

Project "Water bodies without borders" (EstLat 66)

ACTION PLAN

Pressures and impacts on water quality, economical analysis and programme of measures

Disclaimer: This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used.

February 2020

Table of contents

Ab	breviations	4
Int	roduction	5
1.	General description of project area	6
2.	Pressure and impact analysis	10
,	2.1. Point source pollution analysis	14
,	2.2. Diffuse source pollution analysis	17
	2.2.1. Forestry	20
	2.2.2. Agriculture	21
	2.2.3. Animal husbandry	23
	2.2.4 Diffuse pressure from residents not connected to public sewerage system	23
	2.2.5 Non-channeled rainwater	24
,	2.3. Hydro-morphological alterations	25
,	2.4. Water abstraction	28
,	2.5. Other pressures	28
4.]	Defined environmental targets	29
4	4.1 Information about Estonia	29
4	4.2 Information about Latvia	33
5.]	Economic analysis of water use and possible measures to support planning of the programme of	
me	asures	34
	5.1. Economic analysis of water use and users	34
	5.2. Assessment of costs caused by water use and their recovery	36
	5.2.1. Approach for the cost recovery assessment	37
	5.2.2. Summary on the cost recovery assessment for the project area	38
	5.2.3. Recommendations for improving the cost recovery level	43
	5.3. Economic evaluation of additional measures for achieving environmental targets	44
	5.3.1. Additional measures included in the evaluation with the MCA	46
	5.3.2. Approach for the evaluation of additional measures with the MCA	47
	5.3.3. The evaluation results concerning measures for dams used by small HPPs creating hydro- morphological pressures	51
	5.3.4. The evaluation results concerning measures for obstacles with other or no use creating hyd morphological pressures	
	5.3.5. The evaluation results concerning measures for lakes with accumulated nutrient pollution i sediments	n 55

5.3.6. The evaluation of additional measures for agriculture (for Latvia only)	
6. Programme of Measures	67
6.1 Measures so far in Estonia	67
6.2 Measures so far in Latvia	
6.3 Additional measures on water body scale	
6.3.1 Estonia	69
6.3.2. Latvia	72
7. Practical results of measures	77
7.1. Ecological flow estimation for Vaidava River	77
8.2. Experience with small-scale filtration system	79

Abbreviations

EC – European Commission EE – Estonia EELIS - Estonian Nature Information System EstModel - Estonian software for modeling nutrient loads GES – good ecological status GIS – geographic information systems HPP - hydropower plant HYMO – hydro-morphology in/km² – inhabitants per square kilometer LSU - livestock units LV - Latvia MCA - multi-criteria assessment N, N_{tot} - nitrogen, total nitrogen NRT - nature resource tax P, P_{tot} – phosphorus, total phosphorus PoM – programme of measures **RBD** – River Basin District RBMP - River Basin Management Plan WB – water body WBWB - project "Water Bodies Without Borders" WFD – Water Framework Directive WWTP - wastewater treatment plant

Introduction

According to the Water Framework Directive 2000/60/EC the member states of the European Union have taken obligation to achieve and to maintain good ecological status for all water bodies.

If the status of water body isn't at least good, there is a need to implement measures to improve the status. These measures can be administrative, technical, advisory and also investigative. Currently the second period of water management plans are in progress (2015-2021). Existing measures are those that have been implemented, are in process of implementation or are planned in the current water management period. The water bodies failing to achieve good ecological status with the existing measures need additional or supplementary measures for improvement.

At the beginning of "Water bodies without borders" project the project area was selected with the aim to analyse, compare and assess quality of transboundary water bodies. Pressure assessment, economic analysis and ecological quality assessment were carried out to elaborate adequate measures for improvement of ecological quality of water bodies.

Project area includes all of the Salaca/Salatsi river basin in Latvia and Estonia, all of the Gauja/Koiva river basin in Estonia and part of Gauja/Koiva river basin affected by transboundary processes in Latvia. Additionally, some water bodies outside of Gauja/Koiva and Salaca/Salatsi river basins were included, to cover the whole transboundary area.

This document describes the pressures and impacts on water bodies, economical analysis and evaluation of additional measures. Based on these analysis water body scale measures for achieving good status are proposed. Also the results of ecological flow estimation for Vaidava River and experience with small-scale filtration system are given.

1. General description of project area

Project area is located in two countries - Latvia and Estonia, covering whole Salaca/Salatsi river basin, part of Gauja/Koiva river basin and other smaller parts of smaller transboundary basins (Figure 1). Total area of project territory is 7336 km² (5657 km² in Latvia, 1679 km² in Estonia). In project area there are in total 109 water bodies, 63 water bodies on Latvian side (52 river water bodies (WBs) and 11 lake WBs) and 46 water bodies on Estonian side (37 river WBs, 9 lake WBs), of which 18 are transboundary (EELV1010 Atse/Acupīte 1, EELV1001 Gauja 8/Koiva 1, EELV2002 Läteteperä/Akavina, EELV1015 Pedeli 1/Pedele 1, LVEE1016 Pedele 2/Pedeli 2, EELV2001 Pedetsi/Pededze 1, LVEE1003 Pellupīte/Peeli, EELV1004 Peetri/Melnupe 2, EELV1011 Penuoja/Kolkupīte, EELV1012 Puupe/Pužupe, LVEE1005 Pērlupīte/Pärlijõgi 1, EELV1013 Raamatu/Ramata, EELV1014 Ruhja/Rūja 1, EELV1006 Ujuste/Kaičupe, EELV1007 Vaidva 1/Vaidava 1, LVEE1008 Vaidava 2/Vaidva 2, EELV1017 Õhne 2/Omulupe, EELV1009 Murati järv/Muratu Ezers).

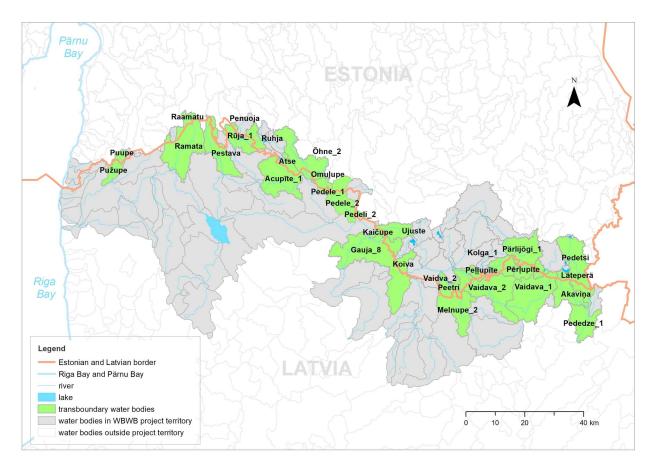


Figure 1. Project area and transboundary water bodies

Most of the project area is covered by forests (64.3%) and agricultural lands (30.9%). Various protected areas are located within the Gauja/Koiva river basin, such as Gauja National Park, Veclaicene Protected Landscape Area, Ziemeļgauja (North-Gauja) Protected Landscape Area, Karula National Park and Haanja Nature Park. In the Estonian side of Koiva river basin, about

22% of the area is under nature conservation (including nature conservation areas and limited-conservation areas).

In the project territory there are 90 wastewater effluents in total (21 in Estonian part and 69 in Latvian part of project territory), most of which are municipal wastewater discharges for agglomerations with population equivalent (PE) under 2000, and only in Latvian side there are 5 agglomerations with PE above 2000 (Valka, Aloja, Mazsalaca, Rūjiena, Alūksne). Within the project territory on Latvian side one contaminated site of 1st category is registred, 262 potentially contaminated sites (2nd category) and 11 sites that are not contaminated (3rd category), however there are no significant pressures from contaminated sites on water quality. On Estonian side no contaminated sites are identified within the project area.

On the Estonian side of the project territory there are 213 livestock buildings (buildings for livestock, manure and silo storages, etc), total amount of 4129 livestock units (LSU) - 1.07 LSU per hectare in the project area. On the Latvian side of the project territory there are 1691 livestock farms with 37543 LSU and average density of 0.066 LSU per hectare. Total amount of livestock farms since 2000 has significantly decreased (about 5 times), however the livestock units during the time have increased, thus indicating intensification of livestock farming.

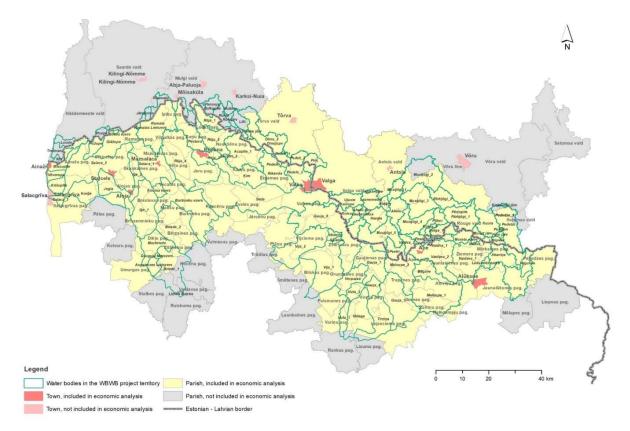
In the project area in Estonia there are altogether 56 man-made dams, including 1 small hydropower plant (Vastse-Roosa). Dams in Estonian side of project territory are usually located in tributaries, which are not priority habitats for fish and therefore do not affect the status of water bodies. However, the dams of Pärlijõgi, Saarlasõ, Vastse-Roosa, Ala-Raudsepa, Sänna-Mäeveski, Sänna-Alaveski ja Koorküla Veskijärve are located in water bodies with suitable habitats for salmonidae fish species. Dams of Pärlijõgi, Saarlasõ and Koorküla Veskijärve don't have fish passes. The Environmental Board of Estonia has given the permit for special use of water (hereinafter water permit) to 32 dams, 11 dams do not require water permit (the natural level of a watercourse is raised by up to one meter) and 13 dams don't have water permit despite it being a mandatory requirement. In addition, there are 210 beaver nests on water bodies of Estonian side of project area, which means there is a negative impact from beaver dams as well.

