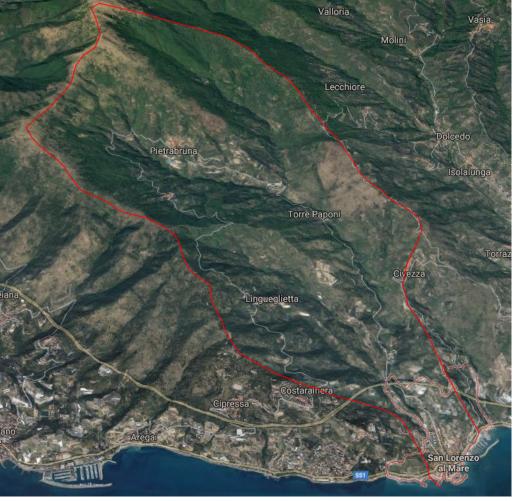


Intercomunale Monte Faudo

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA **CARATTERIZZAZIONE BACINO**



Intercomunale Monte Faudo

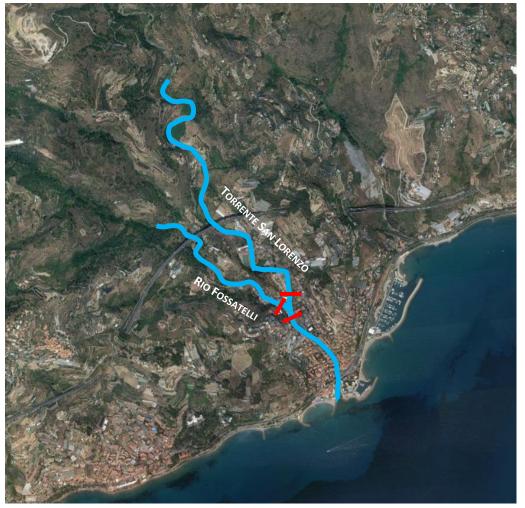
Fonds européen de développement régional Fondo europeo di sviluppo regionale

CARATTERIZZAZIONE DEL BACINO

MORFOLOGIA **TORRENTE SAN LORENZO**

AREA:	26.2	[KM ²
QUOTA MEDIA:	371.9	[M]
PENDENZA MEDIA BACINO:	0.40	[-]
PENDENZA MEDIA TORRENTE:	0.0356	[-]
PENDENZA MEDIA ORDINE MAX:	0.0215	[-]
PENDENZA MEDIA FOCE:	0.0070	[-]

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA **CARATTERIZZAZIONE BACINO**



Intercomunale Monte Faudo

CARATTERIZZAZIONE DEL BACINO

IDROLOGIA TORRENTE SAN LORENZO

IN QUESTA FASE PRELIMINARE SI SONO RICAVATE LE INFORMAZIONI DALL'ANALISI IDROLOGICA PRESENTE NEL PIANO DI BACINO APPROVATO CON DGP N°91 DEL 16/02/2004

	Q [m³/s]		
	T=50[anni]	T=200[anni]	T=500[anni]
Torrente San Lorenzo	170	250	300
Monte Confluenza			
Torrente San Lorenzo Valle Confluenza	220	320	380
Rio Fossarelli	50	70	80

Intercomunale Monte Faudo

Fonds européen de développement régional Fondo europeo di sviluppo regionale

STRUTTURE INTERFERENTI

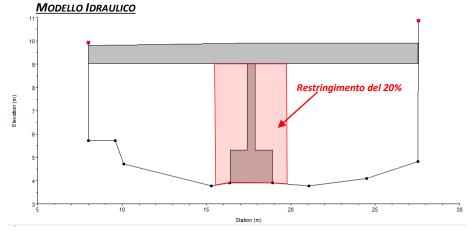
MODELLO **IDRAULICO**

DATA LA COMPLESSITÀ DELLA CONFIGURAZIONE GEOMETRICA DEL TORRENTE SAN LORENZO, SI OPTA PER UNA MODELLAZIONE ACCOPPIATA:

> 1D NON STAZIONARIO 2D

ÎN GRADO DI UTILIZZARE I VANTAGGI DI ENTRAMBE LE MODELLAZIONI PER POTER TRACCIARE AL MEGLIO LE FASCE DI INONDABILITÀ

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA


Fondo europeo di sviluppo regionale

STATO DI FATTO

RISCHIO RESIDUO

PONTE TRUCCHI

DATA LA PRESENZA DI UNA PILA IN ALVEO SI IPOTIZZA UN RESTRINGIMENTO PARI AL

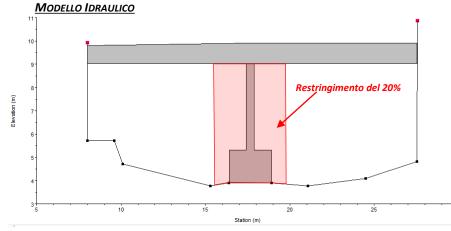
20% DELLA SEZIONE LIQUIDA

Fonds européen de développement régional

Fondo europeo di sviluppo regionale

Intercomunale Monte Faudo

STATO DI FATTO


30/09/1998

RISCHIO RESIDUO

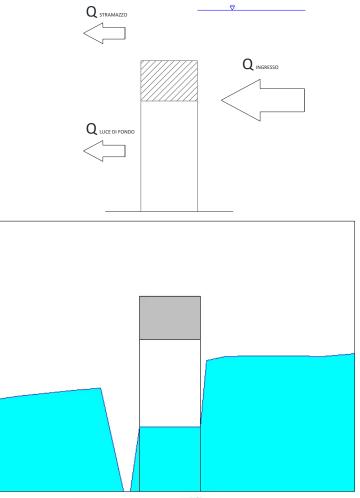
PONTE TRUCCHI

Data la presenza di una pila in alveo si ipotizza un restringimento pari al

20% DELLA SEZIONE LIQUIDA

UNIVERSITÀ DEGLI STUDI

DI GENOVA



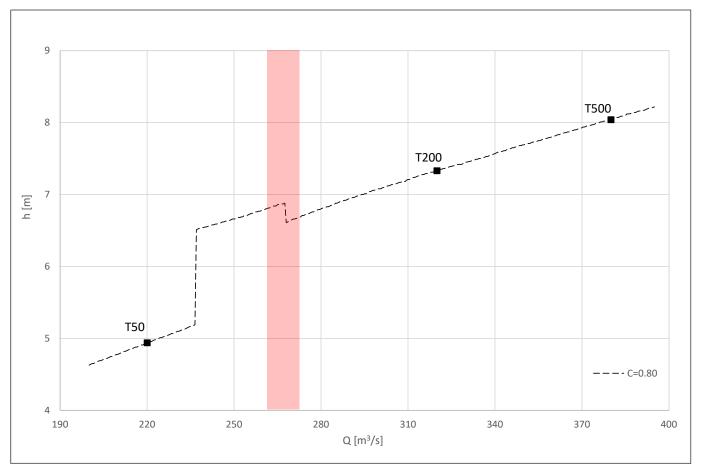
Fonds européen de développement régional Fondo europeo di sviluppo regionale

TARATURA DEI PONTI

Modellazione Stramazzo - Luce di fondo

- IL LIVELLO DEL PELO LIBERO TOCCA L'INTRADOSSO
 DELL'IMPALCATO
- LA CORRENTE È OBBLIGATA A TRANSITARE ATTRAVERSO LA STRUTTURA E NON PUO' AGGIRARLA

- MODELLAZIONE PIU' CONSERVATIVA
- MODELLAZIONE PIU' ADERENTE AL REALE MECCANISMO
 FISICO DEL DEFLUSSO DELLA CORRENTE AL DI SOPRA
 DELL'IMPALCATO CON DISCONTINUITÀ E REPENTINO
 INCREMENTO DEL PELO LIBERO

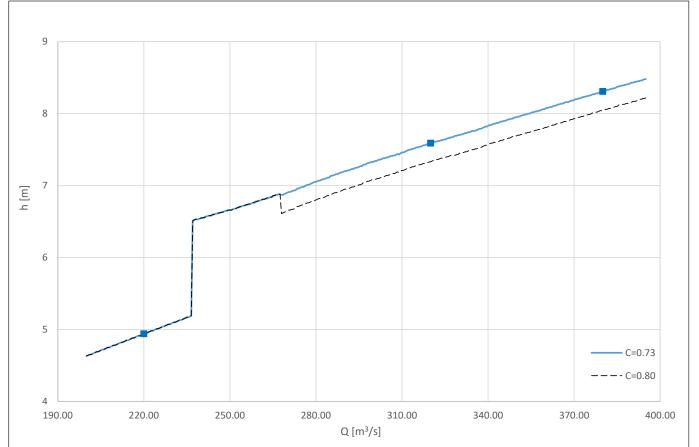

Intercomunale Monte Faudo

Fonds européen de développement régional Fondo europeo di sviluppo regionale

TARATURA DEI PONTI

MODELLAZIONE STRAMAZZO - LUCE DI FONDO

- L'APPROCCIO A STRAMAZZO LUCE DI FONDO VA UTILIZZATO CON ATTENZIONE
- SE NON ACCURATAMENTE TARATO PUO' GENERARE UNA SOTTOSTIMA DEI LIVELLI DELLA CORRENTE (VISIBILE SOLO SE VIENE PLOTTATA L'INTERA SCALA DI DEFLUSSO)



