

RE-LIVE WASTE- Improving innovation capacities of private and public actors for sustainable and profitable REcycling of LIVEstock WASTE

Project title and acronym	RE-LIVE WASTE						
Work Package	WP3						
Deliverable n. and title	D382 TRAINING MATERIALS,						
	PRESENTATION						
Responsible Partner	SERECO BIOTEST						
Participating partners	ALL PARTNERS						
Main authors	LUCA POLETTI						
Reviewers	ROBERTO POLETTI, ALESSANDRO						
	TOCCACELI						
Dissemination level ¹	PARTNERSHIP						

^{• &}lt;sup>1</sup> Partnership; JS; Thematic community; MED community; Public

RE-LIVE WASTE

Project co-financed by the European Regional Development Fund

REL-LIVE WASTE STEERING COMMITTEE MEETING

Limassol, 22nd October 2019

Sereco-Biotest - Italy

TRAINING Part I Introductory issues

Dr. Biologist Luca Poletti – Dr. Agr. Roberto Poletti

ENVIROTECH R&D CONSULTANCY HUB

50 PUBLICATIONS 7 PATENTS PARTCIPATION TO FUNDED RESEARCH PROJECTS

Project co-financed by the European Regional Development Fund Certificate delivered by the European Commission, as the institution managing Horizon 2020, the EU Framework Programme for Research and Innovation 2014-2020

European Commission

The project proposal 767832, GASFARM

SMALL-SCALE ANAEROBIC DIGESTION FOR AFFORDABLE, EFFICIENT AND SUSTAINABLE MANAGEMENT OF FARMS WASTE

Submitted under the Horizon 2020's SME instrument phase 2 call H2020-SMEInst-2016-2017 (H2020-SMEINST-2-2016-2017) of 18 January 2017

in the area of Stimulating the innovation potential of SMEs for a low carbon and efficient energy system

by

SERECO BIOTEST SNC DI LUCA POLETTI VIA CESARE BALBO 7 06121 PERUGIA

and other participants (see the back of the document)

following evaluation by an international panel of independent experts

WAS SUCCESSFUL IN A HIGHLY COMPETITIVE EVALUATION PROCESS* AS A HIGH QUALITY PROJECT PROPOSAL

This proposal is recommended for funding by other sources since Horizon 2020 resources available for this specific Call were already allocated following a competitive ranking.

> * This means passing all stringent Horizon 2020 assessment thesholds for the 3 award criteria (excellence, impact, quality and efficiency of implementation) required to receive funding from the EU badget Horizon 2020.

Corina Cretu, Commissioner for Regional Policy

Crete

EXCELLENCE

Carlos Moedas, Commissioner for Research, Science and Innovation

Brussels, 07/03/2017

SUSTAINABLE FERTILIZATION

NUE Nutrient Use Efficiency

<u>STIMULATING RESTITUTION</u> \rightarrow fertilization not to be regarded a mere chemical supply of nutrients (mass balance) but as a stimulation practice of the plant biological functions

<u>UPGRADING</u> secondary raw materials and organic wastes

-Savings on

- Synthetic chemicals
- Administration reduction (low release fertilizers: SCU, Sulphur Coated Urea, Struvite; controlled release fertilizers: polymer coating)

ENVIRONMENTAL IMPACT REDUCTION Circular

-Run-off (NO $_3$) and volatilization (NH $_3$) -Soil pollutant burden (eg: Cadmium)

<u>CROP QUALITY</u> Organoleptic (es: dimension, homogenicity, fuit colour) Technological (es: protein content of durum wheat, malting barley, ecc..) Nutritional (es: nitrate eccess on leaf vegetables) Green labelling

ject co-financed by the European gional Development Fund

AN EXAMPLE OF CIRCULAR AGRO-ECONOMY

Energy&Material Flow Optimization (EMFO) in agro-energetic cycles

THE MAP PROCESS IS BASED ON THE PRECIPITATION OF THE AMMONIUM ION ACCORDING TO THE FOLLOWING REACTION $Mg_2^{++} + NH_4 + PO_4^{3-} + 6 H_2O \rightarrow MgNH_4PO_4 \cdot 6H_2O \downarrow$