In accordance with existing information there are 80 man-made dams and other obstacles on Latvian side of the project area, 10 of which are used by hydropower plants (HPPs). Mostly dams are located on small tributaries, but two transboundary water bodies (G317 Pedele_2 and G235 Vaidava_2) both have 2 HPPs on the main stream without any working fish pass (there is one fish pass constructed on "Karva" HPP on Vaidava river, however, it doesn't operate properly).

Table 1 provides the main socioeconomic figures characterising the project area, and Figure 2 a map with water bodies (WBs) of the project area and administrative units (parishes and cities for Latvia, counties and cities for Estonia) which are considered for the socioeconomic estimates.

Table 1. Estimated number of inhabitants, companies and employed persons in the project area. (Source: Estimates developed as part of the project. The estimation approach and input data are described in the detailed report of the project on the economic analysis)

	Estimates	for the proje	ct area				
Indicators	For Latvia For Estonia TC		TOTAL	Input data and estimation approach			
Number of inhabitants	50 897	12 442	63 339	For Latvia: Input data from the OCMA (data on 01.2019, for selected parishes and cities). Estimate for the project area based on proportion of territory of administrative units which belongs to the project area. For Estonia: Input data from the Estonian Statistics (geographical information system (GIS) map layer).			
Number of companies	4 299	1029	5 328	For Latvia: Input data from CSB (data for 2017, for selected parishes and cities).* For Estonia: Input data from Estonian Statistics 2018 for Võru and Valga			
Number of employed persons	14 921	5780	20 701	county. For both countries – estimate for the project area based on proportion of territory of administrative units which belongs to the project area.			


* Note. There is uncertainty in the CSB data on number of employed persons since they are accounted according to location (administrative unit) of legal address of a company which can differ from administrative unit where employees are actually located. The actual number of employed persons in the administrative units of the project area could rather be larger than accounted in the statistical data.

Around 80% of the estimated inhabitants and companies and around 70% of the employed persons are located in the Latvian part of the project area.

12 442 inhabitants are estimated living in the Estonian part of the project area. There are 1029 companies employing 5780 people. Average population density is 7.4 inhabitants/km², which is much lower than the average in Estonia overall (29.8 in/km²).

50 897 inhabitants are estimated living in the Latvian part of the project area. Population density in the Latvian part is 9.0 in/km², which is similar as in the Estonian part and considerably lower than the average in Latvia overall (30 in/km²). There are 4299 companies employing 14 921 persons in the Latvian part of the project area.

The estimated number of inhabitants, companies and employed persons in the project area is based on data from the Central Statistical Bureau of Latvia and the Office of Citizenship and Migration Affairs for Latvia and Estonian Statistics (data for 2016-2019) for Estonia. For Latvia the socioeconomic data were calculated for the project area based on proportion of territory of administrative units which belongs to the project area. For Estonia the number of inhabitants for the project area is estimated based on data of the Statistics Estonia (public databases, data for 2016) where GIS map layer is provided with distribution of inhabitants by their place of residence (number of people living in each 1 km²). Similar approach was used as in Latvia for estimating the number of companies and employed persons in the project area.

Figure 2. Map of water bodies and administrative units in the project area included in the economic analysis. (Source: LEGMC.)

*Note. Yellow colour denotes the parishes and bright red colour denotes the cities that are included in the economic analysis (according to the approach described earlier). The parishes marked with grey and the cities marked with light red are excluded from the economic analysis.

2. Pressure and impact analysis

The Water Framework Directive 2000/60/EC (WFD) requires the identification of significant pressures from point and diffuse pollution sources, modifications of flow regimes through abstractions or regulation and morphological alterations, as well as any other pressures. 'Significant' means that the pressure contributes to an impact that may result in failing to meet the WFD objectives of having at least good status. In some cases, pressures from several drivers, e.g. nutrient runoff from agriculture and municipal wastewater treatment plants, may in combination become significant.

Within the project Water Bodies Without Borders (WBWB) project area several pressure types were identified and analysed, taking into account assessments done in national river basin management plans that are in force for period 2016-2021, as well as updated information on quality and pressures. In pressure and impact analysis point and diffuse pollution sources, hydromorphological alterations and water quantity were assessed in a relation to water quality.

After pressure and impact analysis it was determined that 25% of WBs are significantly impacted - 23 WBs on Latvian side and 4 WBs on Estonian side (Table 2, 3), including 4 transboundary water bodies (EELV1004 *Peetri/Melnupe_2*, EELV1007 *Vaidva_1/Vaidava_1*, LVEE1008 *Vaidava_2/Vaidva_2*, LVEE1016 *Pedele_2/Pedeli_2*).

			Point sourc	e pollution	Diffuse	pollution	Hydro-morphological alterations				Internal 1 oad	
WB Code	Trans- boundary WB code	WB Name	Nutrient pollution from point source	Point source - non IED plants	Nutrient pollution - agriculture	Nutrient pollution - forestry	Drainage - agriculture	Drainage - forestry	Dams, barriers, locks – hydro- power	Dams, barriers, locks - industry	Dams, barriers, locks - unknown	Historical pollution
E203		Lake Salainis				Х						
E204		Lake Lūkumīša				х						
E225		Lake Burtnieka			х							X
E228		Lake Lielais Bauzis			x							
G229		Vija_1			x	x		X				
G233	EELV1004	Melnupe_2 / Peetri			x							
G234		Melnupe_1			x		x					
G235	LVEE1008	Vaidava_2 / Vaidva_2			x				x			
G241		Gauja_6			х	х						
G242		Vizla_2					х					
G301		Salaca_2			х	X				x		
G303SP		Salaca_3			х							
G304		Iģe_1			х			x				
G306		Salaca_1					х				x	
G308		Jogla		x	X							
G310		Rūja_4					х	X				
G313		Rūja_2					х					
G315		Ķire					х					

 Table 2. Latvian water bodies failing good ecological status (GES) due to significant pressures.

			Point source pollution		Diffuse pollution		Hydro-morphological alterations					Internal 1 oad
WB Code	Trans- boundary WB code	WB Name	Nutrient pollution from point source	Point source - non IED plants	Nutrient pollution - agriculture	Nutrient pollution - forestry	Drainage - agriculture	Drainage - forestry	Dams, barriers, locks – hydro- power	Dams, barriers, locks - industry	Dams, barriers, locks - unknown	Historical pollution
G317	LVEE1016	Pedele_2 / Pedeli_2							х			
G320		Acupīte_2					Х					
G322		Briede_1			Х				х		Х	
G325		Blusupīte			х			х				
G334	EELV1007	Vaidava_1 / Vaidva_1	x									

			Point so pollut		Diffuse p	ollution	Hydro-morphological alterations			Internal load		
WB Code	Trans- boundary WB code	WB Name	Nutrient pollution from point source	Point source - non IED plants	Nutrient pollution - agriculture	Nutrient pollution - forestry	Drainage - agriculture	Drainage - forestry	Dams, barriers, locks - hydropower	Dams, barriers, locks - industry	Dams, barriers, locks - unknown	Historical pollution
2133700_1		Lake Köstrejärv	x		х							Х
2155200_1		Lake Pullijärv										X
2136600_1		Lake Aheru										x
2136000_1		Lake Ähijärv										x
2155500_1		Lake Hino										x
2144700_1		Lake Kirikumäe										х
1155700_1	LVEE1005	Pärlijõgi_1									х	
1155700_2		Pärlijõgi_2									х	
1158000_1	EELV1007	Vaidava_1							Х			
1158000_2	LVEE1008	Vaidava_2							Х			
1012100_2	LVEE1016	Pedele_2 / Pedeli_2									х	

Table 3. Estonian water bodies failing GES due to significant pressures.

2.1. Point source pollution analysis

Point source pollution is a single identifiable source of water pollution as effluents of wastewater treatment plants (municipal, industrial) or other sources that can be easily identified. Within this project data on WWTPs and contaminated sites was analysed to assess the potential impact of point source pollution on water quality.

It was established that impact from point source pollution is significant only on Latvian side of project territory, and there are 2 water bodies affected - EELV1007 *Vaidva_1/Vaidava_1* (on Latvian side G334 *Vaidava_1*) and G308 *Jogla* (due to wastewater effluents) (Figure 3).