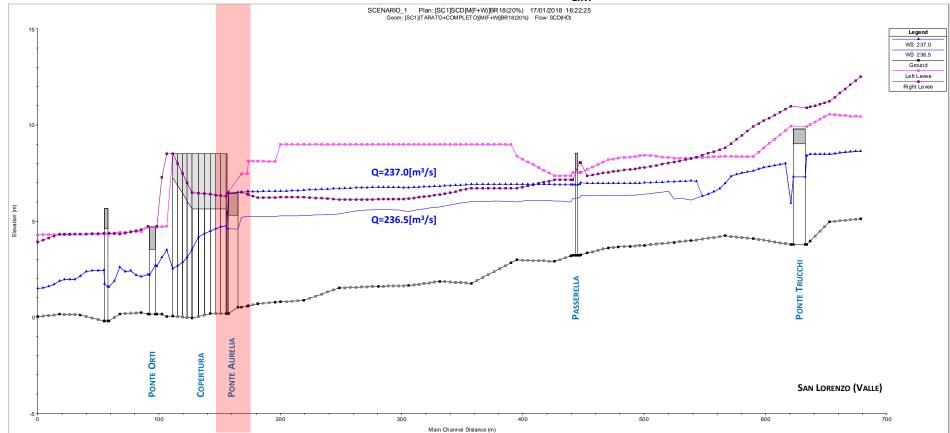
Intercomunale Monte Faudo

TARATURA DEI PONTI

MODELLAZIONE STRAMAZZO - LUCE DI FONDO

- UNA CORRETTA TARATURA DELL'APPROCCIO DI CALCOLO PERMETTE UNA SOLUZIONE CONSERVATIVA, ROBUSTA E FISICAMENTE FONDATA
- TUTTI I PONTI DEL TRATTO SONO STATI QUINDI ACCURATAMENTE TARATI PARTENDO DA VALLE E PROCEDENDO VERSO MONTE

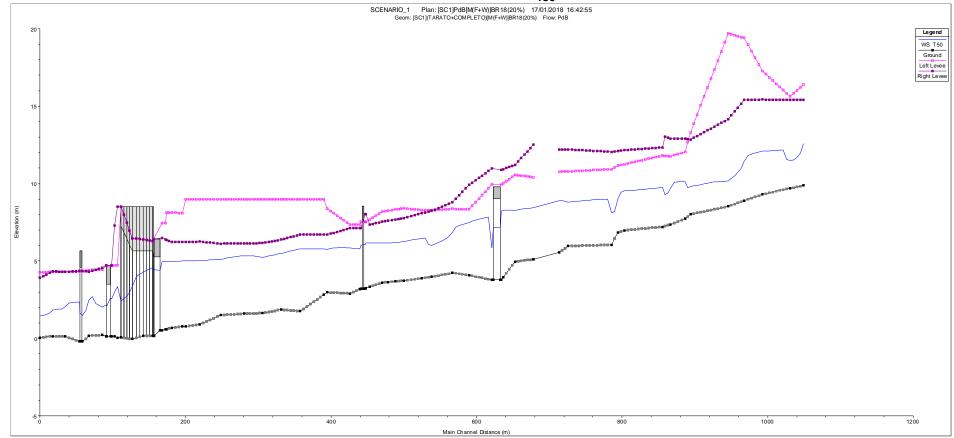
Ing. Giampiero Nobile, PhD - OAC INGEGNERIA MODELLAZIONE STAZIONARIA A FONDO FISSO



Intercomunale Monte Faudo

PORTATA LIMITE CONTENUTA IN ALVEO Q_{LIM}=236.5 M³/s

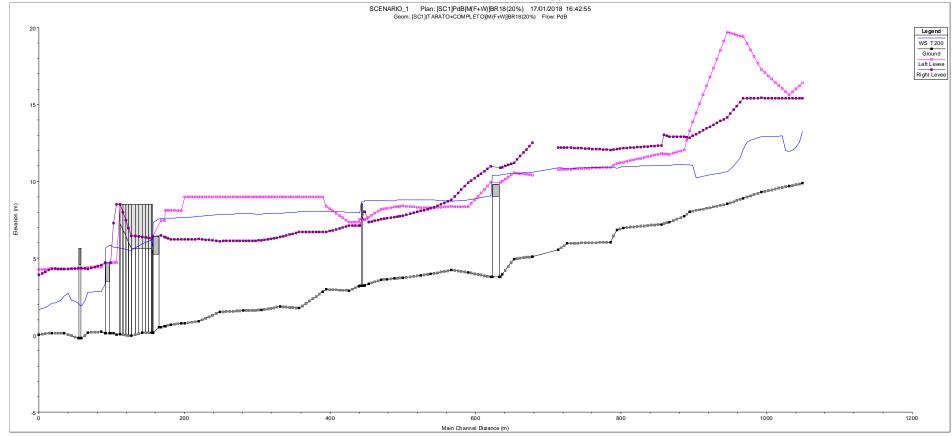
Ing. Giampiero Nobile, PhD - OAC INGEGNERIA MODELLAZIONE STAZIONARIA A FONDO FISSO