MAP: MAGNESIUM-AMMONIUM-PHOSPHATE PRECIPITATION

MAP: MAGNESIUM-AMMONIUM-PHOSPHATE PRECIPITATION

The crystalline precipitatin of struvite is strictly dependent on the reaction pH

EXPERIMENTAL PLANT AT THE AD DIGESTION STATION IN BETTONA (ASSISI)

Interreg Mediterranea RE-LIVE WASTE

Regional Development Fund

Plant details

Electrical control panel

Mediterranean

RE-LIVE WASTE

MAP – mixed liquor (slurry)

Organic Struvite-Enriched Precipitate O-SEP

AGRONOMICAL CONSIDERATIONS

 High thermodynamical stability (weight loss 53% @ 200°C – DSC and TGA measurements)

MAP (Magnesium Ammonium Phosphate) ENT (Essiccato Naturale Tecnico)

• MAP water solubility is very low and pH-dependent. Below 10 C° is pratically insoluble. **pKSO** (Conditional Solubility Product) varies from **5**,**4** @ pH 6,3 , to **7** @ pH 7 until **9**,**4** @ pH 9,5 .

NH₄ ABATEMENT EFFICIENCY

Limassol, 22nd October 2019

Sereco-Biotest - Italy

TRAINING

Part II How to improve the quality of struvite through seeding

Dr. Biologist Luca Poletti – Dr. Agr. Roberto Poletti

A number of factors affects the **QUALITY** of a crystalline product

effectiveness of downstream processes

commercial value of the final product

Quality factors (crystal properties)	Processing characteristics
 CSD-→ small crystals have a higher tendency to caking Particle surface area Crystal shape Polymorphism Mother liquor inclusions in the crystal (can lead to breakage) Impurities uptake Degree of agglomeration 	 Filtration Drying rates Particle flow-properties Bulk densitiy Packing characteristics (e.g. propensity to cake)
ARTICLE DESIGN	

Ice-cream texture affected by crystallization

One way of driving the characteristics of crystals within a crystallization process is through SEEDING, that is by introducing foreign particles in the system to promote crystallization in the right way

CLOUD SEEDING FOR RAINMAKING

nterreg

- To inhibite supersaturation avoiding the onset of an excessive profliferation of crystals bearing <u>low mean</u>
 <u>dimensions</u>
- To control induction time (time elapsing btw. supersaturation and crytal growth)
- To act as a «template» for the accumulation of crystallizing material
- To control particle properties (polymorphism and <u>CSD</u>)

SEEDING CAN OCCUR WITHOUT WE WANTING IT.

- The most natural form of seeding is the so-called <u>«secondary</u> <u>nucleation»</u> that occurs when the already-formed crystals coming up from the primary nucleation (parent crystals) break into new nuclei
- Seeding can also occur naturally for the unavoidable presence of foreign particles (dust, dirt, etc...) which is more than highly likely in manures, digestates and other solid-rich matrices. In this case we refer to «<u>heterogeneous primary nucleation</u>»

...BUT CAN BE TRIGGERED TECHNOLOGICALLY

- Factors affecting technological seeding procedures:
 - Number and size of seed particles
 - Surface area
 - Isomorphism
 - Seed purity and inertness to crystallizing liquor
 - Addition timing
 - Seed quality and form (e.g. micronized, milled)

Particle size of a crystalline final product as a result of the variation in seed amount Seeding comes off if the particle number remains constant with particle size increasing-→ crystal growth and no nucleation