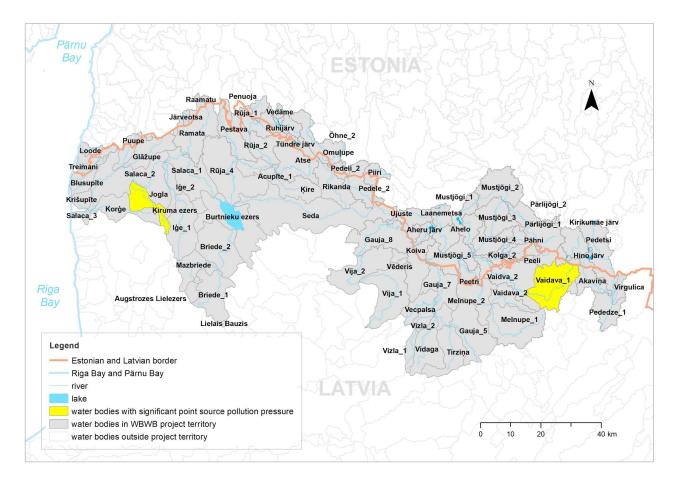


Figure 3. Water bodies with significant pressures due to point source pollution

Wastewater effluents

In Latvian part of project area there are 69 wastewater treatment plants registered in State statistical database "Water-2" in 2017. Most of them (55) are municipal wastewater treatment plants (WWTP). Five WWTPs serve population equivalent of above 2000 (Valka, Aloja, Mazsalaca, Rūjiena, Alūksne), other treatment plants serve agglomerations with population equivalent below 2000. The rest of wastewater treatment plants are either industrial or independent

(for example, schools, landfill polygons, hospitals etc.). Activated sludge is mostly used by WWTPs in the project area, ensuring biological treatment of wastewaters.

In 2017 pollution loads from point sources in Latvian project area were equal to 129.7 t of suspended solids, 42.3 t of total nitrogen (N_{tot}), 5.7 t of total phosphorus (P_{tot}) Organic pollution load from point sources was equal to 105.7 t of biochemical oxygen demand (BOD₅), 491.9 t of chemical oxygen demand (COD). *FyrisNP* tool was used for catchment-scale modelling of source apportioned gross and net transport of nitrogen (N) and phosphorus (P), using available data for a period of 18 years (2000 - 2017). It was established that during this period of 18 years total nutrient loads for Gauja river basin equal to 48.4 t P_{tot} and 284.8 t N_{tot}. Nutrient pollution loads for the same period in the whole Salaca/Salatsi river basin equal to 80.3 t P_{tot} and 382.1 t N_{tot}.

In Estonian part of project area there are 20 wastewater plants registered according to the Estonian Nature Information System (EELIS) database. All of the WWTPs serve population equivalent under 2000. Most of them are municipal wastewater treatment plants. Three WWTPs are used by peat production industry and are mostly used to treat rainwater. Total organic pollutant load in 2017 was equal to 0.852 tonnes of biochemical oxygen demand (BOD₇), 2.8 tonnes of chemical oxygen demand (COD), 1.24 tonnes of total suspended solids (TSS), 0.1 tonnes of total phosphorus per year and 1.77 tonnes of total nitrogen per year. Main processes used in wastewater treatment are sedimentation basins with active sludge, ensuring biological treatment of wastewaters. There is no water body with significant pressure due to wastewater effluent in Estonian part of the project area.

Significance of criteria for point source pollution assessment were discussed between Latvian and Estonian experts, and no common approach was elaborated, however, the approach in each country is fully acceptable and comparable. Significant pressure according to WFD CIS Guidance No.3 (Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance document No.3 "Analysis of Pressures and Impacts", 2003) states that the pressure contributes to an impact that may result in the failing of the objective to reach GES.

To assess the significance of wastewater effluents on water quality, statistical analysis was used and threshold values were calculated (taking into account average water discharge and load of pollutants) - similar approach was used also in previous Gauja river basin management plan for period 2016-2021. Additionally, trends of polluting substance loads during the period were analysed.

According to methodology on assessment of significant pressures, it was estimated that two WBs (EELV1007 *Vaidva_1/Vaidava_1* (on Latvian side G334 *Vaidava_1*) and G308 *Jogla*) are impacted by wastewater effluents.

High amounts of nutrients and suspended solids are released by centralized municipal wastewater system (Alūksne city) into transboundary river WB **EELV1007** *Vaidva_1/Vaidava_1* (on Latvian side - G334 *Vaidava_1*), as well as high amounts of organic matter, as indicated by biochemical

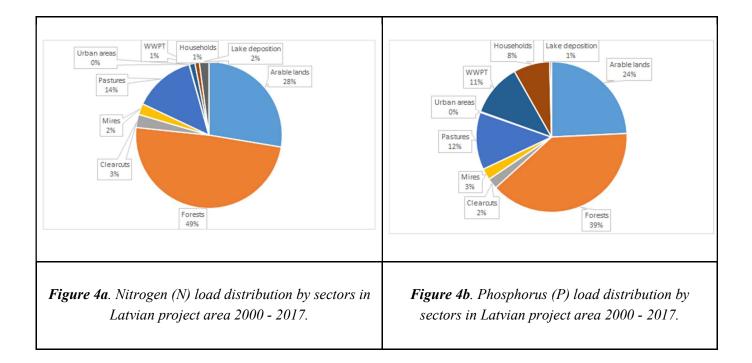
oxygen demand (BOD₅) and chemical oxygen demand (COD). The amounts have been stable during the analysed period of years, no decrease has been observed. Throughout the observed period concentrations of total nitrogen and total phosphorus in effluent are mostly above 15 mg/l and 2 mg/l, respectively. According to permit (No.MA14IB0025) issued by State Environmental Service for nutrients no limits are set. Monitoring of WWTP effluent is carried out 4 times per year.

Significant impact due to industrial wastewaters affects WB G308 Jogla (Ltd. "Aloja-Starkelsen" - manufacturer of potato starch) - high amounts of N_{tot} , suspended solids, as well as large amounts of organic matter are released into Jogla river (as indicated by high BOD5 and COD). Polluting loads have been stable throughout the years, however some higher concentrations of N_{tot} or suspended solids in effluent have been observed for a few years, but limits set in permit issues by State Environmental Service (No.VA13IB00018) were not exceeded as there are no limits set for nutrients in the permit. Production of potato starch is seasonal – higher concentrations of nutrients and suspended solids are observed only in autumn. Improvements in industrial processes have been implemented in the recent years, decreasing the amount of water used in production of potato starch.

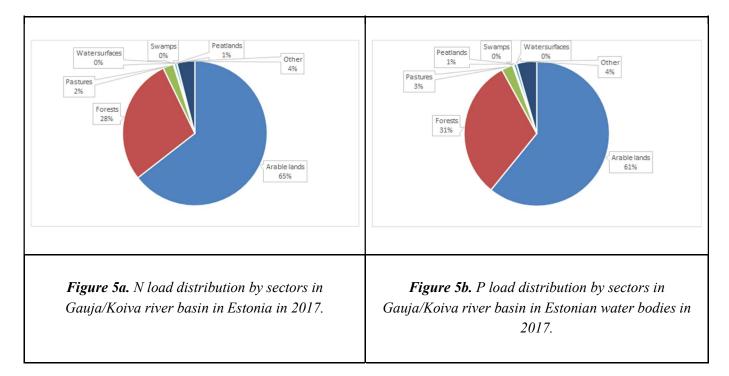
Contaminated sites

On Latvian side the methodology for assessment of significant pressures due to contaminated sites is the same as in current Gauja river basin management plan (2016-2021). According to methodology if at least 3 contaminated sites of 1st category are located in the water body catchment area, it is considered a significant pressure. In Latvia contaminated and potentially contaminated sites are classified into three categories: 1st category - contaminated sites (data about concentrations of polluting substances is available), 2nd category - potentially contaminated sites (there is no data about concentrations of pollutants), 3rd category - not contaminated sites (results of analyses indicate that there is no pollution). Second parameter for assessing pressures from contaminated sites as significant - if the pollution has spread and polluting substances from contaminated sites of 1st category have entered deeper aquifers.

Within the project territory on Latvian side there is one contaminated site of 1st category (in WB LVEE1016 Pedele_2/Pedeli_2 (name of WB on Latvian side G317 Pedele_2) - gasoline station in Valka city), 262 potentially contaminated sites (2nd category; most of them - fertilizer and pesticide storages, gasoline stations and old landfills) and 11 sites that are not contaminated (3rd category). After carrying out assessment for the project territory it was determined that no significant pressures due to contaminated sites are present.


In Estonian part of the project area no contaminated sites are registered, therefore there are no significant pressures due to contaminated sites.

2.2. Diffuse source pollution analysis


Total area of project territory is 7336 km² (5657 km² in Latvia, 1679 km² in Estonia), and most of the area is covered by forests (64.3%) and agricultural lands (30.9%). In Estonian part of project territory percentage of forest lands is higher than in Latvia. Percentage of agricultural lands is slightly higher in Latvia. However, the impact of these differences on pressure distribution is not great. Type of land use can be used as an indicator of pressures present in the catchment, and serves as an integral part of the pressure assessment. Agricultural areas (arable lands) are usually defined as most significant areas for anthropogenic nutrient runoff, and forest areas - as natural areas where anthropogenic nutrient runoff occurs due to clear-cutting or drainage. It is important to determine anthropogenic pressures and loads in order to select appropriate measures to improve ecological status of water bodies. Main sources of diffuse nutrient pollution are agricultural areas, animal husbandry and forestry. Agricultural areas, especially arable lands where fertilizers are applied, account for the greatest nutrient runoff. Pastures are classified as natural areas, but impact from animal husbandry can be present. Since 64.3% of project territory is covered by forests accordingly, greatest part of total nutrient load is runoff from forest lands. Runoff from forest areas is generally considered a natural load, except if forest areas are impacted by human activities, such as drainage and clear-cuts.

