inclus dans le périmètre d'autoconsommation collective étudié.

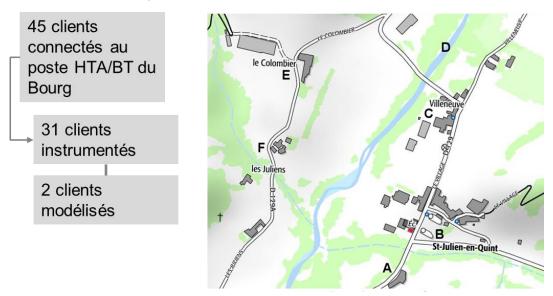


Figure 3: plan de la zone étudiée

2.2 RAPPEL DES MESURES DE TERRAIN EFFECTUEES

Une instrumentation a été mise en place pendant une année complète, entre juillet 2017 et juillet 2018, sur 31 bâtiments du centre de Saint-Julien-en-Quint. Elle a été réalisée par la société OMEGAWATT qui a utilisé différents dispositifs de mesure en fonction du type de compteur en place et de la possibilité ou non d'accéder au tableau électrique :

- <u>Instrumentation détaillée</u> avec le dispositif Multivoies installé sur les tableaux électriques des usagers ayant donné leur accord: permet de remonter les courbes de puissance et tension au pas de temps 10 minutes pour l'ensemble du tableau ou pour certains disjoncteurs individualisés (cela a été fait par exemple quand des charges pilotables de type ballon d'eau chaude ont été identifiées)
- <u>Instrumentation légère</u> sur le compteur dans les autres cas : des enregistreurs sur pile ont été utilisés. Il s'agit de microloggers à impulsion LED dans le cas de compteurs électroniques et d'enregistreurs optiques dans le cas de compteurs mécaniques.

Figure 4: instrumentation mise en place par Omegawatt

2.3 LE TRAITEMENT DES DONNEES

Les données collectées sont anonymisées puis envoyées sur la plateforme web d'OMEGAWATT et ont pu être extraites au format .csv par le cabinet NovEner.

Dans un premier temps, une analyse visuelle des courbes de charges sur la plateforme web a été faite afin de repérer les périodes et données manquantes et les informations a priori incohérentes (pic ou variations majeures dans la courbe de charge, période d'absence de données). Cette opération a permis

d'apprécier la qualité des données de monitoring et ainsi préparer les traitements correctifs à mettre en place. De plus, certaines corrections ont pu être partiellement traitées par OMEGAWATT, avant la récupération des données de consommation.

Dans un deuxième temps, NovEner a utilisé ses outils d'analyse des données pour :

- Détecter des données fausses ou incohérentes
- Remplacer des valeurs aberrantes et/ou absentes

Le traitement effectué a porté sur environ 122 000 données (points 10mn), soit 7.5 % des données collectées. Les corrections, exprimées en énergie, représentent environ 10 300 kWh/an soit 7 % de la consommation.

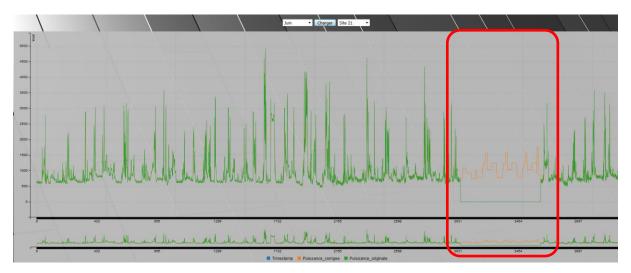


Figure 5: Exemple de donnés reconstituées

Figure 6: Synthèse de la qualité des données site par site

2.4 L'ANALYSE DES DONNEES

La consommation totale mesurée sur le périmètre d'étude est de **178 025 kWh** pour l'année étudiée (période du 1er/08/2017 au 31/07/2018).

A titre d'information, sur la base de l'enquête de terrain initialement menée, la consommation avait été estimée par ACOPREV à 188 500 kWh/an pour la même zone. Il n'a pas été possible de mesurer les flux en sortie de poste HTA/BT pour conforter les mesures. Pour information, les données Enedis datant de 2016, indiquent une consommation totale de la commune de 586 MWh/ an.

La consommation électrique est pour plus de la moitié réalisée par le secteur résidentiel.

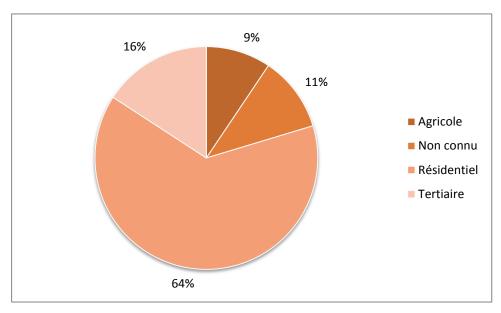


Figure 7: Répartition de la consommation par type de consommateur

La somme des consommations corrigées définit un profil de consommation global pour la zone étudiée, qui est représenté en Figure 8.

On pourra noter que:

• La puissance minimale consommée est de 6493 W (talon strict de consommation). Si on enlève 0,1% des puissances les plus faibles sur l'année, ce talon de consommation est de 8000 W.

Les pics de consommation, en période hivernale, se situent entre 30 000W et 50 000W

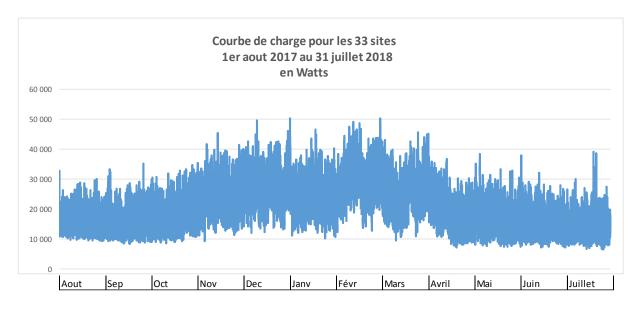


Figure 8: Aperçu de la courbe de charge annuelle totale

Les figures suivantes illustrent les profils moyens de consommation journalière par type de consommateur.

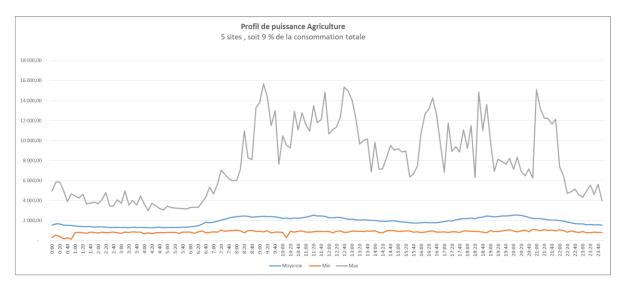


Figure 9: Profil de puissance du segment agriculture

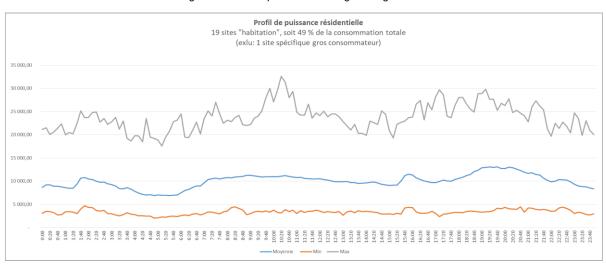


Figure 10: Profil de puissance du segment résidentiel

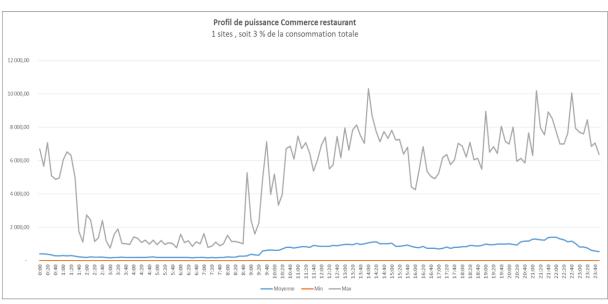


Figure 11: Profil de puissance du segment commerce / restaurant

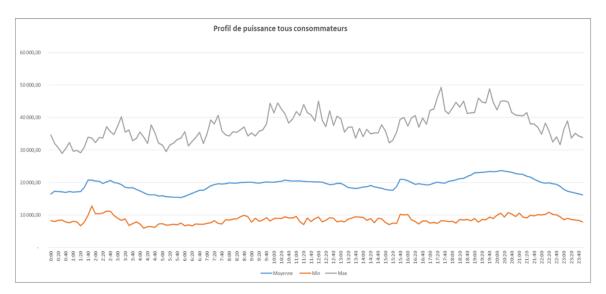


Figure 12: Profil de puissance tous consommateurs

L'amplitude des appels de puissance est par ailleurs très variable selon les consommateurs. Elle est représentée ci-dessous pour les 31 consommateurs instrumentés.

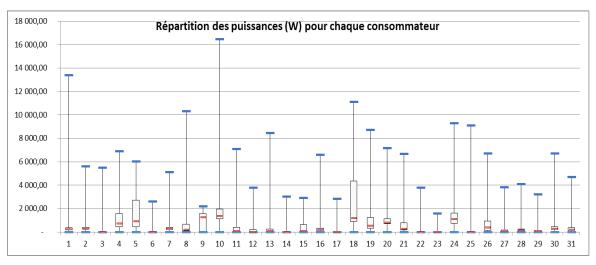


Figure 13: Répartition des puissances par consommateur (puissances min et max en bleu, médiane en rouge, valeurs entre le 1^{er} et le 3^e quartile dans le rectangle)

3 HYPOTHESES DE MODELISATION

3.1 RESEAU EXISTANT

Le réseau électrique basse tension (BT) a été modélisé dans Simulink/Simscape à l'aide des données mises à disposition par Territoire d'énergie SDED. La modélisation a repris les caractéristiques géographiques du réseau électrique BT en sortie du poste HTA/BT « village » (cf. Figure 14).

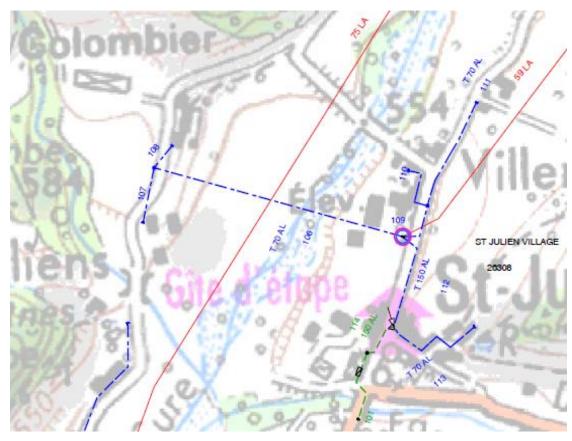


Figure 14: Réseau électrique de St Julien en Quint (basse tension en bleu, moyenne tension en rouge)

Les points de livraison des clients ont été identifiés par un numéro avec leurs caractéristiques (puissance, mono ou tri). Les sites sans mesures de consommation n'ont pas été intégrés à la modélisation à l'exception des deux sites estimés comme consommateurs significatifs.

