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Abstract: In this work, the optimal regulation of variable speed pump (VSP) was solved by means 
of two optimization algorithms: a mixed-integer optimizer based on the BONMIN (Basic Open-
Source Nonlinear Mixed Integer Programming) package, and an original hybrid genetic algorithm 
(GA) called GA–Powell’s direction set method (PDSM), which employs a derivative free inner 
optimizer, that is, the Powell’s direction set method (PDSM). The obtained results show how the 
use of a strategy based on the optimal regulation of VSP allows to obtain huge energy cost savings. 
The analysis of the results shows that the regulation of the plant does not apparently follow a general 
rule. 
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1. Introduction 

The modern trend in the management of hydraulic systems is largely focused on reducing 
energy consumption. Great economic savings and environmental benefits can be achieved by 
changing the control techniques of pumping systems. According to recent reports [1,2], the energy 
used for pumping constitutes 4% of the entire amount of national electricity consumed in the U.S. 
[3,4] and 7% of the electrical energy worldwide [5,6]. The reduction of pumping energy use within 
water networks is one of the most promising fields in the context of energy recovery and efficiency 
[7–9]. 

Pumping systems within water supply and drainage networks are equipped with multiple 
pumps, starting with a minimum number of two, one of them kept for replacement purposes. 
Pumping systems have been commonly designed to work at a fixed speed and constant hydraulic 
conditions (head and discharge) which are close to the best efficiency point (BEP) of the pump, so to 
have the best possible performances. Given the presence of multiple pumps in the system, and 
possible variations in the operating conditions (variable discharges and variable tank level to make 
an example), scheduling is needed to optimize system performances. A modern trend in the 
management of pumping systems is based on the use of variable speed drives (VSDs) to change the 
impeller rotational speed of one or more pumps. 

Several examples of scheduling optimization exist in the literature, with different optimization 
algorithms, different variables and different objective functions; the evolution of research in the field 
of energy efficiency optimization complies with the development of more and more sophisticated 
optimization tools and algorithms. A first attempt of reducing operational costs in water networks 
concerns the use of linear programming [10], integer linear programming [11], non-linear 
programming [12,13] and dynamic programming [14], with limited possibilities of generalizing the 
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results to any water network different from those tested. More recently, heuristic algorithms, such as 
genetic algorithms, ant-colony or harmony search [15–18], were applied in the coupling with 
hydraulic simulators, that were often overcome by using artificial neural networks to reproduce the 
results of the hydraulic simulations [19]. 

Optimal control, based on the use of VSD on existing pumps, allows to achieve significant 
reductions in energy consumption. In a wastewater pumping system, with a classical wet well, the 
problem of setting the optimal daily ON/OFF distribution, and the pump speed (rpm) as well, is more 
complex than pumping clean water, as the storage volume is usually lower. In the present work, with 
reference to a classic wet well equipped with a submersible wastewater pump, two optimization 
algorithms have been used in order to evaluate the benefit that can be obtained through optimal 
programming in terms of ON/OFF operation and pump speed regulation. The first model, of the 
mixed-integer type, is based on the use of the BONMIN package [20]; the second, called genetic 
algorithm (GA)–Powell’s direction set method (PDSM), is an original model proposed by the authors, 
based on the hybridization of a genetic algorithm (GA) with an optimization algorithm of the 
derivative free type, that is, the Powell’s Direction set method (PDSM) [21]. The results obtained show 
how the use of a strategy based on the optimal regulation of the ON/OFF operation type plus a 
regulation of the number of revolutions per minute, allows to obtain great savings in terms of energy 
cost.  

2. The Problem Formulation 

Following the work of [22], for a classic sewage pumping station represented shown in Figure 1, 
the energy minimization problem can be formulated as follows: 

 
Figure 1. Classic wet well with submersible pump. 
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Equations (1)–(3) represent, respectively, the discretized continuity equation, the input 
hydrograph and the manometric head. The meaning of the symbols is the following:  wellh t  is the 
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flow depth within the well at time t;  inQ t  and  outQ t  are the inlet and outlet flow rate at time t; 

BEPQ  it is the flow rate at the point of maximum efficiency of the pump;  Qc t  is the flow rate 

coefficient defined as the ratio between the flow rate at time t and the average flow rate at time t 
demand coefficient, while design

Qc  is the design demand coefficient.  mH t  is the manometric head at 

time t; vH  is the flow depth within the downstream well; β is the resistivity of the pipe downstream 
from the pump, whose value is calculated as 

maxv

BEP

H h
H




  (4)

The values of  Qc t  were generated with an autoregressive moving average, ARMA(2,2), model 

[23] calibrated on a 30 day historical time series of inflow discharges at a wet well equipped with 
pump in Netherlands with 5 min of sampling frequency, and its parameter are reported in Table 1. 