To assess the amounts and impact of diffuse source nutrient pollution, usually different modelling tools are used - from very simple mass balance calculation tools to more advanced modeling tools. For nutrient pressure analysis in project area in Latvian territory *FyrisNP* modeling tool was used and for Estonian territory *EstModel* was used. Detailed information about *EstModel* can be found in Annex 1. Detailed information about FyrisNP can be found in Annex 2.

Graphs below (Figure 4a and 4b) show modelling results - nitrogen (N) and phosphorus (P) load distributions by sectors in the modelled Latvian part of project territory for the period from 2000 to 2017.

Graphs below (Figure 5a and 5b) show modelling results - nitrogen (N) and phosphorus (P) load distributions by sectors in 2017 in the Gauja/Koiva river basin part in Estonia.

Results indicate differences within the results obtained. Although in Estonian part of project territory the percentage of forests is higher and percentage of agricultural lands lower than in Latvia, the distribution of load sources indicates higher loads from agricultural lands in Estonia,

while main source of nutrient loads in Latvia are forest lands. These differences have occurred due to the differences in modelling tools used by both countries as well as methodologies and input data used in model. For example, in Latvian territory a higher amount of nutrients come from pastures than in Estonian territory, and this can be due to Latvian approach to distribute animal units evenly across all arable lands (as manure from farms) and pastures (grazing). *EstModel* has still some technical issues and therefore the results are not final. The calculation coefficients still need adjusting but considering the timescale of the project, there was no time wait longer. So the differences may also come from the fact that *EstModel* may need adjusting.

Based on modelled N concentrations 28 water bodies in the Koiva river basin district were in the good and high status class and only 2 water bodies were in the moderate status class. Based on P concentrations 12 water bodies in the Koiva river basin district were in the high status class, 5 in the good, 7 in the moderate, 4 in the poor and 1 water body was in the bad status class.

Modelling results indicated that significantly higher concentrations of nutrients in Estonian side of project territory were from agricultural land, however, forestry also plays an important role in the nutrient content. In other areas the proportion of natural concentration in the total concentration of nutrients was predominant.

Despite the differences, pressure and impact assessment methodologies allowed to identify significant sectors impacting the quality of water bodies due to nutrient runoff. 14% of all WBs in project territory are significantly impacted by diffuse source pollution, all of which (15 WBs) are located in the Latvian side of project territory (Figure 6). Detailed description of the main diffuse pressure sectors - agriculture, forestry and animal husbandry can be found in the following subsections.

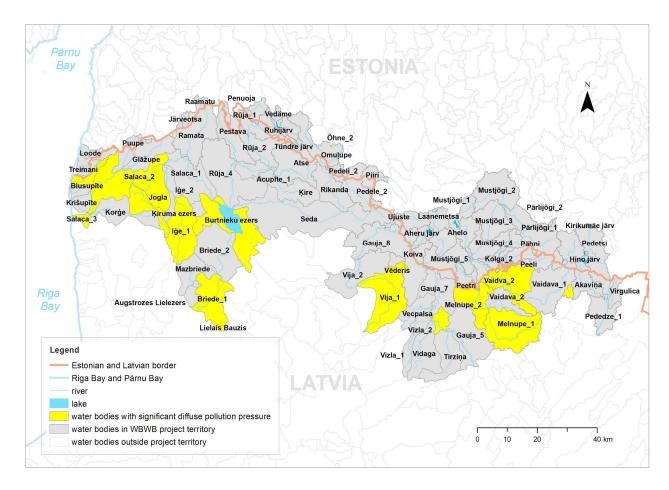


Figure 6. Water bodies with significant pressures due to diffuse source pollution

Hydro-morphological alterations in forest and agricultural areas in many cases impact the biological quality elements in rivers and lakes, and in project territory impact on biota is identified as significant in many water bodies. The pressures are analyzed in the subsection on hydro-morphological alterations.

2.2.1. Forestry

50.6% of the Latvian project territory is covered with forests, of which 16.8% are altered with drainage systems (calculations are based on estimation of several forest types typically drained) and 13.8% are clear-cuts. Forestry as main driver for nutrient drainage causing failure of GES in 5 water bodies on Latvian side (E203, E204, G229, G241, G301), drawing up 4.6% percent of the total number of water bodies in the project area. No water bodies in Estonian side are failing GES due to forestry.

According to modelling results for 18 year period (2000 - 2017) for Latvian part most part of N load originates from forest areas - 1876.5 t in 2017 (in Salaca river basin - in 20 WBs out of 30, and in Gauja river basin - in 22 out of 23 WBs as well as in the 3 WBs included in project territory, but outside Gauja and Salaca river basins). Similar is the situation with P loads – in most WBs

greatest amounts of P originates from forest areas - 147.4 t in 2017 (in Salaca river basin - in 14 WBs out of 30, in Gauja river basin territory - 22 out of 23 WBs and in all 3 WBs from Daugava river basin included in project territory). It should be noted that these proportions combine both natural and anthropogenic loads of nutrient runoff.

As the clear-cut areas in the project area on the Latvian side are small, accounting for not more than 6.9% of the total N load in each water body from the clear-cut areas and not more than 6.7% of the total P load in each water body come from the clear-cut areas. For the whole Latvian part of the project territory it was calculated that N load in 2017 originating from clear-cuts was 110.2 t and P load originating from clear cuts was 7.4 t.

For Estonian part it was calculated that N load in 2017 from clear-cutting areas was 313.5 t, therefore it is assessed as an important source of nitrogen. Clear-cutting is an important source of phosphorus as well - P load was 13 t in 2017 (Figure 7).

Figure 7. N_{tot} load from felled area in Estonia.

2.2.2. Agriculture

According to *Corine Land Cover* 2018 data, almost 21.6% of Salaca river basin area in Latvian project territory is used for agriculture as arable lands and 12.3% as pastures. 11.3% of all Gauja river basin water bodies included in project area are arable lands and 18.7% are pasture lands. After analysing land *Corine land cover* land use data for years 2018 and 2012, slight increase in arable land area proportion and slight decrease in pasture land area proportion is observed. According to the *Corine Land Cover* 2018 data almost 22% of the project area on Estonian side is

arable land and 4.5% are pasture lands. Land cover data shows that there have been no significant changes in land use since 2013.

After the pressure analysis it was determined that diffuse pollution due to agricultural runoff is significant in 13 water bodies in Latvian part of project territory (12% of the total project territory) and there are no WBs in Estonian part of project territory with significant pressures from diffuse pollution sources.

Nitrogen

According to the pressure analysis and calculations for Estonian part, most of the N load comes from arable lands. Highest N load is in Mustjõgi water bodies. According to calculations, the N load from the arable land in Estonian territory of the project area in 2017 was 616.8 t. The load from pastures was significantly lower, 24.7 t.

According to calculations for the Latvian side, the N load from the arable land in the Latvian par of project territory in 2017 was 1030.7 t and N load from the pasture lands in 2017 was 541.8 t. According to modelling results for 18 year period (2000 - 2017) runoff from arable lands was the main N source in 9 WBs for the 30 modelled WBs within the Salaca river basin in WBs within the Gauja and Daugava river basins runoff from arable lands was not the main N source.

Phosphorus

According to the pressure analysis and calculations for Estonian part, most of the P load comes from arable land. As with nitrogen load, the largest part of P load is in the Mustjõgi water bodies, as most of the agricultural land in the Estonian project area is located in the catchments of the Mustjõgi water bodies. *EstModel* estimated that in 2017, the P load of arable land on the Estonian territory in the project area was 22.8 tonnes. The load on pastures was significantly lower, 1.04 t.

According to calculations for Latvian side, the P load from the arable land in the Latvian part of project territory in 2017 was 31.9 t and P load from the pasture lands in 2017 was 42.4 t. Modelling results from 18 year period indicated that runoff from arable lands (and in one case - pastures) was the main P source in 10 WBs (7 of them - failing GES) from 30 WBs within the Salaca river basin, however in WBs within the Gauja and Daugava river basins runoff from the arable lands was not as the main P source.

2.2.3. Animal husbandry

At the beginning of 2018 on Latvian side of project area 1691 farms with total of 37543 LSU are registered. Most of these farms are small-scale, where the sum of livestock units is below 10 LSU - in 63% of all farms registered (8% of all LSU in project territory). There are 78 large farms (where LSU>100), which are located in 26 WBs, 1-7 farms within WB. The average density is 0.066 LSU per hectare (6.6 LSU/km²) in the project area. Total amount of farms since 2000 has significantly decreased (about 5 times), however the livestock units have increased, thus indicating intensification of livestock farming.

According to geospatial distribution of livestock farms and LSU density on arable land, in the WB E225 *Burtnieka lake* the pressure by livestock farming is potentially significant - there are 5 large farms located in the water body territory (LSU>100). In 3 WBs - G312 Rūja, G320 Acupīte and G334 Vaidava there is higher LSU density than on average in project territory.