3.2 PRODUCTION PHOTOVOLTAÏQUE

Les potentiels sites de production photovoltaïque (PV) identifiés dans le périmètre du village ont été ajoutés à la modélisation dans un premier format simplifié à partir des surfaces disponibles et de leur orientation. Au début de l'étude, la sélection technique des toitures pour la production PV n'étant pas faite, la prévision de production, au pas 10mn, a été simulée à partir des données d'irradiation solaire issues de la source SODA (cf. Figure 15). Il n'y a pas eu de mesure d'irradiance sur site.

L'hypothèse est faite dans tous les scénarios que le surplus de production n'est pas valorisé économiquement, d'où l'objectif d'avoir une autoconsommation maximale de l'électricité produite.

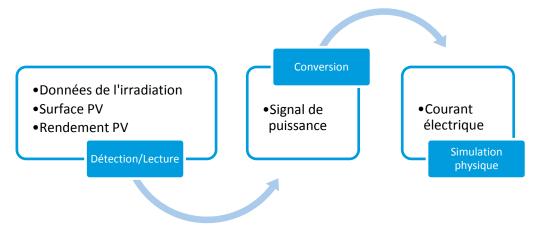


Figure 15: Méthode de simulation de la production photovoltaïque

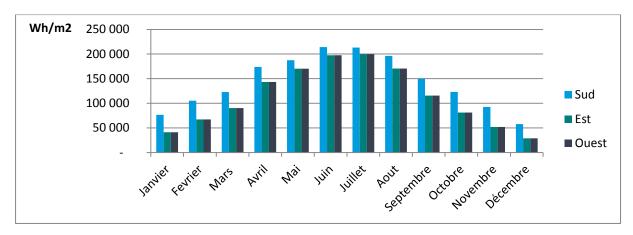


Figure 16: irradiance moyenne mensuelle par orientation

3.3 CONSOMMATIONS

Les données de consommations électriques et de production photovoltaïque sont disponibles au pas de temps 10 minutes. Pour tous les scénarios d'autoconsommation collective on considère une répartition de la production locale au prorata de la consommation de chaque consommateur, et ce, au pas de temps 10 min.

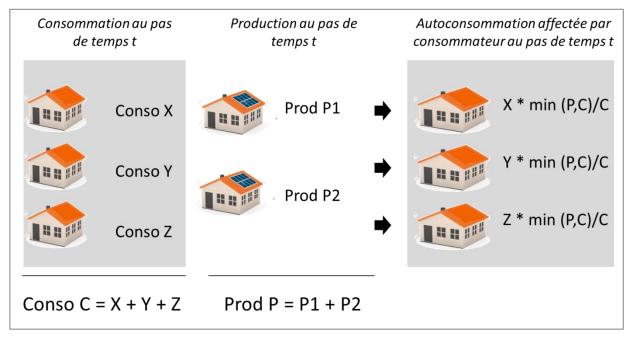


Figure 17: illustration de la clé de répartition utilisée pour les scenarios d'autoconsommation collective

3.4 STOCKAGE

Un bloc de batterie « lithium-ion » a été ajouté à la modélisation. Les caractéristiques et les paramètres d'utilisation sont précisés dans les scénarios de stockage associés. Le dimensionnement est affiné selon le type de scenario. Plusieurs stratégies de pilotage peuvent par ailleurs être prises en compte (voir scenarios).

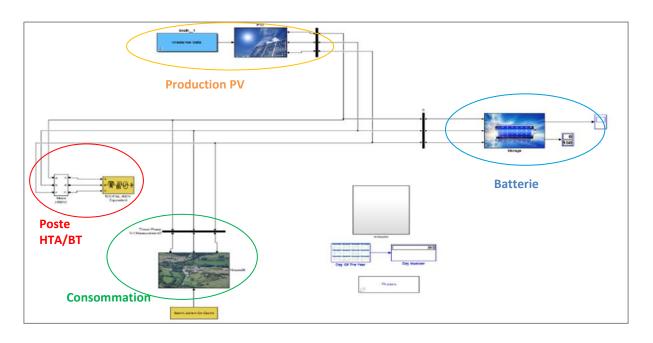


Figure 18: Modèle simplifié

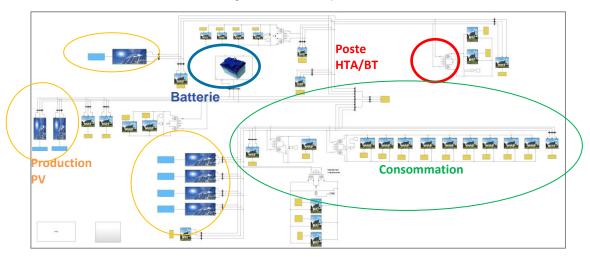


Figure 19: Modèle détaillé

4 ANALYSE DES SCENARIOS

Les 5 scenarios étudiés sont les suivants :

- S1 : Réseau actuel avec exploitation du potentiel PV maximum
- S2 : Réseau actuel avec PV optimisé pour l'autoconsommation
- S3 : Réseau actuel avec PV et stockage optimisés
- S4: Réseau actuel avec PV et stockage optimisés + pilotage des charges
- S5 : Mode îloté

Pour chaque scenario les taux d'autoconsommation et d'autoproduction ont été évalués

Sans stockage

 $Taux\ autoconsommation = \frac{Energie\ autoconsomm\'{e}e}{Energie\ produite\ totale}$

 $Taux\ autoproduction = \frac{Energie\ autoconsomm\'{e}e}{Energie\ consomm\'{e}e\ totale}$

Avec stockage

 $Taux\ autoconsommation = \frac{Energie\ autoconsomm\'{e}+energie\ charg\'{e}e\ dans\ la\ batterie}{Energie\ produite\ totale}$

 $Taux\ autoproduction = \frac{Energie\ autoconsomm\'{e} + Energie\ d\'{e}charg\'{e}e\ de\ la\ batterie}{Energie\ consomm\'{e}e\ totale}$

4.1 S1: EXPLOITATION MAXIMALE DU POTENTIEL PHOTOVOLTAÏQUE

4.1.1 Description du potentiel PV

Le 1^{er} scénario nommé « Full PV » vise à étudier l'impact de l'intégration du maximum de production photovoltaïque sur les toitures du centre du village (hangar agricole, bâtiment public, etc.) sans tenir compte des éventuelles contraintes techniques de réalisation (charpentes, raccordement, etc.). On cherche à estimer dans ce cas quelle part de consommation locale la production permettrait au maximum de couvrir, au sein du périmètre d'autoconsommation collective.

Configuration	
Production PV	1170 m², soit environ 234 kWc
Consommation	178 025 kWh, données réelles de l'année
Pas de temps	10 min
Stockage	non
Gestion des charges	non

Tableau 1: configuration du scénario 1

	Sites	PV en m²	PV en kWc	Orientation
P1	Mairie est	120 m ²	24	Est
P2	Mairie ouest	120 m ²	24	Ouest
P3	Préau sud	60 m ²	12	Sud
P4	Grange sud	100 m ²	20	Sud
P5	Grange est	100 m ²	20	Est
P6	Grande grange sud	170 m ²	31	Sud
P7	Hangar Colombier	500 m ²	100	Sud
Total	-	1170 m²	234 kWc	830 m² Sud 220 m² Est 120 m² Ouest

Tableau 2: Liste des surfaces disponibles pour l'implantation de panneaux solaires

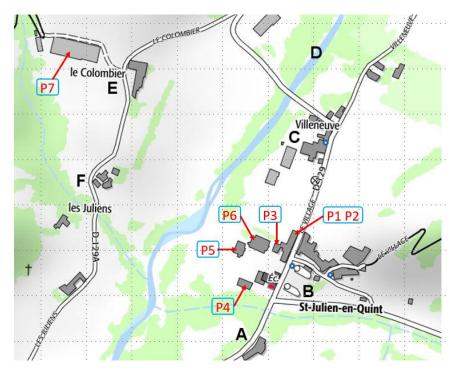


Figure 20: Plan de position des producteurs PV scénario 1

4.1.2 Résultats

La valorisation de tout le potentiel solaire en toitures sur le périmètre d'étude conduit à une production de 272 MWh/an soit un taux d'autoconsommation de 25% et un taux d'autoproduction de 39%.

	m ²	1170
Production PV	kWc	234
	kWh/an	272050
Consommation	kWh/an	178025
Autoconsommation	kWh/an	69270
Soutirage réseau	kWh/an	108755
Injection réseau	kWh/an	202780
Taux autoconsommation	%	25,4
Taux autoproduction	%	38,9
Taux de couverture	%	170,9
Puissance max injectée	kW	151.3
Puissance max soutirée	kW	50,2

Tableau 3: principaux indicateurs du scenario s1

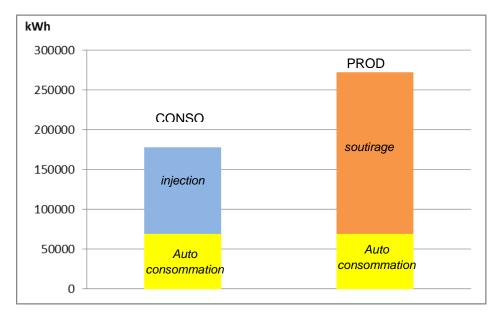


Figure 21: bilan annuel des flux pour le scenario s1

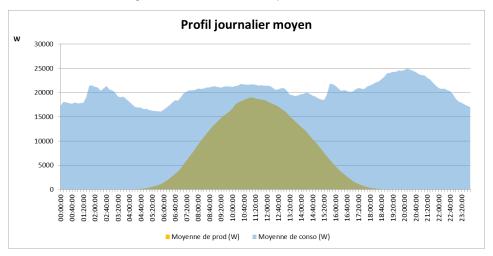


Figure 22 : Profil journalier moyen pour la production et la consommation à l'échelle du périmètre d'étude

4.1.3 Analyse

Ce scénario est défavorable au regard de la zone d'étude pour plusieurs raisons :

- Taux d'autoconsommation très faible de 25 % pour un taux de couverture supérieur à 1,7.
- Puissance max réinjectée de 151 kW trop importante au regard de la capacité du poste HTA/BT (100 kW).

Ce niveau de production serait sans doute plus cohérent à l'échelle de la commune (sous réserve de la capacité du réseau) où il représenterait un taux de couverture de 46 % (272/586 MWh).

4.2 S2 : RESEAU ACTUEL AVEC PV OPTIMISE POUR L'AUTOCONSOMMATION

L'idée du deuxième scénario n'est plus de se focaliser sur la surface de panneaux solaires mais d'atteindre un taux d'autoconsommation satisfaisant. Pour ce, un taux minimum proche de 85 % est pris comme point de départ, car il semble être un bon compromis entre un niveau de production convenable (permettant un taux d'autoproduction pas trop faible) et des réinjections limitées sur le réseau (peu valorisées économiquement). Le but est de déterminer la production solaire permettant d'atteindre ce taux. La configuration complète du scénario est présentée dans le Tableau 4.