Table 1. Parameters resulting from the ARMA(2,2) regression. 

Parameter Value p-Value 
Constant −8.87 × 10−5 9.45 × 10−1 

AR(1) 1.40 × 101 0.00 
AR(2) −4.07 × 10−1 3.27 × 10−61 
MA(1) −6.19 × 10−1 1.52 × 10−126 
MA(2) −1.52 × 10−1 1.35 × 10−37 

Variance 2.17 × 10−1 0.00 

The value of 2.46design
Qc   was used herein, and it corresponds to a 10 years return period in 

the cumulative distribution of  Qc t .  

With the calibrated ARMA model, it was possible to generate 1000 equally likely synthetic 
hydrographs, each one with the length of a day and with a time step of 1 min. The series of generated 
inflows compares well in terms of first and second order statistics with the observed data. 

3. The Optimization Models 

In this section, the two optimization models are briefly described. The optimizations are 
performed for each synthetic inflow hydrograph generated by the ARMA(2,2) model described in 
the previous section, with a time step of 1 minute. 

3.1. The BONMIN Package 

BONMIN (Basic Open-Source Nonlinear Mixed Integer Programming) is an open-source code 
for solving general MINLP (Mixed Integer Nonlinear Programming) problems. It is distributed under 
the EPL (Eclipse Public License), which is a license approved by the OSI (Open Source Initiative). 

There are several algorithmic choices that can be selected with BONMIN. In this study, the so-
called “B-BB” was selected, which is an NLP (nonlinear programming)-based branch-and-bound 
algorithm, which uses Cbc to solve MILP (Mixed Integer Linear Programming) problems and Ipopt 
to solve the NLP (nonlinear programming) problems. The Bonmin algorithm provides exact solutions 
if both the objective function and the constraints are convex. In the case where f or g or both are non-
convex, they are only heuristics. 

Additional documentation can be found in [20]. 
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3.2. The Proposed GA–PDSM 

The optimization model proposed in this work is based on a classic GA that employs a derivative 
free optimization algorithm known as the Powell’s set direction method (PDSM) as inner optimizer 
which is used inside the fitness function (FF) computation of the GA. The employed GA is a classical 
binary GA, and the genetic operators employed are the exponential ranking selection, multipoint 
crossover, elitism and a simple bitwise mutation [24].  

Each candidate solution is represented by a binary chromosome, and the only decision variables 
left to the GA are the sequence of ON/OFFs with a time step of 1 min and a scheduling horizon of 1 
day. Therefore, each decision variable is a binary variable in the range of 1 bit, with 0 and 1 
representing the pump turned OFF or ON, respectively.  

The optimal speed regulation is performed by the PDSM [21] when the fitness of each candidate 
solution is evaluated. The decision variable left to the PDSM are the rotational speeds of the pump in 
the interval (1500–3000) rpm, and their number varies for each candidate solution, because it must be 
equal to the number of intervals when the pump is ON. The PSDM works on the principle of 
executing a sequence of line minimization along a set of directions that are linearly independent. 
Herein, the PDSM was slightly modified to account for the bound constraint of the rotational speed, 
by equating the rpm to the bound limit when upper or lower bounds are violated.   

The FF adopted in this work is the following: 
E p
PDSM swFF F F    (5)

where E
PDSMF  is the optimal value of the daily energy consumption returned by the PDSM, and p

swF  
is the penalty function related to the violation of the maximum number of switching on of the pump 
in each hour, expressed as 

   
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where    0,1stP j   is the pump status at the j-th time interval of the day (1 for pump ON, 0 for 

pump OFF); max
swN  is the maximum number of pump switches in a hour and 310swp   is a penalty 

coefficient. 
The objective function E

PDSMF  has the following expression: 

 
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where,  jP N  is the power of the pump at the rotational speed Nj at the j-th time interval (1 min of 

length);  wellh j  is the flow depth in the wet well at the j-th time interval; max
wellh  and min

wellh  are the 

maximum and the minimum flow depth in the wet well, respectively. 