On Estonian side there are in total 213 livestock buildings with 4129 LSU. In Estonia, like in Latvia, most of the farms are small-scale, where sum of livestock units is below 10 LSU - 57% of all farms registered in project territory. There are 6 large farms (LSU>100), which are located in 5 WBs. The average density of LSU is 0,036 LSU per hectare (3.6 LSU/km²). According to map analysis the share of cultivated land and the location of livestock buildings, livestock farming can be considered as a potentially significant pressure throughout the Mustjõgi river basin. Arable land covers 75% of the river catchment area, with a total of 1679 livestock units. The average density (3.6 LSU / km²) is no higher than in project area. There are 2 large farms (LSU>100) in the WB Mustjõgi_4. In addition there are 3 other WBs where LSU density is higher than on average in project territory: Lake Hino (2155500_1), Raamatu (1153000_1), Lake Ähijärv (2136000_1).

2.2.4 Diffuse pressure from residents not connected to public sewerage system

In Estonian project area the average population density is 7.4 in/km², which is much lower than average in Estonia. The emissions from inhabitants that aren't connected to centralized sewage networks is low. There are 5500 people that are not connected to public sewerage system in the Estonian project area. The nutrient load in 2017 was 1.2 t of N. However, these pressures are not significant and do not cause failure of GES.

Similar situation is observed in Latvia - in Latvian part of project territory the average density of inhabitants is much lower than in the country on average - only 9 in/km². Also part of inhabitants aren't connected to centralized sewage networks, and, according to modelling results, nutrient runoff from households is 1% of total N load and 8% of total P load in this territory during the 18 year period. N and P amounts in 2017 from households not connected to the centralized sewage system were 33.8 t and 10.8 t.

2.2.5 Non-channeled rainwater

Non-channeled overflow comes from rainwater overflow where the load can't be estimated as a point load without more accurate data. The load is based on hard-surfaced road areas. The total area of hard-surface roads in the project area is 22.4% and annual loads in 2017 were 3.3 t N and 0.53 t P. These pressures are not significant and do not cause failure of GES.

In Latvian part of project territory runoff from urban areas was also taken into account, however, the share of nutrient runoff from these territories was calculated as insignificant.

2.3. Hydro-morphological alterations

An assessment of hydro-morphological alterations has been done on the basis of hydromorphological (HYMO) monitoring provided by LEGMC in the Gauja and Daugava River Basin Districts (RBDs) since 2013. Hydro-morphological quality assessment elements include morphological and hydrological elements as well as river continuity.

The main HYMO pressures in the project area (Figure 8) are:

- land drainage in agricultural area and in forests that causes, as changes in the river morphology (reduction of length of river bed), as hydrological regime;
- water regulations by HPPs and sluices which cause significant changes in hydrological regime of river;
- dams for hydropower production and other water use that interrupt the continuity of stream flow and create barriers for sediment transport and biota migration;
- seaport operation in Salaca river mouth is a combination of HYMO alterations (e.g. bed dredging, changes in sediment regime, bank stabilization, bank erosion).

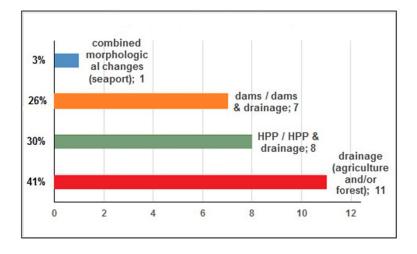


Figure 8. HYMO pressures in water bodies under risk.

In accordance with impact on water bodies' HYMO quality, all water bodies in the project area subdivided into 3 categories: referenced WBs without any alterations (45% of WBs), WBs under risk (41% of WBs) and WBs under significant risk not to meet the good quality (14% of WBs).

Among water bodies under HYMO risk and significant risk there are 14 that have direct or indirect impact on the ecological quality of water bodies in the project area. First of all, these are G303HM Salaca_3 with multiple pressures of "Salacgriva" seaport and G315HM Kire that is completely modified by Amelioration Company. Secondly, two transboundary water bodies G317 Pedele_2 and G235 Vaidava_2 that both have 2 HPPs in the stream without any working fish pass. Others 9 water bodies have modified river stretches and small dams in the main stream or in tributaries

(G229 Vija_1, G234 Melnupe_1, G242 Vizla_2, G301 Salaca_2, G306 Salaca_1, G304 Ige_1, G310 Ruja_4, G313 Ruja_2, G320 Acupite_2, G322 Briede_1 and G325 Blusupite).

An assessment of hydro-morphological alterations has been done on the basis of analysis of HYMO status that was provided by Estonian Environmental Agency in 2019. Hydro-morphological quality assessment elements include morphological and hydrological elements. Water bodies can be divided into three categories (Figure 9).

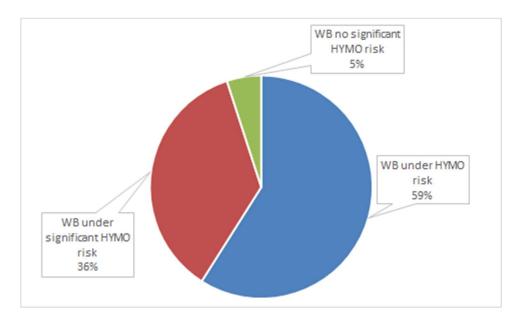


Figure 9. Assessment of HYMO alterations in water bodies in the Estonian part of project area.

In Estonian part of the project area the main HYMO pressures (Figure 10) are similar to Latvian:

- land drainage in agricultural area and in forests that cause, as changes in the river morphology (river bed shortening), as hydrological regime;
- water regulations by HPPs and dams that cause significant changes in the river hydrological regime;
- dams for hydropower production and other water use that interrupt the continuity of stream flow and create barriers for the sediment transport and fish migration.

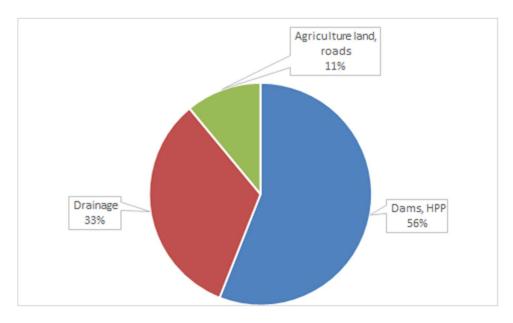


Figure 10. HYMO pressures in water bodies under risk.

In total there are 65 dams and 1 HPP in 24 river water bodies in the project area in Estonia. Of these, 15 are WB-s that are with HYMO risk and have 1 or more dams. Four of them are not obstacles for fish and 5 WB have 3-5 dams which are obstacles or difficult to overcome (Kolga_1, Kolga_2, Pärlijõgi_1, Pedeli_2, Õhne_2). There are 2 water bodies Pärlijõgi_2 and Vaidava_2 where fish passes have been built and therefore dams are not causing significant HYMO risk anymore.

There are 465.7 km² of drained areas in the Estonian project area and this makes up to 27% of the Estonian part of the project area. The length of the state-maintained recipients is 109 km. Most land improvement systems have been established more than 30 years ago and need to be maintained or reconstructed.

From WBs with HYMO risk, there are 9 water bodies of which more than 50% of the length of the body has been modified by land improvement.

During pressure assessment it was determined that 17 water bodies in the project area significantly impacted by hydro-morphological alterations - 14 WBs in Latvian part of project territory and 3 WBs in Estonian part of project territory (Figure 11).

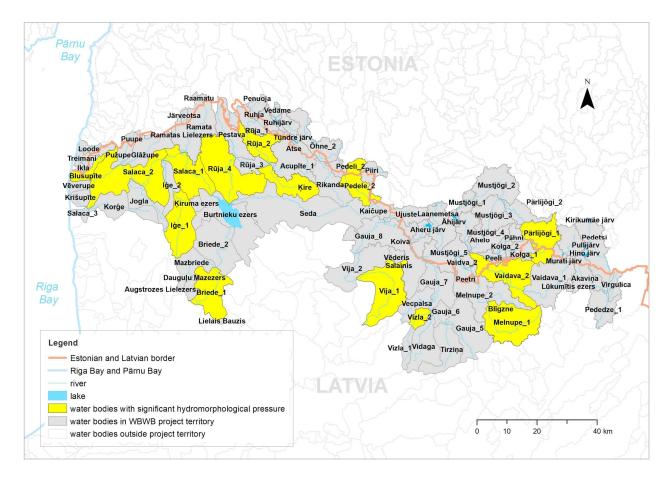


Figure 11. Water bodies with significant pressures due to hydro-morphological alterations.

2.4. Water abstraction

Water abstraction has been assessed as non-significant pressure in both countries. In project territory water abstraction doesn't cause deterioration of water quality or quantity. According to Latvian State statistical data base "Water-2" information in the project territory there are 52 water users that abstract water, and in total in 2017 abstracted water amount is 1 100 200 m³.

According to EELIS, there were no water users abstracting water in 2017 on Estonian side of project territory.