4.2.1 Données d'entrée

Configuration	
Taux d'autoconsommation	85%
Consommation	178 025 kWh, données réelles de l'année
Pas de temps	10 min
Stockage	non
Gestion des charges	non

Tableau 4: configuration du scénario 2

La production photovoltaïque est répartie entre les 33 consommateurs en considérant que tous participent à l'opération d'autoconsommation collective. La clé de répartition de la production au prorata de la consommation sur le pas de temps 10 mn a été utilisée pour les simulations. Cette clé de répartition minimise les surplus (au sens réglementaire de l'autoconsommation collective). En conséquence, elle maximise le taux d'autoconsommation.

4.2.2 Résultats

	m ²	180
Production PV	kWc	36
	kWh/an	46800
Consommation	kWh/an	178025
Autoconsommation	kWh/an	39989
Soutirage réseau	kWh/an	138035
Injection réseau	kWh/an	6811
Taux autoconsommation	%	85,5
Taux autoproduction	%	22,5%
Taux de couverture	%	26%
Puissance max injectée	kW	29,4
Puissance max soutirée	kW	50,2

Tableau 5: Récapitulatif des résultats du scénario 2

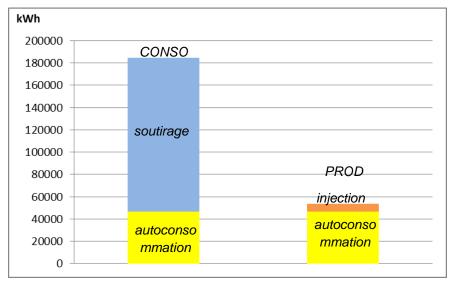
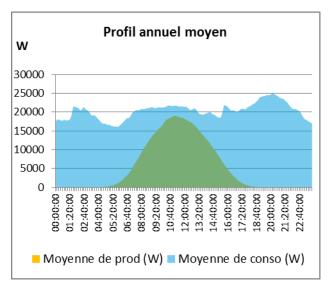
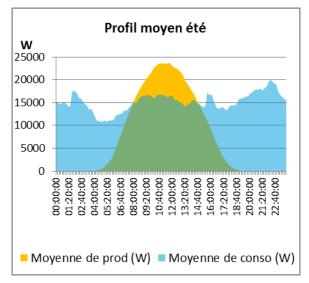
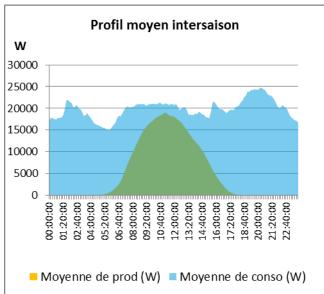





Figure 23: Graphique des principaux critères de performance pour le S2

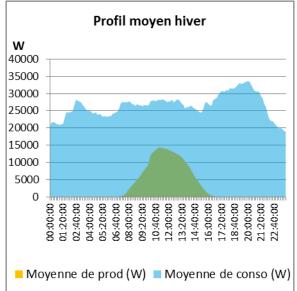


Figure 24: profils journaliers moyens par saison (scenario 2)

4.2.3 Analyse

En divisant par 6.5 la surface de panneaux solaires par rapport au premier scénario « full PV », on atteint un taux d'autoconsommation de 85,5 % avec un taux de couverture à 26 %.

En fournissant presque 40 MWh d'énergie sur les 178 consommés, une puissance photovoltaïque de 36 kWc permet de couvrir 22,5% de la consommation annuelle d'électricité.

A noter que si l'on somme les puissances PV qui permettent individuellement pour chaque consommateur d'atteindre un taux d'autoconsommation de 85%, on atteint une puissance photovoltaïque cumulée de 20 kWc. L'approche collective permet donc, grâce au foisonnement, d'augmenter de plus de 50% la production photovoltaïque valorisable.

L'optimisation de l'autoconsommation collective, en maximisant le taux d'autoconsommation, dépend de deux facteurs principaux:

- La taille de l'installation de production PV
- Le nombre de consommateurs qui participent volontairement à cette opération et les caractéristiques de leur courbe de charge.

En pratique, la taille de la production photovoltaïque est déterminée en fonction des participants à l'opération. Selon les courbes de charge de chacun, à nombre égal de consommateurs impliqués, les résultats peuvent être sensiblement différents.

Ainsi pour atteindre un taux d'autoconsommation de 85% avec une participation réduite aux 10 « meilleurs profils » (qui permettent d'absorber la plus grande quantité d'énergie locale produite), une installation de 20 kWc est nécessaire. En revanche, pour atteindre ce même taux sur les 10 profils les moins adéquats, la taille de l'installation tombe à 1,15 kWc.

La figure ci-dessous représente différents cas de figure comparés, qui rendent compte du fait que la variation du périmètre des consommateurs a un impact très important sur le dimensionnement du photovoltaïque et sur les taux d'autoconsommation (TAC) et d'autoproduction (TAP).

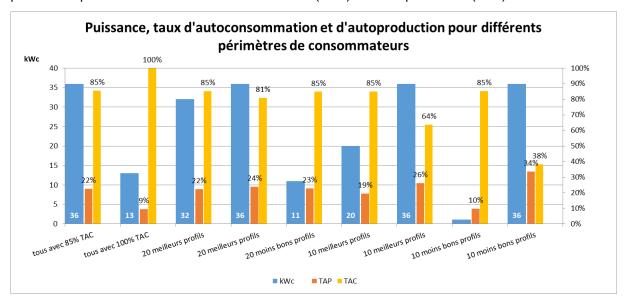


Figure 25: comparaison de différents périmètres de consommateurs en autoconsommation collective

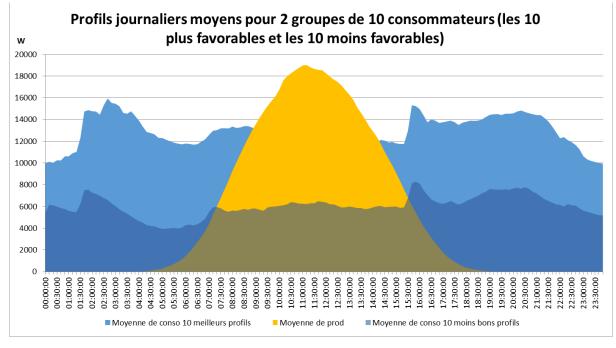


Figure 26: Profils journaliers moyens pour 2 configurations extrêmes

4.3 S3: AUTOCONSOMMATION OPTIMISEE AVEC STOCKAGE

Ce troisième scénario vise à étudier, à partir du scenario 2, l'impact de l'intégration d'une batterie adossée au site de production photovoltaïque et dont la principale mission est de stocker les surplus de production solaire pour permettre d'augmenter le taux d'autoconsommation et de réduire les injections sur le réseau.

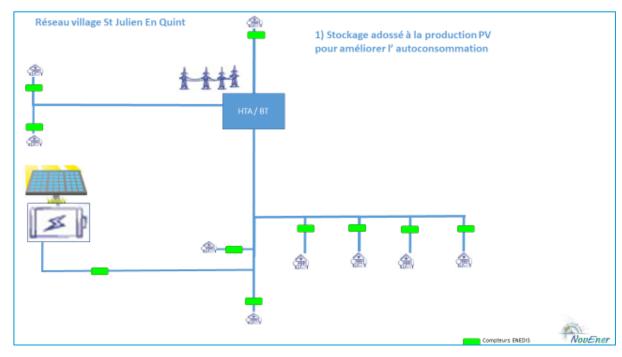


Figure 27: configuration du scenario S3

4.3.1 Donnée d'entrée

Configuration	
Taux	Objectif 100%
d'autoconsommation	
Consommation	178 025 kWh, données réelles de l'année
Production	36 kWc
Pas de temps	10 mn
Stockage	200 kWh de capacité (en considérant 6 kWh stockage par consommateur). Soit 5.5 KWh de stockage/kWc PV 50 kW de puissance 90% d'efficacité (référence fournisseur batterie LiFePO4) Plage de fonctionnement [10% - 90%]
Gestion des charges	non

Tableau 6: Configuration du premier scenario de stockage

4.3.2 Résultats

	m ²	180	
Production PV	kWc	36	
	kWh/an	46234	
Consommation	kWh/an	178025	
Autoconsommation PV	kWh/an	39708	
Autoconsommation PV + batterie	kWh/an	46234	

Soutirage réseau	kWh/an	133243
Injection réseau	kWh/an	0
Taux autoconsommation	%	100%
Taux autoproduction	%	25,2%
Taux de couverture	%	26%
Puissance max injectée	kW	0
Puissance max soutirée	kW	50216
Charge batterie	kWh/an	6526
Décharge batterie	kWh/an	5082
Estimation nb de cycles batterie		36.7

Tableau 7: résultats du scenario S3

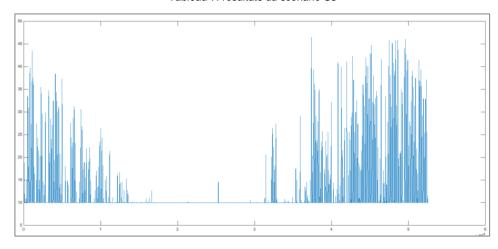


Figure 28: Etat de charge de la batterie (SOC) du 1/08/2017 au 31/07/2018

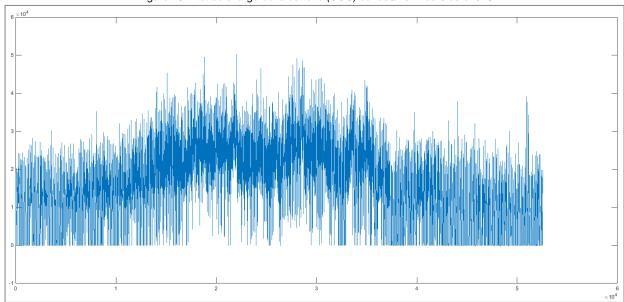


Figure 29: Echanges avec le réseau en W du 1/08/2017 au 31/07/2018 (valeurs positives =injection / valeurs négatives = soutirage)

4.3.3 Analyse

La capacité de la batterie n'est pas utilisée à 100 % (SOC ~47 % maximum de la capacité de 200 kWh). Une batterie de 100 kWh utile suffirait à capter tout le surplus de production des panneaux solaires. Il n'y

a par ailleurs plus d'injection sur le réseau (représenté par les valeurs négatives de la Figure 29) : le taux d'autoconsommation est maximum. La batterie a une utilisation très saisonnière avec très peu d'utilisation en période hivernale.

4.4 S4-1: AUTOCONSOMMATION OPTIMISEE ET DECALAGE DE CHARGES

Dans ce scenario on propose de décaler la charge des ballons d'eau chaude pendant les heures de production solaire (ce qui revient à stocker thermiquement le surplus de production dans ces ballons).

Sur le site de Saint-Julien-en-Quint, la consommation des chauffe-eaux mesurée sur quatre sites représente 41% de la consommation électrique annuelle de ces sites.