Intercomunale Monte Faudo

EVENTO T=50 [ANNI] - $Q_{T50} = 220 [M^3/s]$

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA MODELLAZIONE STAZIONARIA A FONDO FISSO


Fondo europeo di sviluppo regionale

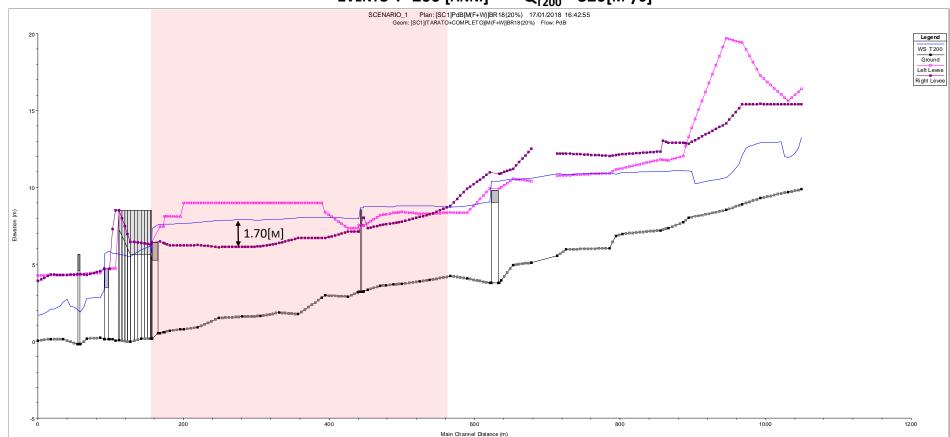
Intercomunale Monte Faudo

EVENTO T=200 [ANNI] $- Q_{T200} = 320 [M^3/s]$

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

Fonds européen de développement régional

Fondo europeo di sviluppo regionale

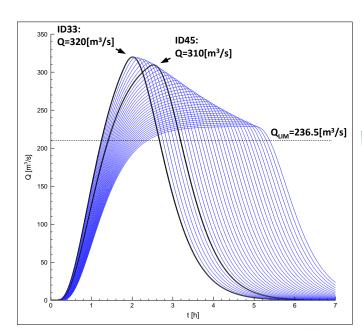


MODELLAZIONE STAZIONARIA A FONDO FISSO

Intercomunale Monte Faudo

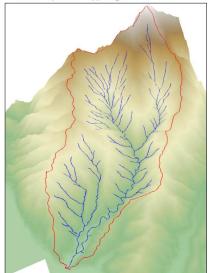
EVENTO T=200 [ANNI] $- Q_{T200} = 320 [M^3/s]$

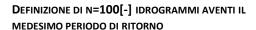
APPARE VEROSIMILE CHE UNA MODELLAZIONE PIÙ RAFFINATA POSSA VALUTARE L'ABBASSAMENTO DEI LIVELLI GENERATO DALLA LAMINAZIONE DELLE AREE INONDATE


Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

MODELLO DTM DELL'INTERO BACINO

USO DEL SUOLO


PARAMETRIZZAZIONE DI HORTON-STRAHLER

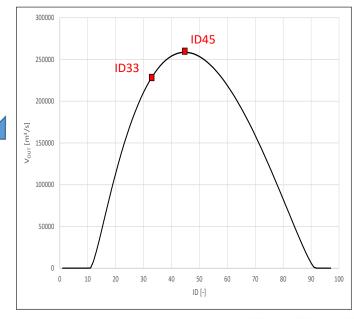


⊘RISQ'EAU

Fonds européen de développement régional Fondo europeo di sviluppo regionale

IDENTIFICATI:

- L'IDROGRAMMA AVENTE LA MASSIMA PORTATA DI PICCO
- L'IDROGRAMMA AVENTE IL MASSIMO VOLUME ESONDANTE



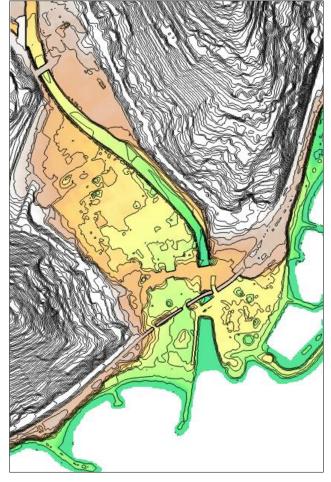
Intercomunale Monte Faudo

DEFINIZIONE DEGLI IDROGRAMMI SIGNIFICATIVI

METODOLOGIA DGR359/2008

Fonds européen de développement régional

Fondo europeo di sviluppo regionale



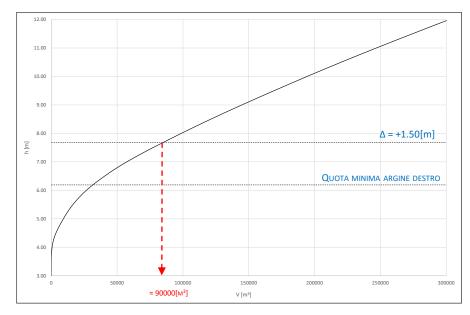
Intercomunale Monte Faudo

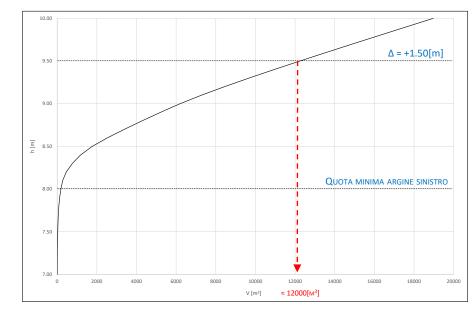
APPROCCIO METODOLOGICO

VALUTAZIONE DELLE CURVE DI INVASO

MODELLO DEM A MAGLIA FITTA 1.0[M] X 1.0[M]

ATTUALIZZATO AGLI INTERVENTI REALIZZATI E ALLA GEOMETRIA DELLO STATO DI FATTO





Intercomunale Monte Faudo

DALL'ANALISI DEL 3D DEM E' POSSIBILE RICAVARE LE CURVA DI INVASO DELLE AREE POTENZIALMENTE INONDATE DALLA PIENA AL FINE DI VALUTARE IL REALE EFFETTO DI LAMINAZIONE

AREA VIGNASSE ≈ 90000[M³]

≈ 12000[M³] → TRASCURABILE AREA SCUOLA

Fonds européen de développement régional Fondo europeo di sviluppo regionale

Intercomunale Monte Faudo

DEFINIZIONE CONCETTUALE DEL MODELLO DI CALCOLO



Fondo europeo di sviluppo regionale

IMPEDIMENTO AL RIENTRO IN ALVEO

PER TENERE CONTO DEI CORDOLI ALLA BASE DELLE RINGHIERE E SOPRATTUTTO DEI FLOTTANTI CHE POSSONO INTASARLE DURANTE L'EVENTO DI PIENA, A FAVOR DI SICUREZZA:

- SI CONSIDERA UNA OSTRUZIONE DI CIRCA 20-40[CM] SOLAMENTE PER IL DEFLUSSO DI RIENTRO IN ALVEO

Intercomunale Monte Faudo

IMPEDIMENTO AL RIENTRO IN ALVEO

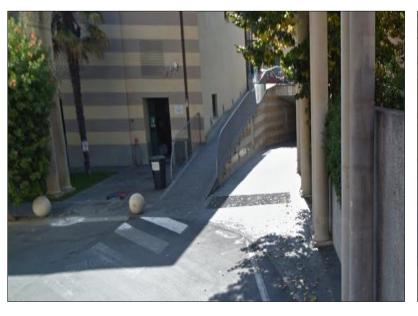
UNIVERSITÀ DEGLI STUDI

DI GENOVA

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

Fonds européen de développement régional

Fondo europeo di sviluppo regionale



CONFIGURAZIONI DI MODELLAZIONE

Intercomunale Monte Faudo

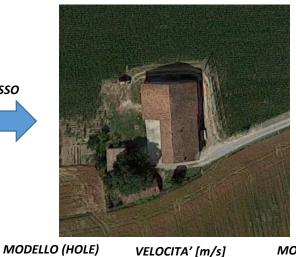
CONFIGURAZIONI DI MODELLAZIONE

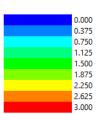
SVUOTAMENTO AREA VIGNASSE

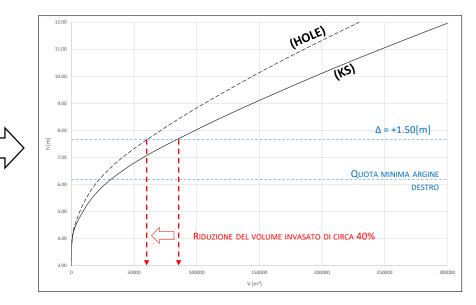
	CONFIGURAZIONE		
	Α	С	0
SOTTOPASSO	LIBERO	OSTRUITO AL 100%	OSTRUITO AL 100%
STRAMAZZO SU VIA AURELIA	Libero	LIBERO	OSTRUITO AL 50%

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA **C**ONFIGURAZIONI DI MODELLAZIONE

Fondo europeo di sviluppo regionale






CONFIGURAZIONI DI MODELLAZIONE

MODELLAZIONE EDIFICI

MODELLO (KS)