S. No. Seed used Source of struvite Seed size (µm) Effects on struvite production Reference Synthetic liquor 1000 Production of struvite fine as product Regy et al. (2002) Seeding is insignificant (process appeared "self-seeding") Synthetic liquor and 45 - 63 Crystals have similar shape with seed (no Ali (2005) 1 Struvite Sludge from phase transformation during growth) wastewater plant Landfill leachate 75-150 Effectiveness of seed requires consideration Kim et al. (2006) of pH (pH 9 being optimum) Synthetic liquor NR Enhancement of crystallization by 19% at low Liu et al. (2008) P concentration Increased crystal size, settle ability Synthetic liquor 250 - 500 No enhancement of P recovery and reduction Rahaman et al. (2008) in induction time NR Coking wastewater Increase in recovery by approximately 5% (at Zhang et al. (2009) pH 9.5) No effect of overdosing of seed on recovery (pH 9.5) Synthetic wastewaters NR. Reduction in induction time upto 75 min Liu et al. (2011) depending upon super-saturation Synthetic liquor 30 - 50 Similar shape of struvite with seed Mehta and Batstone (2013) Fertilizer wastewater NR Increase in rate of crystallization (by 21%) Yu et al. (2013) and size of crystal (from 1.72 to 2.08 nm) 2 Coarse sand Synthetic liquor 200-300 No fixation of struvite on sand surface Regy et al. (2002) 3 Synthetic liquor Fine sand 150 - 200 Strong primary nucleation and formation of Regy et al. (2002) fine 4 **Borosilicate glass** Synthetic liquor 45-63 Slower reaction rate compared to struvite Ali (2005) seed. Sand grain/quartz Sludge liquor in 210 - 350 Recovery of 80% of P onto seed bed Battistoni et al. (2000) 5 particle wastewater plant Synthetic liquor 45-63 Slower reaction rate compared to struvite Ali (2005) seed 6 Phosphate rock Dairy effluent NR No effect mentioned on crystal Massey et al. (2007) 17 Stainless steel Synthetic liquor $1000 \,\mu m$ hole No significant increase in crystallization Le Corre et al. (2007) Reduction in struvite fine particle 8 Pumice stone Synthetic liquor NR No effect of seed dosing on recovery Pakdil and Filibeli (2008) Co precipitation of Ca & silica on seed

Different seed material used in struvite precipitation and their effects on recovery (1)

Different seed material used in struvite precipitation and their effects on recovery (2)

-					· · · · · · · · · · · · · · · · · · ·								
	Types of seed	Seed	Size of seed (µm)	Seed dose (g/L)	Effects on P recovery	Source of P (P concentration)	Recovery products	Products size (µm)	HRT	Phosphate recovery potential	Reactor types	Development scale	References
	Natural materials	Grain/quartz particle	210350	≈12	Fixation of P on seed bed	Sludge liquor in wastewater plant (30 -60 mg P/L)	мар	-	About 100 min	Recovery of 80% of P onto seed bed	FBR	Laboratory-scale	8attistoni et al. (2000)
		Fine sand	150-200	-	Strong primary nucleation and formation of fine	Synthetic liquor (250 300 mg P/L)	МАР	-	Over 100 min	Strong primary nucleation and formation of fine	SR	Laboratory-scale	Regy et al. (2002)
		Struvite	_	m	Seed crystal inoculation increased the rate of MAP crystallization by 20.86%	Fertilizer wastewater (-)	мар	30.35	About 30 min	Enhancement recovery rate by 5% and crystallization size compared to un-seeded conditions.	Batch MAP reactor	Laboratory-, pilot-, and full-scale	Yu et al. (2013)
		Struvite	53-297	-	Crystals have similar shape with seed; promote struvite crystallization	Synthetic wastewater (300 mg P/L)	Struvite	50-1700	9.5 h	High P-recovery rate up to 95.8%; low microcrystalline ratio to 3.11%	FBR	Laboratory-scale	Shih et al, (2017)
		Struvite	-	-	Self-seeding by auto- crystaliization	Wastewater from the wastewater treatment plant of Girona (Spain) (368.5 ± 14.9 mg P/L)	struvite	80-1000	138.6 h	High P-recovery rate up to 95.4%	Air-lift reactors	Laboratory-scale	Tarragó et al. (2016)
		Calcite	150-210	30	Precipitating crystals on the surface of seeds; dissolving Ca ²	Anaerobic supernatant (17.5–28.2 mg P/L)	нар	26.32	35 min	Recovery efficiency as high as 95.82%	Series-coupled air-agitated crystallization reactors	laboratory- and pilot- scale	Dai et al. (2016)
		Snail shell	_	2	Providing the required molar concentration of Ca ²⁺ and reducing cost of the chemicals for P crystallization	Synthetic solution (25 -300 mg/L)	HAP	_	2 h	High sorption capacity of the SS for P (222.2 mg/g) and the P laden SS can be used as soil conditioner cum fertilizer in agricultural practices	Batch reactor	Laboratory-scale	Oladoja et al. (2012)
		Cow bone powder	125-198	2	Dissolving Ca ²⁺ , co- precipitation of Ca and P on seed	Synthetic solutions (3.5 mg P/L)	НАР		3 h	The recovery rate of phosphorus reached 89.8%	FBR	Pilot-scale	Gulet al. (2015)
	Synthetic materials	obermorite	600 1300	_	Deposition of Ca-P onto the seed material surface	Wastewater from the biological WWTP (10 mg P/L)	НАР	-	1 h	Generated crystallization products of up to 13% P-tot (30% P-O-)	Fixed bed column and SR	Laboratory- and pilot- scale	Berg et al. (2005)
		Converter slag	150180	1.7	Used as a seed for Ca-P crystallization; strong affinity to P	Synthetic solution (25 mg/L P)	нар	-	3 h	The removal efficiency of P up to 95% and generated crystallization products of up to14.5% P-tot (33.2% P ₂ O ₅)	Batch reactor	Laboratory-scale	Duas et al. (2010)
		Porous CSH	<75	4	Ca ²⁺ and OH ⁺ release from CSH for P	Synthetic P solution (100 mg P/L)	НАР	_	1 հ	Phosphorus content of A-CSH reached 18.64%	Batch reactor	Laboratory-scale	Guan et al. (2013)