	Consommation annuelle du site (kWh)	Consommation du ballon ECS(kWh)	Part du chauffe-eau dans la consommation du site
Site 12	5602	2662	48%
Site 13	2110	685	32%
Site 25	6220	2143	34%
Site 32	2677	1306	49%
TOTAL	16609	6796	-
MOYENNE	4152	1699	41%

Tableau 8: Consommation chauffe-eau mesurés sur 4 sites et rapport à la consommation totale du site.

Les simulations de décalage de charges ont été faites sur quatre sites pour lesquels les consommations des chauffe-eaux ont été mesurées (Sites 12, 13, 25 et 32). La nouvelle courbe de charge de la consommation d'eau chaude a été calculée en utilisant l'optimisation linéaire. A l'échelle de chaque journée, il s'agit de déplacer la consommation du chauffe-eau vers les périodes où l'on constate des surplus de production PV de manière à minimiser les réinjections sur le réseau. Ce re-calcul permet de simuler le potentiel d'amélioration de l'autoconsommation par un pilotage des chauffe-eaux.

4.4.1 Données d'entrée

Configuration	
Taux d'autoconsommation	85%
Consommation	178 025 kWh, données réelles de l'année
Pas de temps	10 mn
Stockage	non Par période journalière (24h), on minimise les réinjections PV tel que :
Décalage de charge	 Pour chaque site, la somme des consommations de nuit décalées en journée n'excède pas la quantité d'énergie consommée par le chauffe-eau dans la période de 24h. La réaffectation en puissance sur un pas de temps n'excède pas 2000 W (puissance standard de chauffe-eau)
	 La consommation réaffectée en journée n'excède pas la réinjection de PV constatée. Il s'agit donc d'une situation de gestion dynamique où le chauffe-eau est déclenché dans les périodes de surplus solaire.

4.4.2 Résultats

		Consor	Consommation annuelle du chauffe-eau					
	Entre 22h et 6h avant	Entre 22h et 6h après décalage		Entre 22h et 6h avant et décalée en journée après			Totale	
	décalage (kWh)	kWh	% conso ECS	% conso site	kWh	% conso ECS	% conso site	(kWh)
Site 12	648	306	11%	5%	342	13%	6%	2662
Site 13	154	23	3%	1%	131	19%	6%	685
Site 25	186	82	4%	1%	103	5%	2%	2143
Site 32	1216	871	67%	32%	345	26%	13%	1306
TOTAL	2204	1282			921			6796
Pourcentage / total ECS	32%	18%			13%			100%

Tableau 9: Résultats de la simulation des décalages de charges

La simulation montre qu'il est possible, pour 4 sites, de décaler 921 kWh de consommation des chauffeeau vers les périodes de la journée où il y a des surplus de production solaire à absorber. Cela représente 14% de la consommation des chauffe-eaux et 230 kWh en moyenne par site.

Le décalage de la consommation des chauffe-eaux diminue les surplus solaires. Les résultats de la simulation des 4 sites mesurés ont été extrapolés sur les 18 sites résidentiels possédant un chauffe-eau électrique.

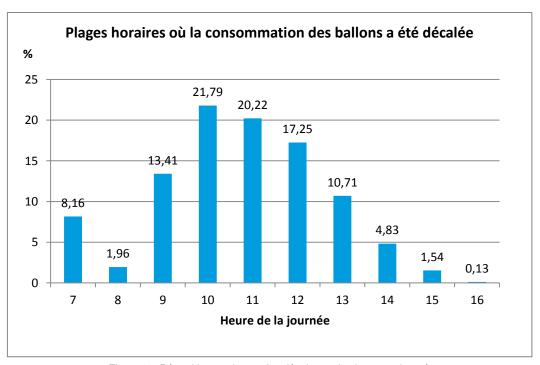


Figure 30: Répartition par heure des décalages de charge en journée

	unité	S2	S4-1 (4 ECS)	S4-2 (18 ECS)
	m ²	180		
Production PV	kWc	36		
	kWh/an	46234		
Consommation	kWh/an	178025		
Autoconsommation PV	kWh/an	39710	40631	43850
Soutirage réseau	kWh/an	138315	137394	134175
Injection réseau	kWh/an	6524	5603	2384
Taux autoconsommation	%	85,9%	87,9%	94,8%
Taux autoproduction	%	22,3%	22,8%	24,6%
Taux de couverture	%	26%	26%	26%
Puissance max injectée	kW	18634	18790	
Puissance max soutirée	kW	50216	50216	

Tableau 10: Récapitulatif du scenario S4-1

Si l'on extrapole de façon simplifiée aux dix-huit sites équipés de chauffe-eaux électrique, la réduction totale potentielle des surplus de production solaire est estimée à : 18*230 kWh = 4 140 kWh soit 63 % des surplus de production des PV. Cela ferait passer le taux d'autoconsommation de 85.9 % à 94.8 % et constitue une excellente piste pour augmenter l'autoconsommation sans avoir recours à un lourd investissement.

Le décalage de charge des chauffe-eaux est une solution efficace pour absorber la quasi-totalité des surplus de production solaire dans la configuration d'autoconsommation collective étudiée.

Cette mesure concurrence une capacité de stockage de 100 kWh (cf. scénario précédent) et à très faible coût. Elle reste à étudier dans le détail pour chaque consommateur qui participera à l'opération d'autoconsommation collective.

4.5 S4-2: AUTOCONSOMMATION OPTIMISEE AVEC STOCKAGE MUTUALISE

Ce scénario a pour but de montrer ce que donnerait l'ajout d'un système de stockage piloté par un système « intelligent », de manière à optimiser le fonctionnement de la batterie, augmenter la production solaire et apporter davantage de services au réseau. Dans ce cas, la batterie est positionnée au niveau du poste HTA/BT et est alimentée par la production solaire locale et par le réseau.

Plus précisément cela revient à utiliser la batterie pour :

- Minimiser les réinjections issues des surplus de production PV
- Minimiser les pics de soutirage sur le réseau
- Maximiser le taux d'autoconsommation
- Maximiser le taux d'autoproduction en augmentant de 1/3 la production PV
- Valoriser les tarifications temporelles en chargeant la batterie aux heures creuses et en déchargeant la batterie (pour alimenter la consommation du village) aux heures pleines ou de pointe.

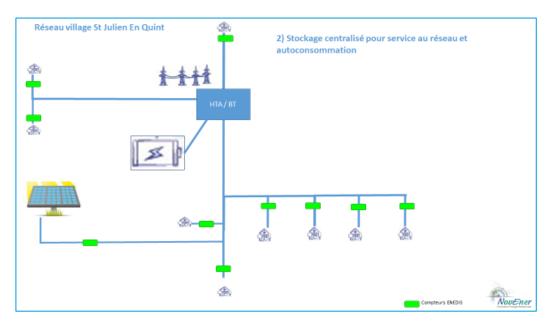


Figure 31: illustration scénario S4-2

4.5.1 Donnée d'entrée

Tableau 11: Configuration scenario de stockage optimisé

Configuration	
Production PV	240 m ²
Taux d'autoconsommation	100%
Consommation	178 025 kWh, données réelles de l'année
Pas de temps	10 mn
Stockage	Oui 200 kWh de capacité (en référence à des recommandations de capacité de stockage domestique de l'ordre de 5 à 7 kWh/site : 33*6=198) 50 kW de puissance 90% d'efficacité Plage de fonctionnement [10% - 90%]
Stratégie de pilotage	Oui

La stratégie mise en place est de garder un taux d'autoconsommation de 100 %, tout en limitant les pics de soutirage autour de 35 kW (sans stratégie le pic atteint 50 kW).

Les 35 kW correspondent au niveau le plus bas atteint lors des phases de tests des stratégies de pilotages de la batterie.

La batterie se recharge la nuit, en période hivernale, à partir du réseau, lorsque la puissance appelée totale est inférieure à 35 kW. C'est-à-dire entre le 26 Novembre et le 3 mars de 0 h 00 à 6 h 00 (période issue du calcul d'optimisation). Elle se recharge de manière à ne jamais dépasser, pour l'ensemble des consommations (y compris celle de la batterie) 35 kW de puissance totale de soutirage sur le réseau. Par exemple, si à l'instant t, la demande est de 20 kW et que la batterie est déchargée, alors la batterie sollicite au maximum 15 kW du réseau pour se recharger. Le reste du temps elle se recharge lors des surplus solaires et se décharge dès que la consommation dépasse la production, dans les limites du stockage.

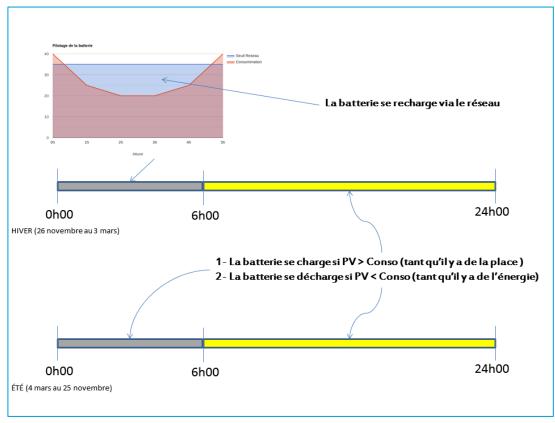


Figure 32: Schéma de la stratégie de pilotage de la batterie.

4.5.2 Résultats

	unité	S3	S4-2
	m ²	180	240
Production PV	kWc	36	48
	kWh/an	46234	61646
Consommation	kWh/an	178025	178025
Autoconsommation PV + batterie	kWh/an	39710	61646
Autoconsommation PV	kWh/an	39708	46769
Soutirage réseau	kWh/an	133243	119651
Injection réseau	kWh/an	0	0
Taux autoconsommation	%	100%	100%
Taux autoproduction	%	25,2%	33%
Taux de couverture	%	26%	34,6%
Puissance max injectée	kW	0	0
Puissance max soutirée	kW	50216	45363
Capacité batterie	kWh	200	200
Total charge batterie	KWh	6526	15824
Total décharge batterie	kWh	5082	12559
Nombre de cycles batterie		37	89

Tableau 12: synthèse du scenario S4-2 (comparé à l'autre scenario avec stockage S3)

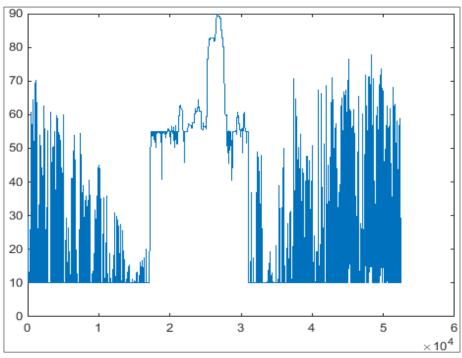


Figure 33: Etat de charge de la batterie pour le scénario piloté du 1/08/2017 au 31/07/2018

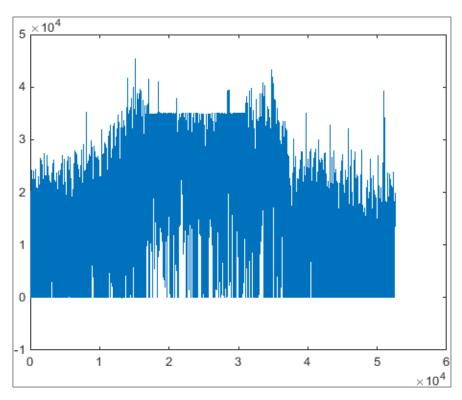


Figure 34: Echanges avec le réseau pour le scénario piloté du 1/08/2017 au 31/07/2018 (soutirage en positif)

4.5.3 Analyse

Trois points sont importants à souligner pour l'analyse de ce scénario. Premièrement, en comparant la Figure 28 et la Figure 33 on note que, pour le scénario piloté, la batterie d'une capacité de 200kWh est utilisée jusqu'à 90%, soit le maximum de sa plage de fonctionnement. Deuxièmement, on remarque sur la Figure 34 que la limite de soutirage de 35 kW est respectée dans 98.5 % du temps (exactement 51714 pas de temps sur 52560). De plus, aucune réinjection n'a lieu, ce qui laisse le taux d'autoconsommation

maximum. Troisièmement, la batterie a stocké un total de 15,824 MWh, répartis entre 15,456 MWh provenant du surplus solaire et 368 kWh provenant du soutirage réseau, selon la stratégie décrite précédemment. Concernant « l'usure » de la batterie, le nombre de cycles effectués est de 89 (sur environ 3000 cycle garantie par fabricant).