2.5. Other pressures

Other pressures were not evaluated in detail within this project. Discussions about the concentrations of pharmaceuticals in water, potentially invasive species that may impact specific indicator species, pesticides, as well as other issues were discussed among project experts. It should be noted that in national river basin management plans these pressures should be taken into account during the pressure assessment process, especially in cases when water bodies are failing GES due to substances or invasive species impacting natural indicator species.

4. Defined environmental targets

4.1 Information about Estonia

According to the Water Framework Directive the objective initially was set to achieve good ecological status of water bodies by the year of 2015. In the previous water management plan (2010-2015), some water bodies were given exceptions, good status has to be achieved by the year of 2021.

In the current water management plan of 2015-2021 the objective of the 34 surface water bodies of the project area is set to achieve at least good ecological status by the year 2021 (including good ecological potential). For 7 water bodies the objective is moderate status by the year of 2021 (including moderate ecological potential), it means the water bodies were given an exception. Exceptions are given, because improvement of status is achieved in stages, some exceed the time limit (4/1), finishing of the corrections is expensive (4/2) and/or it's because of the unsuitable natural conditions (4/3).

Comparing the compilation of the first water management plan to the compilation of the second water management plan the knowledge about the status of water bodies has improved, because more monitoring and research has been carried out. Therefore there is more information to rely on when assessing the status. At the same time it has been revealed, that the statuses of the water bodies have changed for better and also for worse.

According to the interim assessment in 2019 there are 32 surface water bodies in good status, so for those water bodies, the objective for the year of 2021 is already achieved (Table 4). Among them there are water bodies given an exception and to which the objective of achievement of good status was extended to 2021 or 2027. Those are, for example, Treimani, Hargla, Õhne_2, Ruhja, Peeli, Mustjõgi_2. Regardless of the exception, for all water bodies the objective is achieved according to the interim assessment of 2018. From former single Kolga water body two new water bodies were delineated – (Kolga_1 and Kolga_2). Järveotsa and Läteperä water bodies were added as well. There is no previous information or status assessment for them.

Table 4. Surface water bodies in the project area with status objective set for 2021 is already achieved by 2019. Exeption reasons: improvement of status is achieved in stages, some exceed the time limit (4/1), finishing of the corrections is expensive (4/2) and/or it's because of the unsuitable natural conditions (4/3).

Code of WB	WB name	Status 2013	Objective 2015 reached	Updated postponed objective	Updated exception reason	Status 2018 / Objective 2021
1157400_1	Ahelo	good	yes	-	-	good
1157600_1	Kuura	good	yes	-	-	good
1154600_1	Laanemetsa	good	yes	-	-	good
1154800_1	Mustjõgi_1	good	yes	-	-	good
1154800_3	Mustjõgi_3	good	yes	-	-	good
1154800_4	Mustjõgi_4	good	yes	-	-	good
1159700_1	Pedetsi	good	yes	-	-	good
1160200_1	Punaoja	good	yes	-	-	good
1154300_1	Ujuste	good	yes	-	-	good
1154000_1	Atse	good	yes	-	-	good
1012100_1	Pedeli_1	good	yes	-	-	good
1153200_1	Penuoja	good	yes	-	-	good
1152700_1	Puupe	good	yes	-	-	good
1153000_1	Raamatu	good	yes	-	-	good
1153400_1	Lilli	good	yes	-	-	good
1153300_1	Vedäme	good	yes	-	-	good
2099300_1	Ruhijärv	good	yes	-	-	good
2114800_1	Tündre järv	good	yes	-	-	good
1152300_1	Loode	good	yes	-	-	good
1012600_1	Piiri	good	yes	-	-	good
1152500_1	Treimani	moderate	no	2021	4/1, 4/2	good
1159300_1	Hargla	moderate	no	2021	4/1	good
1013700_2	Õhne_2	moderate	no	2021	4/1	good
1153600_1	Ruhja	moderate	no	2027	4/1	good
1158100_1	Peeli	moderate	no	2021	4/1	good
1154800_2	Mustjõgi_2	moderate	yes	2021	4/1, 4/2, 4/3	good
1152900_1	Järveotsa	-	-	-	-	good
1158400_1	Kolga_1	-	-	-	-	good
1158400_2	Kolga_2	-	-	-	-	good
1159704_1	Läteperä	-	-	-	-	good

According to the interim assessment of 2019 there are 9 water bodies that are in moderate status and 5 water bodies that are in poor status (Table 5). Among them there are 6 lakes and 8 rivers.

The changes in the status of the lakes are slow, because of the lake's internal load. The assessments of the status depend greatly on the weather of given year. There are 10 lakes in the project area,

of which 6 lakes are in poor status. The reasons for poor status for lakes are inner nutrient load and eutrophication, for some lakes, the reasons are unclear. Historical reasons for poor status are lowering the water level and historical nutrient loads. Internal nutrient loads are the main pressure, since external loads have significantly decreased in the last decades. Further reduction of pressures is complicated and the remediation of lakes may require extensive investments.

For rivers the moderate status is caused by damming, which prevents free migration of aquatic biota. Many rivers are located in Natura 2000 area, where there is also need to ensure the passage of fish, both upstream and downstream of a dam, to achieve good ecological status. In the years 2012-2015 there were 5 fish passes were constructed on the dams of salmonidae river water bodies, which are a part of achievement of good ecological status. During the project fish expert conducted on-site inspections, according to which the fish passes of Vastse-Roosa, Sänna-Alaveski, Sänna-Mäeveski and Ala-Raudsepa need additional improvements. Currently fish passes are difficult to pass for some/most of the fish - they are functionally impaired and don't fully serve the purpose.

For some surface water bodies the river basin specific pollutants exceed the applicable limit values (for instance barium, bromodiphenyl ether). The sources and reasons for these river basin specific pollutants are unknown.

The time limit for the achievement of a water protection objective provided in the Water Framework Directive may be extended for two periods, unless the objective related to the water body cannot be achieved by that time due to natural conditions. In that case the good status has to be achieved by the year 2027.

Code of WB; tranboundary WB code	WB name	Status 2013	Objective 2015	Objective 2015 reached	Postponed objective in 2010	Reason for exception in 2010	Updated postponed objective	Updated exception reason	Status 2018	Objective 2021
2136600_1	Aheru järv	good	good	yes	-	-	-	-	moderate	good
2155500_1	Hino järv	good	good	yes	-	-	-	-	moderate	good
2144700_1	Kirikumäe järv	moderate	good	no	-	-	2027	4/1, 4/3	moderate	good
1154200_1; EELV1001	Koiva	good	good	yes	-	-	-	-	bad	good
2133700_1	Köstrejärv	moderate	good	no	-	-	2021	4/1, 4/3	bad	good
2155900_1; EELV1009	Murati järv	moderate	good	no	-	-	2021	4/1	bad	good
1154800_5	Mustjõgi_5	very good	good	yes	-	-	-	-	bad	very good
2155200_1	Pullijärv	moderate	moderate	yes	2021	4/1, 4/2	2027	4/1, 4/3	bad	moderate
1155700_1; LVEE1005	Pärlijõgi_1	moderate	good	no	-	-	2021	4/1	bad	good
1155700_2	Pärlijõgi_2	good	good	yes	-	-	-	-	moderate	good
1158000_1; EELV1007	Vaidva_1	moderate	moderate	yes	2021	4/1, 4/2, 4/3	2021	4/1, 4/2, 4/3	moderate	good
1158000_2; LVEE1008	Vaidva_2	good	good	yes	-	-	-	-	moderate	good
2136000_1	Ähijärv	good	good	yes	-	-	-	-	moderate	good
1012100_2; LVEE1016	Pedeli_2	good	good	yes	-	-	-	-	moderate	good
1158700_1	Peetri	very good	very good	yes	-	_	-	-	good	very good

Table 5. Surface water bodies in the project area, which status objective for 2021 is not achieved.

4.2 Information about Latvia

On Latvian side of the project area there are 63 surface water bodies, including 11 lake water bodies and 52 river water bodies (Figure 12). 60 water bodies belong to Gauja RBD and 3 water bodies - to Daugava RBD.

More than half (60%) of the water bodies have good ecological quality, 38% water bodies have moderate ecological quality and only one water body (Lake Burtnieks) is in poor ecological quality.

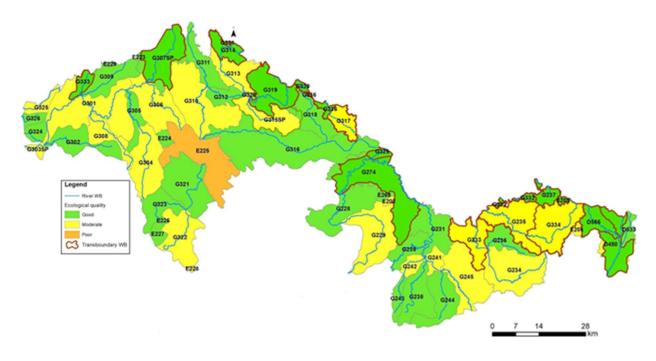


Figure 12. Map of ecological quality in water bodies of the project area.

In current Gauja and Daugava river basin management plans (2015-2021) the objective for 31 surface water bodies in the project area is set to be in good status by the year of 2021. For two water bodies (Lake Burtnieks and River Salaca (G306)) exceptions were applied. According to the latest results, 18 water bodies are in good ecological quality and thereby 60% of water bodies have reached the good ecological quality objective.