Dr. Biologist Luca Poletti – Dr. Agr. Roberto Poletti

Alternative Mg sources for struvite production

S. No.	Mg source	Source of struvite	Mg content	Mg:P	рH	Phosphate recovery (%)	Key findings	Cost	Reference
		Coke manufacturing wastewater	31,390 mg l-1	1:1	10.5	99	Similar recovery efficiency as MeCh	NR	Shin and Lee (1997)
	Bittern	Landfill leachate	9220-24,900 mg 1-1	1:1	11	NR	Comparable struvite precipitation efficiency with MeSO	NR	Li and Zhao (2002)
		Biologically treated swine wastewater	32,000 mg 1-1	1.3:1	9.6	76	Bittern is more effective in P	NR	Lee et al. (2003)
		Urine	27,500	1,1:1	NR	98	More cost effective in coastal areas	0.23 USD/kg struvite	Etter et al. (2011)
7	Sea	Wastewater from coke manufacturing process	1136 mg l ⁻¹	1:1	10.5	95	Same P recovery efficiency as MgCl ₂	NR	Shin and Lee (1997)
÷	water	Side-stream of water treatment plant	1250 mg1-1	1.6:1 and 2.2:1	7.5-8.4	70	Higher Mg:PO4 ³⁻ (>1.5:1) necessary for more than 70% P recovery	NR	Matsumiya et al. (2000)
		Municipal Waste water stream from water treatment plant	1250 mg1-1	1.6-2.4	8.4-76		Higher Mg:PO ₄ ³⁻ (>1.5:1) necessary for stabilized and easy Precovery	0.55 USD/kg struvite	Kumashiro et al. (2001)
		Biologically treated swine wastewater	1200 mg1-1	1.36;1	10	81	Similar recovery efficiency as MgCb (75%)	NR	Lee et al. (2003)
з	Thermally decomposed magnesite (MeO)	Filtrate of wastewater sludge	676.7 g kg ⁻¹	2.5:1	8.5-8.8	90	Need higher Mg: PO4 ³⁻ molar ratio for effective recovery	NR	Quintana et al. (2004)
4	Brucite	Rare-earth wastewater	650 g kg ⁻¹	1:1	8.5-9.5	97	Brucite can be used as liquid, solid Mg source, Reuse of brucite is possible	NR	Huang et al. (2011a)
5	Magnesite	Landfill leachate	300 g kg ⁻¹	NR	8.6	NR	Acid dissolution of magnesite increase struvite recovery by 50%	18% cost reduction than using MgCl ₂	Gunay et al. (2008)
		Rare-earth wastewater	940 g kg ⁻¹	1.1:1	5-9.2	Up to 99.7	Thermal decomposed magnesite is cost effective than acid dissolved magnesite	34% cost reduction than using MgCl ₂	Huang et al. (2010a,b)
_		Urine	244 g kg ⁻¹	1:1:1	NR	90	Cheaper than bittern and MgSO4	12 USD/kg struvite	Etter et al. (2011)
6	Struvite	Piggery wastewater	530 g kg ⁻¹	2.5:1	8-8.5	96	Similar effects on recovery as with Mg salt	81% cost reduction than using MgCl ₂	Huang et al. (2011b)
7	Wood ash	Urine	34g kg-1	2.7:1	8,8	99	Presence of impurity such as calcite, heavy metal in product	0.016~0.05 USD/kg struvite	Sakthivel et al. (2011)
ş	Synthetic nanofiltration brine from seawater	Synthetic wastewater. Real wastewater	146 mmol I ⁻¹	1:1	8	99.5	Effective as Mg source but pH, organic matter influence purity of product	NR	Zewuhn et al. (2012)
9	Desalinated reject water	Synthetic centrate	1555-2795 mg ⁻¹	2:1 & 8:1	8-8.5	Up to 55	Presence of other ions (Ca, Na) in reject water reduces recovery efficiency	NR	Fattah and Ahmed (2013)
10	Mg(II) solution from seawater	Supernatant of a municipal-sludge	8000 mg ⁻¹	1:1	7.57, 8,13	90	Higher dose of Mg:PO4 ³⁻ (>1:1) has no effect on recovery	25% cost reduction than using Mg chemical	Lahav et al. (2013)