La stratégie de pilotage de la batterie mise en place a permis d'augmenter fortement le taux d'autoproduction en ajoutant 1/3 supplémentaire de surface de panneaux solaires, et de limiter les injections de puissance sur le réseau.

4.6 TABLEAU RECAPITULATIF DES SCENARIOS

	unité	S 1	S2	S 3	S4-1	S4-2
	m ²	1170	180	180	180	240
Production PV	kWc	234	36	36	36	48
	kWh/an	272050	46234	46234	46234	61646
Consommation	kWh/an	178025	178025	178025	178025	178025
Autoconsommation PV + batterie	kWh/an			39710		61646
Autoconsommation PV	kWh/an	69270	39710	39708	40631	46769
Soutirage réseau	kWh/an	108755	138315	133243	137394	119651
Injection réseau	kWh/an	202780	6524	0	5603	0
Taux autoconsommation	%	25,5%	85,9%	100%	87,9%	100%
Taux autoproduction	%	38,9%	22,3%	25,2%	22,8%	33%
Taux de couverture	%	152,8	26%	26%	26%	34,6%
Puissance max injectée	kW	151,3	18634	0	18790	0
Puissance max soutirée	kW	50,216	50216	50216	50216	45363
Capacité batterie	kWh			200		200
Total charge batterie	KWh			6526		15824
Total décharge batterie	kWh			5082		12559
Nombre de cycles batterie				37		89

Tableau 13: synthèse des différents scenarios étudiés

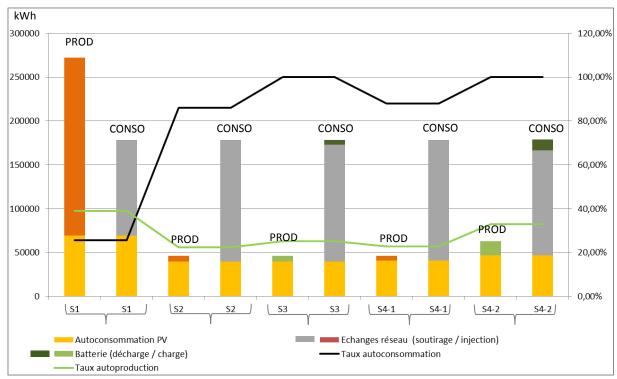


Figure 35: synthèse des scénarios étudiés

4.6.1 S5: Mode îloté / Mode secours

Le scénario en mode îloté est envisagé ici comme un fonctionnement en « mode secours », dans la mesure où l'îlotage ne serait utilisé qu'en cas de coupure du réseau principal. Bien que la fréquence des coupures soit faible, les habitants de cette zone sont préoccupés par cette situation et savent que l'éloignement engendre des délais de dépannage plus importants. Le mode secours signifie qu'en attendant la réparation de la panne, les consommations des usages du réseau sont réduites aux seuls usages les plus indispensables: lumière, téléphone, frigo, chambre froide, chaudière à bois, gaz, appareil médical, etc. L'objectif est de pouvoir les couvrir avec la production PV locale et l'ajout d'une batterie.

4.6.1.1 Données d'entée

Les paramètres de la simulation de ce scénario sont les suivants :

- La surface de panneaux solaires installée est de 240 m² et la capacité de stockage de 200 kWh
 (cf. scénario S4-2 avec stratégie de pilotage de la batterie)
- Le réseau est coupé (pas d'injection ou soutirage possible).
- La production PV est en partie autoconsommée la journée et en partie stockée pour une consommation différée la nuit.
- Le niveau de charge de la batterie est celui constaté au début des périodes de simulation de la coupure réseau. Dans ce cas d'étude, il n'y a pas de capacité de la batterie spécifiquement réservée au secours.
- La période de simulation choisie se répartit sur deux semaines considérées comme les plus critiques, avec une production faible et une consommation électrique forte :
 - Semaine du 1^{er} au 7 janvier 2018
 - Semaine du 5 au 11 février 2018

La simulation est réalisée avec 3 niveaux de consommation :

- Consommation réelle sans modifications
- Consommation diminuée de 50%
- Consommation restreinte en mode secours (cf. tableau ci-après)

Charge	Nombre	Puissance	Temps de charge	Wh/jour
Lampes	4	20W	5 h/j	400
Téléphone box	1	25W	2 h/j	50
Chaudière gaz	1	200W	6 h/j	1200
Frigo congel	1	200W	5 h/j	1000
Médical, autre	0,3	100W	12 h/j	360
Total	7,3	575W max		3000

Tableau 14 : Détail de la consommation restreinte en mode secours

D'après le Tableau 14, les besoins estimés sont en moyenne de 3 kWh/jour/consommateur, ce qui donne donc un total de 99 kWh/jour pour trente-trois consommateurs. En première approche, la courbe de charge pour le mode secours est calculée au prorata des consommations réelles soit: 99/571ème pour la semaine de janvier, et 99/721ème pour la semaine de février (consommation totale de la première semaine : 581kWh, deuxième semaine : 721kWh).

En situation réelle de secours, le pilotage déclenchera les charges, selon des règles plus fines et en fonction de la production PV prévue. Cela donnera une courbe de charge différente, mais a priori avec un temps d'autonomie du même ordre de grandeur que celui du présent calcul.

Configuration	
Production PV	240 m ²
Consommation	3 niveaux de consommation: réel, 50% du réel, restreinte
Taux d'autoconsommation	100%
Consommation	178 025 kWh, données réelles de l'année
Pas de temps	10 mn
Stockage	Oui 200 kWh de capacité (en référence à des recommandations de capacité de stockage domestique de l'ordre de 5 à 7 kWh/site : 33*6=198) 50 kW de puissance 90% d'efficacité Plage de fonctionnement [10% - 90%]
Stratégie de pilotage	Oui en mode secours

Figure 36: Rappel de la configuration de la simulation en mode secours

L'ordre de grandeur du temps de secours est dans un premier temps calculé (méthode simplifiée) par période de 24 h (cycle de production PV), puis une simulation dynamique est réalisée pour conforter le calcul.

4.6.1.2 Résultats

4.6.1.2.1 Semaine du 1er au 7 janvier 2018

Mode de Consommati on	Consommati on kWh/j	Production solaire kWh/j	Besoin d'énergie kWh/j (consommati on – production)	Durée du secours si état charge batterie 20kWh (utile)	Durée du secours si état charge batterie 70 kWh (utile)	Durée du secours si état charge batterie 140 kWh (utile)
Réelles sans restriction	571	47	524	< 1h	3 h	6h
Réduite de 50%	285	47	238	2h	7h	14h
Restreinte en mode secours	99	47	52	9h	1.3 j	2.6 j

Tableau 15: Temps de secours estimé, selon le mode de consommation et le niveau de charge de la batterie au moment de la coupure. Période du 1er au 7 Janvier

La simulation dynamique avec une coupure du réseau et un passage en mode de consommation «secours » intervient le 1er janvier à 0h. A ce moment, l'état de charge de la batterie est de 45 % (70 kWh disponible). L'autonomie constatée est de 24 heures après la coupure, puis apparaît par périodes de courte durée liée à la production PV qui est très faible sur cette période (cf. Tableau).

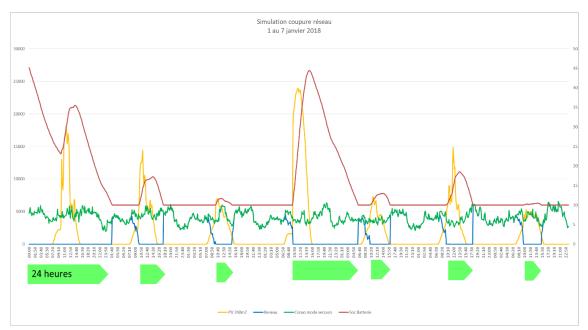


Figure 37: Simulation du mode secours du 1er au 7 Janvier 2018

Sur la figure 37, la courbe bleue représente le soutirage réseau. La courbe verte représente la consommation. La courbe orange représente la production solaire et la courbe rouge (échelle de droite : SOC batterie) montre l'état de charge de la batterie. La bande verte fluo indique les périodes d'autonomie.

4.6.1.2.2 Semaine du 5 au 11 février 2018 :

Mode de Consommation	Consommation kWh/j	Production solaire kWh/j autoconso mmée	Besoin d'énergie kWh/j (consommation – production)	Etat charge batterie 20 kWh (utile)	Etat charge batterie 70 kWh (utile)	Etat charge batterie 140kWh (utile)
Réelles sans restriction	721	161	560	< 1h	3h	6h
Réduite de 50%	360	161	199	2.4h	8h	17h
Restreinte en mode secours*	99	161	Production > consommation	P	lusieurs jou	rs

Tableau 16: Temps de secours estimé, selon le mode de consommation et le niveau de charge de la batterie au moment de la coupure. Période du 5 au 11 février

La simulation dynamique avec une coupure du réseau et un passage en mode de consommation «secours » (*) intervient le 5 février à 0h. A ce moment, l'état de charge de la batterie est de 88 % (176 kWh disponible), soit la quasi-totalité de sa capacité. L'autonomie couvre la semaine (cf. Figure 45) car la production PV de cette période est supérieure à la consommation en mode « secours ».

On constate même des réinjections de production sur le réseau quand la batterie est pleine à hauteur de 360 kWh pour la semaine. En situation de secours, cette énergie est à réaffecter à la consommation pour la porter de 99 à 150 kWh par jour.

Figure 38: Simulation du mode secours du 5 au 11 Février 2018.