4. The Employed Pump 

In order to model the pump, characteristic curves at the various speed of the pump where 
derived by the interpolation of experimental data obtained at the Hydro-Energy Laboratory of 
CeSMA of the University of Naples Federico II as follows: 

2

2
N

H H H
H Q Q
N N N

          
   

 (8)
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where N and Nmax are the pump rotational speed and maximum rotational speed; Q is the pump 

discharge; HN is the manometric head at the speed N;  P N  is the power at the speed N and 
maxNP

is the corresponding power at Nmax; H , H , H , p , p , p , p , e , e , e  e e  are the 

interpolation coefficients. 

5. Results 

The optimization algorithms described in Section 2 were applied to the 1000 inflow hydrographs 
generated by the ARMA(2,2) model. The optimal values relative to the first five patterns and three 
values of the parameter β are reported in Table 2: 

Table 2. Optimal values of the daily energy obtained with genetic algorithm (GA)–Powell’s direction 
set method (PDSM), BONMIN (Basic Open-Source Nonlinear Mixed Integer Programming) and 
classic ON/OFF optimization. 

 Inflow 
Pattern 

E (kWh/day) 
GA-PDSM 

E (kWh/day) 
BONMIN 

E (kWh/day) 
CLASSIC ON/OFF 

0.25 1 574.54 574.06 1342.1 
0.25 2 538.21 536.51 1296.6 
0.25 3 482.69 482.93 1204.7 
0.25 4 592.57 590.71 1370.9 
0.25 5 554.84 553.45 1331.1 
0.5 1 874.88 874.07 1336.6 
0.5 2 840.1 838.52 1294.4 
0.5 3 772.69 774.42 1199.8 
0.5 4 893.38 889.88 1368.7 
0.5 5 861.36 859.39 1329.8 

0.75 1 1170.15 1182.6 1330.7 
0.75 2 1135.94 1154.5 1289.4 
0.75 3 1058.80 1082.1 1195.5 
0.75 4 1193.44 1214.2 1362.4 
0.75 5 1167.36 1180.4 1323.8 

The results are compared with the classic ON/OFFs optimization, showing how the optimal 
speed regulation allows to achieve significant reduction in daily energy consumption over the 
constant speed pump regulation. With β = 0.25, the highest savings is achieved (58% on average), 
with a peak of 60% for the third pattern. By increasing the value β to 0.5, the energy savings drop to 
an average value of 35%, with a peak of 36% for the third pattern. The BONMIN algorithm and the 
proposed GA-PDSM provided very close results in terms of energy consumption. Indeed, the 
maximum difference was much less than 1%. In particular, the BONMIN algorithm was revealed to 
be much slower, with a slight improvement in the objective function in most of the cases with β = 0.25 
and β = 0.5, while with β = 0.75, the objective function values provided by the GA–PDSM were slightly 
better.  
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Through the inspection of the 3000 solutions obtained (1000 inflow patterns for β equal to 0.25, 
0.5 and 0.75), it was not possible to derive an optimal control rule. 

In Figure 2, the pump head is plotted (black dots) as a function of Qout for all the patterns when 
β = 0.25. The characteristic curves at the various speed and Equation (3) are plotted as well, along 
with the required pumping head when the wet well is full (red line) or empty (blue line). In Figure 3 
the water level within the wet well is plotted versus Qout for the same patterns of Figure 2. From the 
inspection of Figure 3, it is clear that it is not possible to derive an optimal control rule for such a 
problem.  

 

Figure 2. Pumping head plotted as a function of Qout for all the patterns when β = 0.25. 

 

Figure 3. Water level in the wet well plotted as a function of Qout for all the patterns when β = 0.25. 

6. Conclusions 

In this work, an original hybrid genetic algorithm, called GA–PDSM, is proposed for the optimal 
regulation of a pumping station within sewer systems in terms of pumps ON/OFFs and speed 
regulation as well. The presented method employs the Powell’s direction set method as an internal 
optimizer of the genetic algorithm in order to find the optimal pump speed. The results obtained 
compared well with the well established mixed-integer optimizer BONMIN. Furthermore, it is shown 
that the optimal regulation of variable speed pumps allows to achieve a great energy savings when 
compared to the classical ON/OFFs regulation of constant speed pumps. However, it was not possible 
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to derive an optimal control rule from the optimal solutions obtained. Therefore, the obtained 
solutions will be used as the basis for future work, involving the machine learning method to find a 
real-time optimal control method. 
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