Composition of alternative Mg sources for struvite production

	Wood ash, ppm	Bittern, ppm	By-product of MgO production, ppm	Magnesite, ppm	Magnesia (MgO), ppm	Seawater, ppm
Mg	34,200	9220-44,000	676,700ª	940.000 ^b	898.000-634.000 ^a	1010
Ca	27,400	10-650	95,800 ^c	10.000-15.000°	15.000-87.0005	950
Al ₂ O ₃	10,800 ^d		3700	2000	10,000 07,000	550
Fe ₂ O ₃	6090°		26,300	3000-8000	24,000	
SO ₃	12,300 ^r	3300-60,000 ^f	39.500		38,000	
SiO ₂			26,000	7000-38.000	32,000	
К	74,600	1900-12,300			56,000	207
Mn	19,300					207
Na	5160	3200-78,100				0659
Zn	2670					9038
Cr	1290					
Cu	1050					
Pd	590					
Ni	49					
Cd	28					
CI-		17,400-202,000				
Br-		5300				
Reference	Sakthivel et al. (2011)	Li and Zhao (2002), Etter et al. (2011), Huang et al. (2014)	Quintana et al. (2008)	Gunay et al. (2008), Huang et al. (2010b)	Romero-Güizaa et al. (2015)	Li and Zhao (2002)
* As MgO.				2000-000 A # 0		
b As MgCO3.						
c As CaO,						
d As Al3*.						
e As Fe.						
f As SO42-						

Ternary composition diagram for blast furnace slag

Alternatve P sources

Project co-financed by the European Regional Development Fund

Bones from sluaghterhouse activity

Alternatve P sources

Ashes

REMONDIS TetraPhos® Mass balance phosphate

Pay attention to:

- Composition
- Contaminants
- Procedures of mineralization (acidification)

Alternatve P sources

Micriobiological P solubilization

Acidithiobacillus ferroxidans is a

chemolitrotrophic and autotrophic PSB that oxidizes the ferrous ion thus inducing the chemical oxidation of S⁰ and S²⁻ in FeS, CuS, FeS₂, and producing H_2SO_4 that, in turn, causes the bioleaching of P and metals (like As)

 $Ca_{5}(OH)(PO_{4})_{3} + 5H_{2}SO_{4} + 10H_{2}O \rightarrow 5CaSO_{4} \cdot 2H_{2}O + 3H_{3}PO_{4} + H_{2}O$

 $Ca_{5}F(PO_{4})_{3} + \frac{5H_{2}SO_{4}}{H_{2}O} \rightarrow 5CaSO_{4} \cdot 2H_{2}O + 3H_{3}PO_{4} + HF$

REL-LIVE WASTE STEERING COMMITTEE MEETING

Limassol, 22nd October 2019

Sereco-Biotest - Italy

TRAINING

Part IV Analytical methods for struvite characterization An overview

> Dr. Biologist Luca Poletti – Dr. Agr. Roberto Poletti

Intrinsic properties of crystals

- Investigation of crystal structure
 - X-Ray Powder Diffraction (XRPD)
 - Based on Bragg's law
 - Effective in distinguishing polymorphs