4.6.1.3 Analyse

Le scénario « secours » montre que le stockage peut apporter une contribution en cas de coupure du réseau, même dans le cas où il n'est pas prévu de capacité spécifique. On peut aussi très bien imaginer que la capacité de production PV soit encore renforcée avec les productions de proximité affectées à la vente de l'électricité en « obligation d'achat » En effet, en cas de coupure du réseau de distribution, ce type de production n'est pas écoulé et est perdu. Cette approche fait abstraction de la réglementation actuelle (décrochage des onduleurs en cas de coupure du réseau). Elle est prospective dans l'idée d'une contribution de la production locale dans les cas de pannes gérées par le gestionnaire du réseau.

Les scénarios de stockage et de gestion des charges illustrent la diversité des services que peuvent apporter ces solutions : amélioration de l'autoconsommation, lissage des pics de puissance en injection et en soutirage, contribution en cas de panne réseau. D'autres services peuvent être apportés au réseau public pour faciliter l'intégration des ENR en zone rurale comme le réglage de la fréquence et tension. Ces thématiques n'ont pas été étudiées dans le détail.

Vigilances

Les dimensionnements du stockage et les services au réseau présentés sont à confronter aux aspects réglementaires actuels sur trois types situations identifiées :

- Stockage accolé à la production PV et principalement au renfort de l'autoconsommation collective. L'article 315-5 du code de l'énergie relatif à l'autoconsommation collective mentionne le stockage mais semble limiter sa recharge aux seules sources de production locale renouvelable, et exclure la recharge de la batterie par un fournisseur.
- Stockage centralisé raccordé au réseau public et principalement axé sur les services au réseau
- Stockage individuel chez le consommateur.

L'aspect réglementaire est aussi à étudier pour les situations de secours proposées dans le scénario S5.

5 MICRO-HYDRAULIQUE ET STATION HYDROGENE.

Ces deux éléments font partie du projet de ACOPREV sans avoir été étudiés dans le détail pour la présente étude. Quelques indications sont fournis pour ordre de grandeur.

5.1 MICRO-HYDRAULIQUE

Une production hydro-électrique, à partir de la conduite d'alimentation d'eau potable, donnerait un profil de production qui s'intègre très facilement à l'autoconsommation collective. En effet une production continue de 8 kW de puissance (égal au talon de consommation) serait entièrement autoconsommée.

Production hydraulique	kW	8
Froduction flydraulique	kWh/an	70080
Consommation	kWh/an	178025
Autoconsommation	kWh/an	70075
Injection réseau	kWh/an	4
Taux autoconsommation	%	99,99%
Taux autoproduction	%	39,4%
Taux de couverture	%	39,4%

Figure 39 : scenario appliqué à une production hydraulique

Cette hypothèse est bien sûr à confirmer sur les aspects techniques de ressource en eau «disponible pour le turbinage », sur sa régularité au cours de l'année, et sur la puissance de production électrique possible.

L'autre aspect à étudier est réglementaire. D'une part sur l'utilisation de l'eau pour la production d'électricité, d'autre part sur le périmètre de l'autoconsommation collective. En effet, le potentiel de

production micro hydraulique à St Julien en Quint n'est pas derrière le poste HTA/BT du centre du village. Seule l'extension du périmètre de l'autoconsommation collective permettrait d'intégrer cette source ENR.

5.2 STATION HYDROGENE

L'installation d'une station de production d'hydrogène est appréciée au regard de son impact sur la consommation du périmètre d'étude de l'autoconsommation collective. Il s'agit là aussi d'une approche sommaire simplifiée, pour commencer à répondre aux questions de terrain suivantes :

- Quelle serait la consommation électrique d'une station H2 ?
- Peut-elle fonctionner avec les surplus solaire ?

La consommation électrique d'une station qui produit 5kg de H_2 par jour, d'une puissance de 32 kW et qui fonctionne 12h/jour (référence donnée technique McPhy) est estimée à **135 780 kWh/an**. Pour information, une production de 5 kg H_2 /jour permet de parcourir 500km pour une voiture dont la consommation indicative est de : 1kg H_2 /100km.

C'est un impact très fort qui représente 76% de la consommation actuelle du périmètre étudié (178 025 kWh/an), et 23% de la consommation de la commune (586 000 kWh/an). L'exigence de fonctionnement de ce type de station ne permet pas de la faire fonctionner avec les seuls surplus solaires, mais elle peut les valoriser.

Une production **PV de 30 kWc** serait **autoconsommée en totalité** par la seule station H₂ pour un **taux de couverture de 30%.** Un fournisseur extérieur devrait alors assurer 70% de la consommation.

6 IMPACT RESEAU

6.1 TENSION ET INSERTION PV

Le réseau de Saint Julien-en-Quint est réparti en trois branches qui partent du poste de transformation HTA/BT (cf. Figure 14). Dans ce document, on considère que :

- La branche 1 est celle qui part vers l'ouest et le hangar du Colombier
- La branche 2 est celle qui part vers le sud et les bâtiments publics
- La branche 3 est celle qui part vers le nord et le hangar de Villeneuve

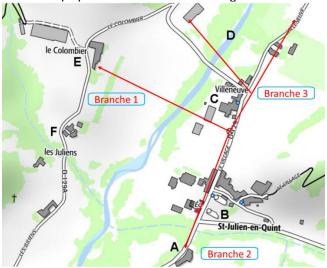


Figure 40: réseau BT de Saint-Julien-en-Quint

6.1.1 <u>Étude des surtensions dues à l'ajout de panneaux solaires sur le hangar</u> du Colombier – Branche 1

Afin de simuler les hausses de tension, il faut calculer les impédances entre chaque nœud de la branche 1. Ces impédances ont été ajoutées au modèle Matlab/Simulink/SimPowerSystem. La Figure 41 montre le modèle de la branche 1 (ici avec les panneaux solaires).

Description	Impédance	Dénomination
Câble 106	192,617 mOhm	I ₁
Début du câble 107 à Maison 43	18,171 mOhm	I_2
Maison 43 à Maison 44	10,903 mOhm	l ₃
Maison 44 à Maison 35	6,057 mOhm	I_4
Maison 35 à Maison 13	6,057 mOhm	l ₅
Début du câble 108 à Maison 21	15,749 mOhm	I ₆
Maison 21 à Maison 28	6,057 mOhm	l ₇

Tableau 17 : Impédances des câbles réseau de St Julien en Quint

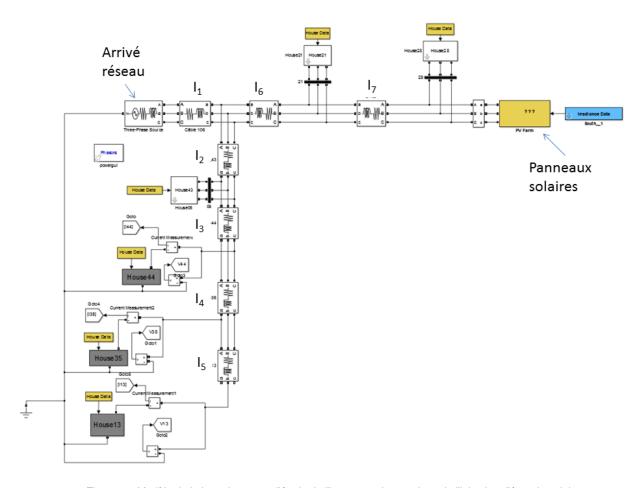


Figure 41: Modèle de la branche 1 pour l'étude de l'impact sur les tensions de l'injection d'énergie solaire

Les données n'étant pas disponibles pour les maisons 44 et 43 un profil moyen a été établi en remplacement (ce qui a un impact évident sur le résultat du plan de tension).

Les résultats sont présentés dans le Tableau 18. A noter que dans le cas des mesures de tensions pour les phases c'est la mesure phase-neutre qui est prise en compte pour l'ensemble de l'étude).

	T _{Max} Mesurée	T _{Max} Simulée	T _{Max} PV=200m2	T _{Max} PV=400m2
	(V)	(V)	(V)	(V)
Maison 13 Mono	249,1065	242,4866206	248,0920319	250,7186888
Maison 21 phase A	305,6	242,0368147	247,6277794	248,8191704
Maison 21 phase B	250,4	242,4866209	247,8649675	248,8911386
Maison 21 phase C	248	241,986582	247,6817702	248,7483809
Maison 28 phase A	251,17	242,0368784	247,5576506	248,5152083
Maison 28 phase B	247,44	242,4866162	247,8517168	248,691796
Maison 28 phase C	248,17	241,9865139	247,6180321	248,4887544
Maison 35 Mono	239,9999	241,9942637	247,8436733	250,4391309
Maison 43 Phase A	"_"	242,3195999	247,8576763	250,4531288
Maison 43 Phase B	"_"	242,7244459	248,0920376	250,7186945
Maison 43 Phase C	"_"	242,3647799	247,9094888	250,5380432
Maison 44 mono	"_"	241,9565802	247,8999734	250,5286306

Tableau 18: tensions simulées sur le réseau (branche 1)

La colonne « T_{Max} Mesurée (V) » recense les tensions maximales mesurées par les appareils de mesure d'OMEGAWATT.

La colonne « T_{Max} Simulée (V) » recense les tensions maximales simulées par notre modèle. On peut observer qu'elles ne sont pas identiques aux tensions mesurées. Cela peut être expliqué par plusieurs facteurs. Premièrement, les données mesurées comportent des erreurs (niveau de tension incohérents (trop élevé ou absents). Deuxièmement, le fait de ne pas connaître les consommations des Maisons 44 et 43 jouent sur les niveaux de tension résultant dans la simulation. Et troisièmement, on ne sait pas sur quelle phase chaque maison en monophasé est raccordée au réseau triphasé. Enfin, il est difficile d'évaluer l'impact des harmoniques.

La colonne «T_{Max} PV=200m² (V) » recense les tensions maximales simulées avec une surface de 200m² de panneaux solaires ajoutée sur le toit du hangar. On peut noter que **la surtension atteint 5 à 6 Volt** pour chaque nœud du réseau par rapport à la situation sans PV.

La colonne «TMax PV=400m² (V) » recense les tensions maximales simulées avec une surface de 400m² de panneaux solaires ajoutée sur le toit du hangar. On peut noter que **la surtension atteint 7 à 10 Volt** pour chaque nœud du réseau par rapport à la situation sans PV.

La Figure 42 donne un exemple de la tension (mesurée en bleu, simulée sans PV en rouge, simulé avec 200m^2 de PV en jaune et simulée avec 400m^2 de PV en violet) pour le site 13 situé en bout de ligne.

On peut constater que, pendant la nuit, les panneaux solaires ne produisent pas et donc que les courbes rouges jaunes et violettes sont superposées. Au cours de la journée, ces courbes s'écartent les unes des autres, au fur et à mesure que la production solaire augmente sous l'effet de l'injection de courant dans le réseau électrique.