FLUSSO

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

CONFIGURAZIONI DI MODELLAZIONE

Intercomunale Monte Faudo

Fonds européen de développement régional Fondo europeo di sviluppo regionale

EVENTO CALAMITOSO T200 T500 MODELLAZIONE EDIFICI MODELLAZIONE EDIFICI IMPERMEABILI PERMEABILI IMPERMEABILI PERMEABILI ⋖ (HOLE)T200ID33(A) (KS)T200ID33(A) (HOLE)T500ID32(A) (KS)T500ID32(A) CONFIGURAZIONE PORTATA MASSIMA TIPOLOGIA IDROGRAMMA (HOLE)T200ID33(C) (KS)T200ID33(C) (HOLE)T500ID32(C) (KS)T500ID32(C) 0 (HOLE)T200ID33(O) (KS)T200ID33(O) (HOLE)T500ID32(O) (KS)T500ID32(O) ⋖ (HOLE)T200ID45(A) (KS)T200ID45(A) (HOLE)T500ID53(A) (KS)T500ID53(A) CONFIGURAZIONE MASSIMO VOLUME (KS)T500ID53(C) C (HOLE)T200ID45(C) (KS)T200ID45(C) (HOLE)T500ID53(C) 0 (HOLE)T200ID45(O) (KS)T200ID45(O) (HOLE)T500ID53(O) (KS)T500ID53(O)

12 SIMULAZIONI DI SCENARIO PER OGNI SINGOLO EVENTO CALAMITOSO

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA MODELLAZIONE NON STAZIONARIA A FONDO FISSO

⊘ RISQ'EAU

Fonds européen de développement régional Fondo europeo di sviluppo regionale

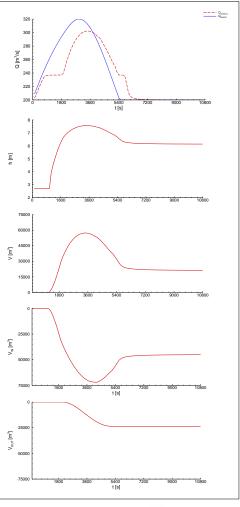
Intercomunale Monte Faudo

ESEMPIO (HOLE)T200ID33(O)

EVENTO T=200

IDROGRAMMA MASSIMO PICCO (ID33)

SVUOTAMENTO CASSA OSTRUITO (O)


EDIFICI IMPERMEABILI (HOLE)

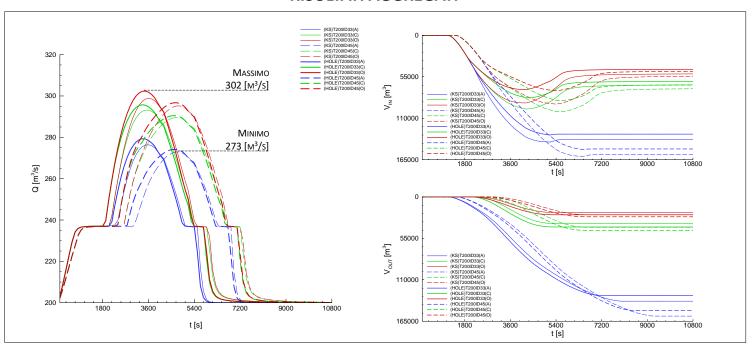
- LAMINAZIONE DI CIRCA 20 [M³/s]
- DELAY DEL TEMPO DI PICCO DI CIRCA 10 [MIN]
- RIEMPIMENTO DELLA CASSA IN CIRCA 20 [MIN]
- SVUOTAMENTO IMPEDITO DALL'INTASAMENTO DEL SOTTOPASSO

LIVELLO CASSA

VOLUME CASSA

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

MODELLAZIONE NON STAZIONARIA A FONDO FISSO


Fondo europeo di sviluppo regionale

Intercomunale Monte Faudo

RISULTATI AGGREGATI

L'INVILUPPO DI TUTTE LE SIMULAZIONI PER L'EVENTO CON TEMPO DI RITORNO T=200 [ANNI] GENERA UNA VARIAZIONE DELLA PORTATA AL PONTE AURELIA COMPRESA TRA:

273 – 302 [M³/s]

CORRISPONDENTE AD UNA VARIAZIONE DEL LIVELLO IDROMETRICO A MONTE DEL PONTE COMPRESA TRA:

6.94 – 7.37 [M]

IL LIVELLO DELLA CLASSICA SIMULAZIONE STAZIONARIA AD ARGINI INFINITI È PARI A: 7.62

[M]

eloppement régional

MODELLAZIONE 2D

STATO DI FATTO

ESEMPIO (HOLE)T200ID33(A)

Area di calcolo: 125000 [m²]