Comparing to second river basin management plans, the quality has improved in 8 water bodies. For 5 water bodies ecological quality has decreased and for 18 water bodies it has not changed. Most of the changes have occurred due to implementation of better assessment methodology and improvements in monitoring. For example, Latvia has developed macroinvertebrate method especially for dystrophic humic lakes. Integration of hydromorphological alterations as a criteria for status assessment has been improved, especially impact of HPPs and other dams on river continuity.

5. Economic analysis of water use and possible measures to support planning of the programme of measures

The economic analysis aims to provide socioeconomic information and assessments relevant for planning and decision making on effective measures for achieving environmental targets of water bodies. It includes:

- 1. Analysis of water use and users, which aims to provide relevant socioeconomic information to support assessing costs of water use and socioeconomic impacts of additional measures to achieve environmental targets of water bodies.
- 2. Assessment of the costs caused by water use and their recovery, which analyses what are the costs of water use causing degradation of the water environment and who and to what extent is paying for these costs. This is analysed for significant water uses those which create significant pressures causing failure of good ecological status for water bodies in the project area. The analysis serves basis for proposing the necessary policy actions to improve recovery of these costs according to the "cost recovery principle" and "polluter-pays-principle".
- 3. Economic evaluation of additional measures for achieving environmental targets, which includes assessment of costs of the measures, their cost-effectiveness, analysis of other socioeconomic impacts of the measures. The results are used to provide recommendations on the most socioeconomically effective additional measures to achieve environmental targets for the WBs failing GES.

5.1. Economic analysis of water use and users

The economic analysis started with identifying significant water uses and pressures related to them in the project area to which the relevant policy requirements and principles apply. Those water uses are considered as "significant" which create significant pressure causing failure of GES for WBs. Assessment of the significance of the pressures comes from the pressures and impact analysis prepared as part of the project.

The significant water uses considered in the economic analysis are listed in Table 6. For the Latvian part of the project area, water uses related to agriculture, forestry, small HPPs and dams/obstacles on rivers with other or no use impact significantly several to large number of WBs. There are few other uses which cause failure of GES in 1 WB each. For the Estonian part four water uses are significant, however majority of them impacts only one WB each except the dams/obstacles on rivers with other or no use which impact 4 WBs.

Table 6. A list of significant water uses and users for the project area. (Source: Based on analysis as part of the project.) * Information source: Pressures' and status' assessment prepared as part of the project.

Water users	Water uses	Significant pressures due to the water use	Significance for LATVIA No of surface WBs failing GES*	Significance for ESTONIA No of surface WBs failing GES*	
	Pollution run-off from agricultural lands (mainly arable land and manure storage sites)	Diffuse pollution of nutrients	13 WBs	Do not cause significant pressures	
Agriculture	Drainage for agriculture (by polders, regulation of water regime, straightening of rivers, drainage ditches etc.)	Hydro-morphological pressure	7 WBs	Do not cause significant pressures	
Forestry	Pollution run-off from clear-cutting and drained forest areas	Diffuse pollution of nutrients	5 WBs	Do not cause significant pressures	
	Drainage of forest lands	Hydro-morphological pressure	4 WBs	Do not cause significant pressures	
Various users (e.g. recreation, roads) or no users	Dams/obstacles on rivers with various uses or no use	Hydro-morphological pressure	3 WBs with 8 obstacles creating significant pressure	4 WB	
Small hydro- power plants (HPPs)	Use of water flow for energy production (involving dam, turbine, water flow fluctuations, storage pond/reservoir, etc.)	Hydro-morphological pressure / Hydrological pressure (quantity, water flow regime)	3 WBs (due to operation of 5 HPPs).	1 WB (due to Vastse- Roosa dam)	
Households, Industry, Other	Wastewater discharging from centralised sewage systems	Point source pollution of nutrients	1 WB (due to Alūksne city)	1 WB (due to Köstrejärv)	
Industry	Wastewater discharging Point source pollution		1 WB (due to SIA "ALOJA- STARKELSEN").	Do not cause significant pressures	
No user (historical)	Accumulated (past) pollution in WB	Nutrient pollution in sediments	1 WB, past pollution in sediments (Burtnieku lake).	1 WB, past pollution in sediments (Köstrejärv).	

Joint quantitative socioeconomic indicators were agreed for each significant user taking into account information needs for further economic assessments and availability of data for applying the indicators. The socioeconomic significance of the water users is characterised in Table 7. It aims to show socioeconomic significance of the water use and users for the economy and welfare in the area. Moreover, it provides relevant data and estimates for further economic assessments – for analysing cost recovery of water use and socioeconomic impacts of additional measures for achieving environmental targets.

Table 7. Socioeconomic characterisation of significant water users in the project area. (Source: Estimates developed as part of the project. The estimation approach and input data are described in the detailed report of the project on the economic analysis.)

Water users	Applied socioeconomic	Estimates for the	project area
(sectors/ activities)	indicators	for the LATVIAN part	for the ESTONIAN part
Agriculture	 Number of companies Number of employed persons Turnover per year Profit / Losses per year 	 1549 companies. 2703 employed persons. Turnover 38.4-38.7 milj EUR per year. Profit 5.35-5.38 milj EUR per year 	 437 companies together in agriculture and forestry sectors. 1270 employed persons together in agriculture and forestry sectors.
Forestry	 Number of companies Number of employed persons Turnover per year Profit / Losses per year 	 349 companies. 657 employed persons. Turnover 18.3-18.4 milj per year. Profit 0.58-0.59 milj per year. 	Turnover 123.2 milj EUR per year together in agriculture and forestry sectors.
Users/ owners of dams/ obstacles (with various or no use)	 Number of dams/obstacles causing failure of GES Number of owners of these dams/ obstacles 	8 dams/ obstacles causing significant pressure in 3 WBs (17 obstacles overall in these 3 WBs) 11 owners related to these 8 obstacles (28 owners related to all 17 obstacles)	11 dams causing failure of GES in 4 WBs.
Small hydro- power plants (HPPs)	 Number of small HPPs in the project area Their revenues from the produced energy 	10 HHPs Revenues 0.69 milj EUR per year (average from 2016-2018 data).	1 HHP. Revenues 1735 EUR per year (average from 2016- 2018 data).
Households	 Number of inhabitants served with centralised water services Mean disposal income of inhabitants per person per month 	24 700 inhabitants in the project area, from those 5486 in the Aluksne city.Disposal income 361 EUR in the project area, 308 in the Aluksne county (489 EUR in Latvia on average).	10 300 inhabitants in the project area, from those7250 in the Valga City.Disposal income 584 EUR in the project area (655 EUR in Estonia on average).

5.2. Assessment of costs caused by water use and their recovery

Aim of the assessment, commonly called as cost recovery assessment, is to support implementation of the following principles:

- <u>Cost recovery principle</u> to ensure that users of "water services" cover adequately costs of these "water services" (including, financial, environmental and resource costs).
- <u>"Polluters-pay-principle"</u> (PPP) which guides on how the costs of water use should be covered among water users, i.e. that the users provide adequate contribution into covering their created costs based on their role in causing these costs.

According to the WFD requirements the actions towards implementing the named principles shall be reported in the River Basin Management Plans (RBMPs) and specific measures need to be included in the programs of measures.

5.2.1. Approach for the cost recovery assessment

The cost recovery assessment needs to address range of methodological issues – from defining "water services" and other "significant water uses", assessment of recovery of their costs, analysis of the current pricing instruments via which the costs are recovered, assessing socioeconomic effects of the cost recovery of "water services" where relevant. Approach and results of the cost recovery assessment are described in the detailed report of the project on the economic analysis.

The cost recovery assessment is closely linked with the pressures and WBs status assessments, which provide basis for identifying "water services" and other "significant water uses" to be included in the assessment, as well indication on presence of the "environmental costs" due to water use.

Two types of water uses are distinguished for the assessment – "water services" and (other) "significant water uses". According to definitions in the WFD Article 2, the "water services" means all services which provide, for households, public institutions or any economic activity: (i) abstraction, impoundment, storage, treatment and distribution of surface water or groundwater; (ii) wastewater collection and treatment facilities which subsequently discharge into surface water. Users of the "water services" must cover adequately costs of these "water services", including, financial, environmental and resource costs¹. Other water uses, if they cause failure of GES in WBs, are defined as "significant water uses". There is a need for policy instruments (i.e. additional measures for reducing pressures) to ensure that these uses give adequate contribution into reaching environmental targets in the affected WBs according to PPP.

A list of "water services" and "significant water uses" for the project area is provided in Table 8. For the "water services" relevant costs of water use include "financial costs" of using the service and "environmental costs", which capture negative impact from the water use. For the "significant water uses" only the "environmental costs" are analysed. Relevance of the "environmental costs" in the project area is characterised in the table with the number of WBs failing GES due to each "water service" and "significant water use".

¹ The "financial costs" include all the costs of providing and administering the service. The "environmental costs" are the costs of damage caused by water uses to the water environment and ecosystems and those who are using them. The "resource costs" are not significant in the project area since there is sufficient water availability for all water uses. Thus, they were not included in the analysis.

Table 8. The list of "water services" (WS) and "significant water uses" (SWU) for the project area. (Source: Based on analysis as part of the project.)