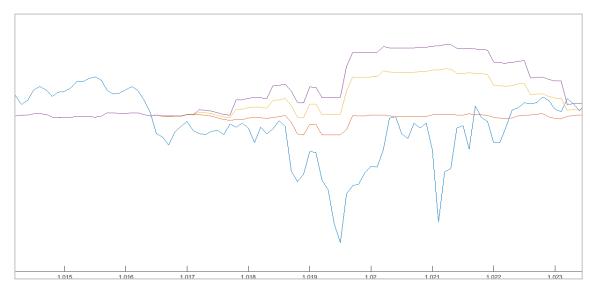


Figure 42: Capture de l'augmentation de la tension simulée due à l'injection d'énergie solaire sur le réseau. Il est important de noter que le signal visualisé n'est pas continu. Chaque point est séparé de 10 minutes.

La tension maximum tolérée sur le réseau pour avoir une qualité d'onde acceptable (selon la CRE) est de 230 V +/- 10 % soit entre 207 et 253 V. On voit bien sur les tensions mesurées que les maisons 28 et 13 sont déjà très proches du maximum et n'accepteront pas, en l'état, l'implantation de panneaux solaires car la tension est déjà très haute.

6.1.2 <u>Étude des surtensions dues à l'ajout de panneaux solaires sur les bâtiments publics (Préau, Mairie) – Branche 2</u>

Les données n'étant pas disponibles pour les maisons 09, 23, 36, 39, 40 et 41, un profil moyen a été établi en remplacement. Pour cette branche du réseau de Saint-Julien-en-Quint, le Tableau 19 donne les impédances de lignes suivantes.

Description	Impédance (mOhm)	Dénomination
Du poste à la Maison36	16	I ₈
De la Maison 36 à la Maison32	6.507	l ₉
De la Maison 32 à la Maison05	6.507	I ₁₀
De la Maison05 à la Maison31	5.205	I ₁₁
De la Maison31 à la jonction des câbles 114-112	1.952	l ₁₂
De la jonction des câbles 114- 112 à la Maison11	6.663	l ₁₃
De la Maison11 à la Maison08	27.653	I ₁₄
De la Maison08 à la Maison14	4.555	I ₁₅
De la Maison14 à la Maison20	4.555	I ₁₆
De la jonction des câbles 114- 112 à la Maison41	6.663	I ₁₇
De la Maison41 à la Maison30	6.663	I ₁₈
De la Maison30 à la Maison34	6.663	I ₁₉
De la Maison34 à la Maison40	6.663	l ₂₀
De la Maison40 à la Maison04	7.269	I ₂₁
De la Maison04 à la Maison23	7.269	l ₂₂
De la Maison23 à la Maison37	7.269	l ₂₃
De la Maison37 à la Maison39	13.326	l ₂₄
De la Maison39 à la Maison15	6.663	l ₂₅
De la Maison15 à la Maison06	6.663	l ₂₆
De la Maison06 à la Maison16	10.903	l ₂₇

Tableau 19: Impédances pour la branche 2

Ces impédances ont été ajoutées au modèle de la même manière que pour la branche 1.

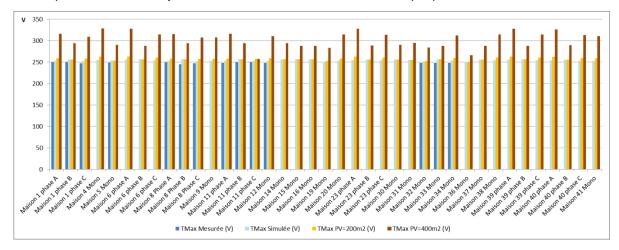


Figure 43 : Résultat des simulations pour la branche 2

Sur cette branche, on peut voir que les hausses de tension sont disparates. Cela est dû au fait que les panneaux ne se situent pas en bout de ligne, mais sont répartis en deux surfaces connectées aux consommateurs 11 et 01 respectivement.

Pour l'installation de 200m² de panneaux solaires, on peut observer des variations de la tension maximale entre +0V et +8V. Ces écarts s'expliquent par :

- La distance du consommateur aux panneaux solaires
- Son positionnement au regard de l'arrivée réseau et des panneaux solaires
- Les autres consommations sur la ligne

On pourra remarquer que les consommateurs 16 et 33, qui sont en bout de ligne et loin à la fois des installations PV et de l'arrivée réseau, ne voient qu'une surtension très minime. A l'inverse, les consommateurs 12 et 41 qui se trouvent proches des panneaux solaires, sur un début de ligne comprenant plusieurs consommateurs derrière, voient leurs surtensions plus importantes.

Pour l'installation de 400m², les mêmes observations peuvent être faites, mais dans des proportions supérieures. L'injection d'une grande quantité de courant traversant les lignes augmente la tension jusqu'à 327,92V sous l'effet de la résistance des lignes.

Pour cette branche 2, les tensions de départs sont quasiment toutes dans la borne 245 – 250 V (230 V +/- 10 % soit entre 207 et 253 V), ce qui est très proche de la valeur maximale autorisée. Mais au regard des simulations l'écart de tension observé **permet l'implantation de 200m²** (sans vraiment laisser de marge). L'écart de 8 volts est constaté sur la maison 4 qui n'a pas été mesuré. Il faudra s'assurer que ce point du réseau peut supporter cette surtension.

6.1.3 <u>Étude des surtensions dues à l'ajout de panneaux solaires sur le hangar</u> de Villeneuve – Branche 3

Un emplacement supplémentaire s'est présenté pour l'installation de panneaux solaires. Il s'agit du hangar de Villeneuve au nord de St Julien-en-Quint. Le Tableau 20 donne les impédances entre les nœuds sur cette branche du réseau.

Description	Impédance (mOhm)	Dénomination
Du poste à la Jonction 109-110	35.737	l ₂₈
De la Jonction 109-110 aux	14.113	l ₂₉
Maisons 07 29		
Des Maisons 07-29 à la Maison	8.056	I ₃₀
03		
De la Maison03 à la Maison02	6.057	I ₃₁

De la Maison02 à la Maison45	8.056	l ₃₂
De la Maison45 à la Maison10	6.057	l ₃₃
De la Jonction 109-110 à la Maison22	24.229	I ₃₄
De la Maison22 à la Jonction 111	1.817	I ₃₅
De la Jonction111 à la Maiosn18	60.837	I ₃₆
De la jonction 111 à la Maison42	24.229	l ₃₇
De la Maison42 à la Maison27	6.057	l ₃₈
De la Maison27 à la Maison25	18.171	l ₃₉
De la Maison25 à la Maison26	4.24	l ₄₀

Tableau 20 : Calcul des impudences pour la branche 3

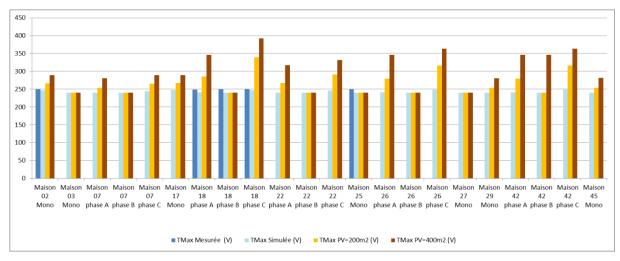
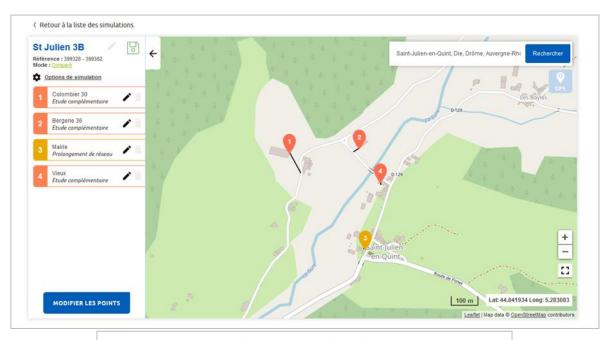


Figure 44 : Résultat des simulations pour la branche 3

Enfin, pour l'étude de la branche 3, les panneaux solaires se situe en bout de ligne avec peu de consommation au niveau du point de production.

Pour 200m² et 400m² de panneaux solaires, la surtension pour le consommateur 18 atteint 339.6V et 392.03V respectivement. Les autres consommateurs, plus éloignés de la source, subissent cette hausse de tension de manière importante, mais dans une moindre mesure.


Cette étude sur les surtensions dues aux injections d'énergie solaire permet, même si les résultats sont à prendre avec beaucoup de recul, de montrer que pour garantir un niveau de tension acceptable l'intégration d'une surface supérieure à 400m² est problématique. Sachant l'impact des panneaux solaires sur la tension il faut maintenant se soucier de l'impact sur l'intensité.

Les tensions maximales observées sur le reste de la branche sont plus éparses, entre 240 et 250 V. Les simulations montrent que l'ajout de panneaux solaires fera très nettement augmenter la tension au-delà des seuils autorisés.

Ces conclusions très partielles sont à nuancer par le manque d'informations sur la configuration du réseau et le manque de mesures disponibles pour les simulations.

6.1.4 Comparaison des simulations avec les données disponibles sur le service « simulateur de raccordement »

Une simulation de l'impact réseau est faite pour 4 installations photovoltaïques en utilisant le simulateur mis à disposition par ENEDIS en amont des demandes de raccordement.

Selon les paramètres renseignés dans l'étude, et pour chacun des points, le simulateur retourne un résultat décrivant la complexité du raccordement souhaité :

- Raccordement simple: lorsque les seuls travaux nécessaires au raccordement de ce point consistent au branchement du nouveau site au réseau existant. Ce résultat indique entre autres que le projet de raccordement peut, à priori, se réaliser avec des coûts et des délais optimaux.
- Prolongement du réseau : lorsque la distance entre le point à raccorder et le réseau
 à proximité est importante, le projet de raccordement nécessitera un prolongement du
 réseau par rapport à un raccordement simple. La longueur du prolongement devra être
 affinée a posteriori.
- Etude complémentaire: lorsque le raccordement du point renseigné engendre potentiellement des travaux sur le réseau. Dans ce cas, une étude complémentaire doit être réalisée par Enedis pour déterminer l'ampleur de ces travaux.

Etude impact réseau et avis	Simulateur Enedis et résultat
Branche 1: ajout PV difficile	Point 1 pour 36 kWc: Etude complémentaire
Branche 2 : possible pour 200m ²	Point 3 pour 20 kWc : Prolongement réseau
Branche 3: ajout PV difficile	Point 2 et 4 pour 36 kWc : Etude complémentaire

Tableau 21 : comparaison des simulations avec l'analyse d'impact de l'outil ENEDIS

La comparaison entre les deux outils reste difficile mains donne des tendances similaires qui restent à confirmer avec le gestionnaire de réseau lors des demandes de raccordements sur les sites qui seront retenus.

6.2 INTENSITE ET DIMENSIONNEMENT DES CABLES

La deuxième grandeur physique à surveiller dans cette étude est l'intensité qui passe dans les câbles lors de l'injection. En effet, s'ils ne sont pas bien dimensionnés toute la puissance délivrée par les panneaux solaires pourrait être réduite à cause des congestions engendrées. Il y a trois critères principaux qui sont importants ici :

- La section du câble (en mm²)
- Le mode de pose (enterré, aérien, etc.)
- L'âme (aluminium ou cuivre) et l'isolant (rien, PVC, etc.)