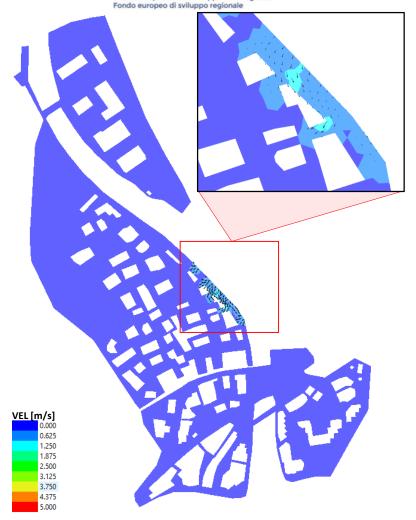
ELEMENTI MESH: 15000 [-

DIMENSIONE MAX MESH:8 [M²]

LATO MESH: 1.5-3.0 [M]

Fonds européen de développement régional

Intercomunale Monte Faudo


MODELLAZIONE 2D

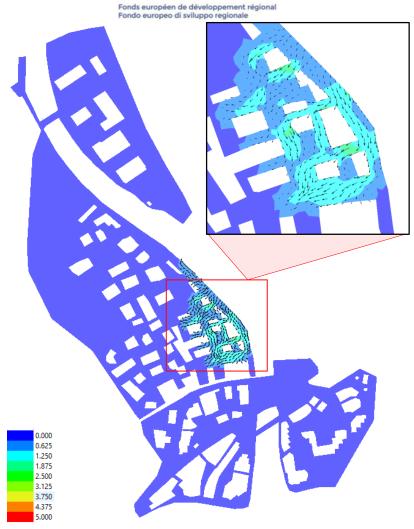
STATO DI FATTO

 $\Gamma = 0$ [MIN]

INIZIO ESONDAZIONE ARGINE A MONTE DEL PONTE AURELIA

Intercomunale Monte Faudo

MODELLAZIONE 2D


STATO DI FATTO

ESEMPIO (HOLE)T200ID33(A)

 $T = 2 \qquad [MIN]$

IL RIEMPIMENTO DELL'AREA VIGNASSE PROCEDE MOLTO VELOCEMENTE


MODELLAZIONE 2D

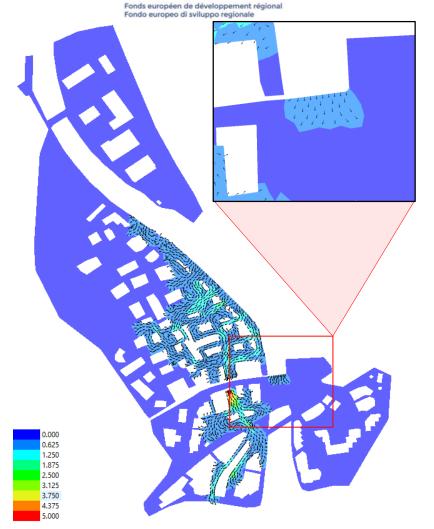
STATO DI FATTO

[MIN]

RAGGIUNTO IL SOTTOPASSO LA CORRENTE INIZIA A PROPAGARSI NELL'AREA FOCIVA

Intercomunale Monte Faudo

MODELLAZIONE 2D


STATO DI FATTO

ESEMPIO (HOLE)T200ID33(A)

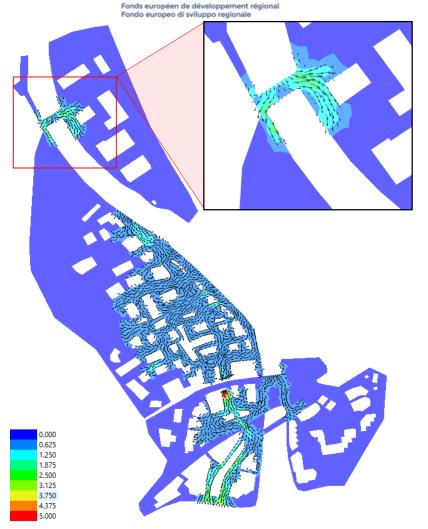
[MIN]

L'ESONDAZIONE PROCEDE RIEMPIENDO L'AREA VIGNASSE. IL TRATTO ARGINALE LUNGO IL QUALE VI È INONDAZIONE È QUASI PARI ALL'INTERO TRATTO.