 Problem with preferental orientation-→ if particles are nonspherical (e.g. plates or needles) and are not randomly oriented some lines in the XRPD may become greatly attenuated or even disappear

Intrinsic properties of crystals

- Vibrational Spectroscopy (Raman, IR, NIR)
 - With ATR-IR no sample preparation needed
 - Raman and NIR spectroscopy can be applied for online monitoring

- Solid-stare NMR (ssNMR)
 - Powerful tool for R&D but not particular suitable as a routine techenique for QC for being time-consuming and expensive

Thermodynamical properties

- Differential Scanning Calorimetry (DSC)
 - Melting point and enthalpy are essential to describe a solid form

- <u>Isothermal microcalorimetry</u>
 - Useful in assessing chemical stability
 - Determination of amorphous content

Project co-financed by the European Regional Development Fund

- Thermogravimetry (TG, TG-FTIR, TG-MS)
- Dynamic Vapour Sorption (DVS) → hygroscopicity

Characterization of Particle Shape and Size

Composition

Microscopy (optical, electron) Laser light diffraction (Fraunhofer) Sieving

> LLD and Sieving give similar results for spherical particles but differ significantly for rodlike and platelike

Figure 8.15 Principle of Fraunhofer diffraction instrument.

Powder flow properties

Methods:

<u>Hausner Ratio or compressibility index-</u> \rightarrow Bulk volume and Tapped volume

Hausner ratio
$$= \frac{V_0}{V_t}$$
.
Compressibility index $= 100\% \frac{V_0 - V_t}{V_0}$

Angle of response

$$\tan \alpha = \frac{2 \times \text{height of cone}}{\text{diameter of base of cone}}$$

Powder rheometry

In-process characterization

Real-time quantitative characterization Through backscattered laser beam whose Pulses determine a statistical distribution Of the particle dimensions (chord lengths distribution)

FBRM®

Highly suitable method to monitor Seeded crystallization processes Suitable for <u>QUANTITATIVE</u> <u>MONITORING</u>

Appendix A: ParticleTrack with FBRM[®] (Focused Beam Reflectanc Measurement)

Measurement for optimization in real time – ParticleTrack is a precise and sensitive technology which tracks changes to particle dimension, particle shape, and particle count. Over a wide detection range from 0.5 to 2000 μ m, measurements are acquired in real time while particles are forming and can still be modified enabling process optimization and control. No sampling or sample preparation is required – even in highly concentrated (70 % and higher) and opaque suspensions.

FINGERPRINT

www.mt.com/ParticleTrack

In - process characterization

$PVM\mathbb{R}$

Qualitative monitoring

How does ParticleView work?

ParticleView uses a high resolution camera and internal illumination source to obtain high quality images even in dark and concentrated suspensions or emulsions. With no calibration needed and easy data interpretation, ParticleView quickly provides critical knowledge of crystal, particle, and droplet behavior.

ευχαριστώ πολύ

Mediterranean Control RE-LIVE WASTE

Project co-financed by the European Regional Development Fund

Date: 22nd October 2019.

Place: Pilot plant facilities of CUT Partner in Nicos Armenis & Sons Ltd Farm Technol in Monagroulli

Partner: Cyprus University of Technology

L								
						Consent	for GDPF	**
	Name & Surname	Capacity/Position	Organisation	Email	Signature	(1) Contact	2) Picture (イ / ×)	(3) (/ ×)
1.	Maria	Antoniou	CUT	maria.antoniou@cut.ac.cy	Apr			
2.	Nomiki	Kallikazarou	Cyprus University of Technology	ni.kallikazarou@edu.cut.ac.c y	Ð	2	2	
°.	Emorfia	Konstantinidi	Departmant of Environment of Cyprus	econstantinide@environment .moa.gov.cy	X	/	1)
4.	Emir	Dzomba	FAFS	e.dzomba@ppf.unsa.ba	Me !!	N	5	5
5.	Muhamed	Brka	FAFS	m.brka@ppf.unsa.ba	Hereh Mr	>		\backslash
6.	Almir	Muzur	PD Butmir	almirmuzur@yahoo.com	5)	>	Э	5
7.	Georgia - Elina	Zoi	CUT	georgia.elina.zoi@gmail.com				~~
°.	Marios	Efthimiou	(42, 12311 - drict - 2)	metthymiou@ec.gov.cy	CUL)))
6	Demetris	Demetriou	Department of Environment of Cyprus	ddemetriou@environment.m oa.gov.cy	Detucen Dutur)		١