Cette étude des courants admissibles se déroule en trois étapes. Premièrement, les courants admissibles ont été calculés à l'aide des données disponibles et du logiciel spécifique. Deuxièmement, le modèle créé dans le scénario 2 a été simulé en se focalisant sur la mesure de l'évolution des intensités. Troisièmement, les valeurs simulées et admissibles ont été comparées pour savoir si le système électrique actuel est en capacité de supporter les réinjections.

6.2.1.1 Calcul des courants admissibles

Le Tableau 22 donne la synthèse des courants maximum admissibles pour chaque câble du réseau BT de St Julien en Quint. Selon les critères énoncés précédemment et indiqués dans le tableau, les courants admissibles ne sont pas les mêmes. Ils sont à comparer avec l'évolution des courants observés dans nos simulations.

Réseau BT Village Données SDED			Données terrain	Résultats	
Code Câble	Туре	Longueur (m)	P installée (kW)	Site	I _{max} admissible
109	T 70 AL	59	69		157,14
111	T 70 AL	140	27	25 26 27	157,14
110	T 70 AL	70	42	02 03 07 17 29	166,06
112	T 150 AL	121	191	01 19 05* 31* 32*	291,28
113	T 70 AL	131	90	04 06 12 15 16 30 33 37 34 38	157,14
114	3 *150 AL+70	50	42		252,38
101	3 *150 AL+70	88	24	08 11 14 20	252,38
106	T 70 AL	318	30		157,14
108	T 70 AL	36	12	21 28 18	157,14
107	T 70 AL	68	18	13 35	157,14

Tableau 22: Synthèse des résultats des courants admissibles calculés

6.2.1.2 Observation des courants simulés

Le modèle utilisé pour simuler les courants est visible sur la Figure 19 et suit l'installation des panneaux solaires selon la configuration visible en Figure 20. Le Tableau 23 donne à voir les résultats des courants maximum observés.

Code Câble	Installations impactantes	Site	I _{max} Simulation
109			pas de réinjection
111		25 26 27	pas de réinjection
110		02 03 07 17 29	pas de réinjection
112	P1 à P6	01 19 05* 31* 32*	154,26
113		04 06 12 15 16 30 33 37 34 38	4,02
114	P5 P6		154,97
101	P1 P2 P3 P4	08 11 14 20	91,69
106	P7		122,28
108	P7 (90 kWc)	21 28 18	123,18
107		13 35	pas de réinjection

Tableau 23: Résultats des courants simulés

6.2.1.3 Comparaison courants simulés/ courants admissibles

Le Tableau 24 montre que, pour la configuration prise en compte, tous les câbles sont correctement dimensionnés pour encaisser la réinjection des panneaux solaires.

Données SDED	PV	Données terrain		Résultats	
Code Câble	Surfaces	Site	I _{max} admissible	I _{max} simulé	
109			157,14	pas de réinjection	-
111		25 26 27	157,14	pas de réinjection	-
110		02 03 07 17 29	166,06	pas de réinjection	-
112	P1 à P6	01 19 05 31 32	291,28	154,26	✓
113		04 06 12 15 16 30 33 37 34 38	157,14	4,02	✓
114	P5 P6		252,38	154,97	✓
101	P1 P2 P3 P4	08 11 14 20	252,38	91,69	✓
106	P7		157,14	122,28	✓
	P7				
108	(90 kWc)	21 28 18	157,14	123,18	✓
107		13 35	157,14	pas de réinjection	-

Tableau 24: Comparaison des courants admissibles vs. courants simulés

Le résultat de l'étude, synthétisé dans le Tableau 24, montre que pour les surfaces de panneaux solaires prises en compte aucun câble n'est limitant. Le réseau actuel est capable d'absorber l'ajout d'intensité induit.

7 CONCLUSION ET PERSPECTIVES

Cette étude a permis d'appréhender les conséquences de la mise en place de panneaux solaires et d'un système de stockage, dans un contexte d'autoconsommation collective pour un village rural. L'étude montre l'utilité et les services apportés au village par ces équipements en termes d'autoconsommation, de réduction des pics de soutirage, de service réseau, de flexibilité et de secours possible.

L'analyse a été rendue possible par la collecte de données de consommation sur le terrain, données dont le nettoyage avant analyse a représenté un temps non négligeable.

De manière synthétique, on peut retenir qu'une puissance photovoltaïque de 36 kWc couvre 22.4% de la consommation (sur le périmètre des 33 consommateurs étudiés) avec un taux d'autoconsommation de 85 %. C'est donc ce scenario qui sera approfondi sur le plan économique, pour une mise en œuvre opérationnelle.

Le pilotage intelligent des charges que représentent les ballons d'eau chaude électriques, peut faire potentiellement passer ce taux à 97 %. Ensuite, l'ajout d'une batterie permet aisément de valoriser tout le surplus solaire. Si l'on ajoute à cette batterie une stratégie de pilotage, cela permet d'augmenter d'un tiers la surface de PV, faisant doubler le taux d'autoproduction tout en gardant un taux d'autoconsommation de 100 % et en limitant les pics de soutirage à 35 kW dans 98.5 % du temps. Enfin, la batterie peut être utilisée en cas de panne réseau, permettant de tenir, en mode îloté, entre 1 h et une semaine, selon la diminution des consommations, l'état de charge de la batterie et la période.

En pratique le site de Saint-Julien-en-Quint procédera par étape, avec un premier déploiement de l'autoconsommation collective sans stockage, sur un périmètre à finaliser. Si ce périmètre ne comprend pas les 33 consommateurs étudiés ici, la puissance photovoltaïque utilisée en autoconsommation collective devra être revue à la baisse afin de garder un taux d'autoconsommation élevé. Inversement si d'autres consommateurs sont ajoutés du fait d'un élargissement du périmètre autorisé pour l'autoconsommation collective, une plus grande partie du gisement solaire local pourrait alors être exploitée. Le dimensionnement de la puissance solaire à exploiter dépendra très fortement du profil des consommateurs finalement impliqués.

Le détail de la modélisation économique est rendu dans un rapport séparé.

TABLE DES ILLUSTRATIONS

Figure 1: localisation du site pilot de Saint Julien-en-Quint	3
Figure 2: Vue aérienne du village	3
Figure 3: plan de la zone étudiée	4
Figure 4: instrumentation mise en place par Omegawatt	4
Figure 5: Exemple de donnés reconstituées	
Figure 6: Synthèse de la qualité des données site par site	
Figure 7: Répartition de la consommation par type de consommateur	
Figure 8: Aperçu de la courbe de charge annuelle totale	
Figure 9: Profil de puissance du segment agriculture	
Figure 10: Profil de puissance du segment résidentiel	
Figure 11: Profil de puissance du segment commerce / restaurant	
Figure 12: Profil de puissance tous consommateurs	
Figure 13: Répartition des puissances par consommateur (puissances min et max en bleu, médiane en	
valeurs entre le 1 ^{er} et le 3 ^e quartile dans le rectangle)	
Figure 14: Réseau électrique de St Julien en Quint (basse tension en bleu, moyenne tension en rouge)	
Figure 15: Méthode de simulation de la production photovoltaïque	
Figure 16: irradiance moyenne mensuelle par orientation	
Figure 17: illustration de la clé de répartition utilisée pour les scenarios d'autoconsommation collective	10
Figure 18: Modèle simplifié	
Figure 19: Modèle détaillé	
Figure 20: Plan de position des producteurs PV scénario 1	
Figure 21: bilan annuel des flux pour le scenario s1	
Figure 22 : Profil journalier moyen pour la production et la consommation à l'échelle du périmètre d'étude	
Figure 23: Graphique des principaux critères de performance pour le S2	
Figure 24 : profils journaliers moyens par saison (scenario 2)	
Figure 25: comparaison de différents périmètres de consommateurs en autoconsommation collective	
Figure 26: Profils journaliers moyens pour 2 configurations extrêmes	
Figure 27: configuration du scenario S3	
Figure 28: Etat de charge de la batterie (SOC) du 1/08/2017 au 31/07/2018	
Figure 29: Echanges avec le réseau en W du 1/08/2017 au 31/07/2018 (valeurs positives =injection / v	
négatives = soutirage)	
Figure 30: Répartition par heure des décalages de charge en journée	
Figure 31: illustration scénario S4-2	
Figure 32: Schéma de la stratégie de pilotage de la batterie	
Figure 33: Etat de charge de la batterie pour le scénario piloté du 1/08/2017 au 31/07/2018	
Figure 34: Echanges avec le réseau pour le scénario piloté du 1/08/2017 au 31/07/2018 (soutirage en positif)	
Figure 35: synthèse des scénarios étudiés	
Figure 36: Rappel de la configuration de la simulation en mode secours	
Figure 37: Simulation du mode secours du 1er au 7 Janvier 2018	
Figure 38: Simulation du mode secours du 1er au 7 Janvier 2018.	
Figure 39 : scenario appliqué à une production hydraulique	
Figure 40: réseau BT de Saint-Julien-en-Quint	
Figure 41: Modèle de la branche 1 pour l'étude de l'impact sur les tensions de l'injection d'énergie solaire	
Figure 41: Modele de la branche i pour retude de l'impact sur les tensions de l'injection d'énergie solaire sur le réseau.	
important de noter que le signal visualisé n'est pas continu. Chaque point est séparé de 10 minutes	
Figure 43 : Résultat des simulations pour la branche 2	
Figure 44 : Résultat des simulations pour la branche 3	
I IQUIE TT . NESUIIAI UES SIIIUIAIIUIIS NUUI IA NIAIIUIE S	0/

ANNEXE: CONSOMMATIONS ELECTRIQUES DES SITES

Site	Туре	Consommation en KWH
1	Habitation + Exploitation Agri	3 412
2	Habitation	3 865
3	Habitation	936
4	Habitation	9 635
5	Habitation	14 321
6	Habitation	373
7	Habitation + Exploitation Agri	3 285
8	Café-restaurant-multiservice	5 712
10	Eclairage public 20 lampes	7 465
11	Mairie-Ecole-EPI-Chaufferie-	14 990
12	Habitation	5 602
13	Habitation	1 225
14	Habitation	3 606
15	Habitation	470
16	Habitation	3 302
17	Habitation	2 948
18	Exploitation agri (étable)	619
19	Habitation	21 841
20	Habitation	9 194
21	Habitation + Exploitation Agri	9 397
25	Habitation	6 216
26	Exploitation agri	61
27	Habitation	774
28	nc	11 226
29	Habitation	2 311
30	Habitation	6 575
31	conso type	7 715
32	Habitation	2 677
33	Habitation	2 346
34	nc	1 185
35	nc	3 983
37	nc	3 044
38	conso type	7 715
Total		178 025

Tableau 25: Consommations électrique par site