LA CORRENTE COMINCIA A STRAMAZZARE SULL'IMPALCATO DEL PONTE AURELIA

ORISQ'EAU

Intercomunale Monte Faudo


MODELLAZIONE 2D

STATO DI FATTO

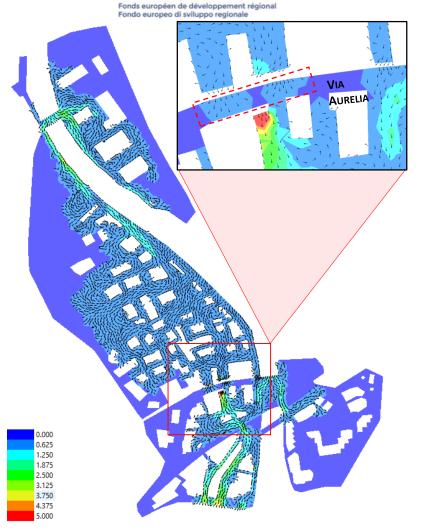
ESEMPIO (HOLE)T200ID33(A)

11 [MIN]

IL RIGURGITO DI CORRENTE LENTA SI È PROPAGATO SINO AL PONTE TRUCCHI. LA CORRENTE INIZIA A STRMAMZZARE SULL'IMPALCATO DEL PONTE E COMINCIA AD INONDARE L'AREA DELLA SCUOLA, NONCHÉ L'AREA VIGNASSE DA MONTE

ORISQ'EAU

Intercomunale Monte Faudo


MODELLAZIONE 2D

STATO DI FATTO

ESEMPIO (HOLE)T200ID33(A)

20 [MIN]

L'AREA VIGNASSE È ORMAI COMPLETAMENTE ALLAGATA. LA CORRENTE COMINCIA A STRAMAZZARE SULLA STRADA DAI VARCHI SECONDARI LUNGO LA VIA AURELIA

Fonds européen de développement régional

Intercomunale Monte Faudo

MODELLAZIONE 2D

STATO DI FATTO

ESEMPIO (HOLE)T200ID33(A)

T = 29 [MIN]

L'ESONDAZIONE È ORMAI COMPLETAMENTE SVILUPPATA E LA CORRENTE RAGGIUNGE INDISTURBATA ANCHE LE AREE FOCIVE SU ENTRAMBE LE SPONDE DEL TORRENTE

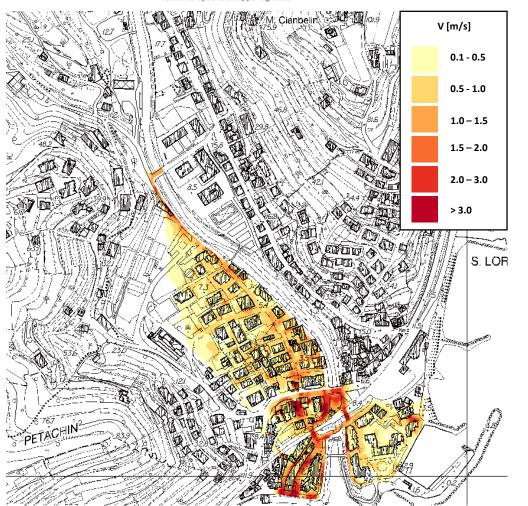
Fonds européen de développement régional Fondo europeo di sviluppo regionale

Intercomunale Monte Faudo

Fonds européen de développement régional Fondo europeo di sviluppo regionale

Intercomunale Monte Faudo

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA FASCE DI INONDABILITÀ



Intercomunale Monte Faudo

Fonds européen de développement régional Fondo europeo di sviluppo regionale

MODELLAZIONE 2D

VALORI MASSIMI DI VELOCITÀ

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

Intercomunale Monte Faudo

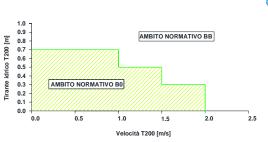
Fonds européen de développement régional Fondo europeo di sviluppo regionale

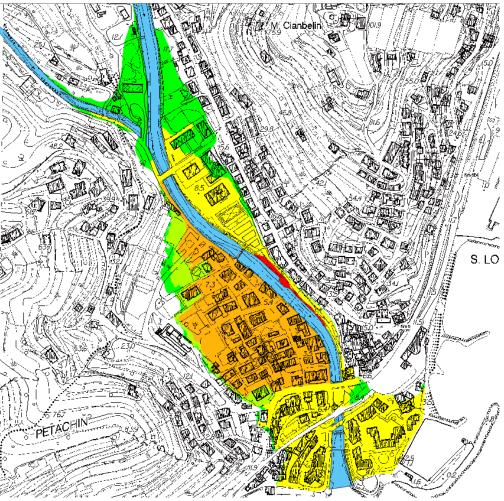
MODELLAZIONE 2D

VALORI MASSIMI DI PROFONDITÀ

Ing. Giampiero Nobile, PhD - OAC INGEGNERIA

Fonds européen de développement régional


Fondo europeo di sviluppo regionale



Intercomunale Monte Faudo

AMBITI NORMATIVI

AMBITO B0			
VELOCITA'	TIRANTE		
[m/s]	[m]		
0.0 ≤ V < 1.0	h ≤ 0.70		
1.0 ≤ V < 1.5	h ≤ 0.50		
1.5 ≤ V < 2.0	h ≤ 0.30		

MODELLAZIONE 2D

INVILUPPO DEGLI AMBITI
PER TUTTI GLI SCENARI