Mediterranean RE-LIVE WASTE

÷

Project co-financed by the European Regional Development Fund

	X	X)	7	5	>	2
).	/	X	3)	1			1)	7	>	>
		1		7				7	2	>	>	>
All	Jan	AND I		R				the second	Aptoriue -	X	R	A A
pkastanias@oeb.org.cy	georgia@euromarket-cy.com	technical@euromarket- cy.com	pantelispante@gmail.com	xristostofi@gmail.com	cstylianou@environment.mo a.gov.cy		•	mm.paschalis@edu.cut.ac.cy	christina_98@live.co.uk	xristia1@hotmail.com	stylianou.k@hotmail.com	theofilounikolas@gmail.com
Cyprus Employers & Industrialists Federation (OEB)	S.K. EUROMARKET LTD	S.K. EUROMARKET LTD	Cyprus university of technology		Department of Environment	MELOS KOIN. SYMVOULIOU	MELOS KOIN. SYMVOULIOU	Cyprus university of technology	Cyprus University of Technology			ΦΟΙΤΗΤΗΣ
	Konstantinidou	Papaloucas	Panteli	Tofi	Stylianou	SOCRATOUS	CHARALAMBOUS	Paschalis	Panagiotou	PARASKEVA	Stylianou	ΘΕΟΦΙΛΟΥ
). Panayiotis Kastanias	Georgia	Christakis	Pantelis	Christodoulos	Chrystalla	SOCRATES	CHRISTAKIS	Marcos	Christina	CHRISTIA	Constantina	NIKOAAE
Ę	÷	1	-	7	÷.	16	17	18	19	20	21	22

Mediterranean

0

Interreg

Mediterranean

Interreg Mediterranean RE-LIVE WASTE

D 5 elder +3876)220842 am Ecre Fares Dreed R ta hove 10) colu - 444. Oc cu ML papadimityion @ Burcut ac o Phandrollo natherate, buma ile christabulaveredur.cutaded Z a canogictar a Riverted. Cy NC. KANKZies Ochluck. del atrates hoting X ri KIGOquesil. Con stylians-intervou Rymonif.com mg. moundle & edu rut. Na. Franc 2, bledu el cai ma cour eute SEPLINZE () aliz. e) Reve Were O Un JJ. unil O sciela, ba Philip DO TUT - TEPAL ADILE 14-1-J-PD- UNISI TENAK TENAK JA -LE CAK ANA TERK CL17 SCROG + TEM4. TETTAK TENAK 1 Rundación Clabl Notre af-1-10.2 m ManadMintoia 1 buenuco Xo 10/02 al XU Tarilou Lin Unarou Mauuan Lavra 1 as L Jun NON M. るです。 Huboary Tapes NESSA ちょう Q 1 Jord, Domingu (evic rok++0 N/WC Reistin 2 wallani Ant. Napyn pira N16070 Q, ANTINU ND Newbras 20000 Dix'n EREONO Forula 1000 AAr ava Aunt Than 69. 59. 53. 54. 55. 56. 58. 61. 68. 57. 60. 62. 63. 64. 65. 66. 67.

'In accordance with the General Data Protection Regulation (GDPR) by putting a check mark you give your consent for:

[1] Recieving the informations regarding the further activities and events of RE-LIVE WASTE project by e-mail.

[2] Using photographs and/or video recordings including images of me both internally and externally of the venue to promote the project (social media/ web pages of the responsible project parter or their partners).

[3] Using and shering your personal data for the report of proof of financed activities. You can ask the project partners to stop using your images at any time, in which case it will not be used in future publications but may continue to appear in publications already in circulation.

If you have any concern or question regarding your data, please contact the project partner of the RE-LIVE WASTE Project at: Maria G. Antoniou (maria.antoniou@cut.ac.cy) or Nomiki I. (allikazarou (<u>ni.kallikazarou@edu.cut.ac.cy</u>).