* No of WBs failing GES due to each water use is provided in parenthesis. Note that the same WB can be affected by multiple significant pressures.

** Since there are no WBs where the given "water service" creates significant pressure, it is assumed that there are no un-covered "environmental costs". Hence only "financial cost" recovery is analysed.

Water uses	Their created significant pressures	LAT*	EST*
Centralised sewage services	Point source pollution of nutrients	WS (1)	WS (1)
Individual sewage discharge by households		WS (0)**	WS (0)**
Individual wastewater discharge by agriculture		WS (0)**	WS (0)**
Individual water (self) abstraction by industry		WS (0)**	WS (0)**
Individual (self) wastewater discharge by industry	point source pollution of nutrients	WS (1)	WS (0)**
Individual excess water discharging related to mining	pressure on surface water quality (suspended matters)	WS (0)**	Not relevant
Individual wastewater discharge by waste management (disposal) sites	point source pollution of hazardous substances	WS (0)**	Not relevant
Water use for energy production in small HPPs (involving water storage)	hydro-morphological pressures	WS (3)	SWU (1)
Dams/obstacles with various or no uses	hydro-morphological pressures	SWU (3)	SWU (4)
Pollution run-off from agricultural lands	diffuse nutrient pollution	SWU (13)	Not relevant
Pollution run-off from clear-cutting and drained forest areas	diffuse nutrient pollution	SWU (5)	Not relevant
Drainage for agriculture	hydro-morphological pressures	SWU (7)	Not relevant
Drainage for forestry	hydro-morphological pressures	SWU (4)	Not relevant
Accumulated (past) pollution in WB	nutrient pollution in sediments	SWU (1)	SWU (1)

5.2.2. Summary on the cost recovery assessment for the project area

Summary on assessment of the cost recovery level for the **"water services"** is presented in Table 9. It can be concluded concerning the "water services":

- They cover their "financial costs" of water use, except the centralised "water services" where the cost recovery rate varies considerably depending on the settlement it is in range of 78-101% for Latvia (not assessed for all settlements), including 101% for the Aluksne city, and 87% for the largest settlement in the Estonian part (the Valga municipality).
- In the Estonian part only the "centralised water services" create "environmental costs" (in 1 WB). Nature Resource Tax (NRT) is paid for covering the environmental damage, thus the "environmental costs" are covered (at least) partly.
- In the Latvian part 3 out of the 8 "water services" create "environmental costs" in single or few WBs. They pay NRT aimed to cover the environmental damage. However, the NRT payments are rather small and do not cover the "environmental costs".

Summary on qualitative assessment of the cost recovery level for the **"significant water uses"** is presented in Table 10. It can be concluded concerning all "significant water uses" that their

created "environmental costs" are not covered. In the Estonian part, three water uses cause "environmental costs" in single or several WBs² and there are no current pricing instruments for covering these costs. In the Latvian part, four water uses cause such costs in considerable number of WBs. There is the current pricing instrument only for compensating damage to fish resources. But no pricing instruments for covering other environmental damage costs.

² Note that the water use for electricity production in small HPPs is considered as "water use", not "water service" in Estonia, while it is considered as the "water service" in Latvia.

	Financial costs and	their recovery	Environmental costs (EC) and their recovery	Cost recovery lev	el, including EC
"Water services"	For LATVIAN part	For ESTONIAN part	For LATVIAN part	For ESTONIAN part	For LATVIAN part	For ESTONIAN part
Centralised water supply and sewage services	Financial cost recovery 78-101% (depending on settlement). 101% for Aluksne city.	Financial cost recovery 87% for Valga city.	Cause EC in 1 WB – due to WW discharges of Aluksne city (NRT payment around 1200 EUR per year).	Cause external EC in 1 WB – due to WW discharges of Köstrejärv (NRT payment 18 325 EUR in 2017).	Partial financial cost recovery (depending on settlement). EC (for 1 WB) are covered partly.	Partial financial cost recovery. EC (for 1 WB) are largely covered.
Individual sewage by households	Covered		No "environmental costs"	due to this water use	Costs are ful	ly covered.
Individual water supply by industry	Covered		No "environmental costs"	To "environmental costs" due to this water use		ly covered.
Individual wastewater discharging by industry	Covere	Cause EC in 1 WB due to WW of a single company.No "environmental costs" due to this water useCoveredNRT payment by this company around 270 EUR per yearNo "environmental costs" due to this water use		Financial costs are covered. EC are not covered in 1 WB.	Costs are fully covered.	
Individual wastewater discharging by agriculture	Covered (but possible	use of subsidies)	No "environmental costs"	due to this water use	Costs are fully covered.	
Individual excess water discharging by mining	Covered	Not relevant for the Estonian part.	No "environmental costs" due to this water use	Not relevant for the Estonian part.	Costs are fully covered.	Not relevant for the Estonian part.
Individual wastewater discharging by waste	Covered (but possible use of subsidies)	Not relevant for the Estonian part.	No "environmental costs" due to this water use	Not relevant for the Estonian part.	Costs are fully covered.	Not relevant for the Estonian part.

Table 9. Summary on the cost recovery assessment for the "water services" in the project area. (Source: Based on analysis as part of the project. The assessment approach and input data are described in the detailed report of the project on the economic analysis.)

Financial costs and their recovery		Environmental costs (EC	Environmental costs (EC) and their recovery		el, including EC	
"Water services"	For LATVIAN part	For ESTONIAN part	For LATVIAN part	For ESTONIAN part	For LATVIAN part	For ESTONIAN part
management (landfills)						
Water use for energy production in small HPPs	Covered (but public financial support is available which is covered by end users of electricity).	Not defined as "waters service", analysed as "significant water use".	Cause EC in 3 WBs. NRT paid by all (10) HPPs in the project area – around 25000 EUR per year.	Not defined as "waters service", analysed as "significant water use".	Financial costs are covered. EC are covered (at least) partly.	Not defined as "waters service", analysed as "significant water use".

	"Environmental cost"	' recovery description	Proposed instruments for
"Significant water uses"	For the LATVIAN part	For the ESTONIAN part	improving the "environmental cost" recovery
Water use for energy production in small HPPs*	(Treated and assessed as the "water service" – see the previous table).	Creates "environmental costs" (in 1 WB). No current instruments for covering these costs. ⇒ EC are not covered.	Implementation of additional measures proposed in the program of
Dams/ obstacles on rivers with various or no use	Creates "environmental costs" (in 3 WBs). No current instruments for covering these costs. ⇒ EC are not covered.	Creates "environmental costs" (in 4 WBs). No current instruments for covering these costs. ⇒ EC are not covered.	measures to achieve environmental targets in the affected WBs.
Pollution run-off from agricultural lands, clear- cutting and drained forest areas	Creates "environmental costs" (in 13 WBs due to agriculture and 5 WBs due to forestry). No current instruments for covering these costs. ⇒ EC are not covered.	Do not create "environmental costs".	For Latvia only: Implementation of
Drainage for agriculture and forest lands	Creates "environmental costs" (in 7 WBs due to agriculture and 4 WBs due to forestry). The current pricing instrument addresses only damage to fish resources. No data about the paid amounts. ⇒ EC are not covered.	Do not create "environmental costs".	additional measures proposed in the program of measures to achieve environmental targets in the affected WBs.
Accumulated (past) nutrient pollution in sediments	Creates "environmental costs" (in 1 WB). No current instruments for covering these costs. ⇒ EC are not covered.	Creates "environmental costs" (in 1 WB). No current instruments for covering these costs. ⇒ EC are not covered.	Implementation of additional measures proposed in the program of measures to achieve environmental targets in the affected WBs.

Table 10. Summary on the cost recovery assessment for "significant water uses" in the project area. (Source: Based on analysis as part of the project. The assessment approach and input data are described in the detailed report of the project on the economic analysis.)

* The small HPPs in Latvia are not analysed here since their water use is defined as "water service" in Latvia. They pay NRT (as an instrument for covering the "environmental costs"). See the previous table on the "water services".

5.2.3. Recommendations for improving the cost recovery level

Recommendations concerning the "water services"

There is no full <u>"financial costs" recovery for centralised "water services"</u>. The "financial costs" recovery can be improved by increasing tariffs paid for the services by users. According to international recommendations payments for the centralised "water services" should not exceed 3% of households' disposal income. The estimated share of the payment for the centralised water supply and sewage services in households' disposal income is below 3% on average in the project area. But it exceeds the 3% threshold for lower households' income groups. It limits possibility for increasing the tariffs. At the same time, the share of the payment for the centralised "water services" differs across settlements, like also the "financial costs" recovery level. Hence, each settlements needs to be evaluated individually – whether there is full recovery of the "financial costs" and whether tariffs can be increased without exceeding the 3% threshold, or there are any compensation mechanisms for low income households to make the tariffs affordable.

The individual "water services" cover fully their "financial costs" overall.

The "water services" create the <u>"environmental costs</u>" in 1 WB in the Estonian part and 5 WBs in the Latvian part of the project area (due to centralised "water services" of single settlements/cities in both countries, individual wastewater discharging by industry (an individual company) and water use for energy production in small HPPs (caused by 5 HPPs) in the Latvian part). These water users pay NRT, which is the current pricing instrument for compensating the "environmental costs". However, on the Latvian side, the estimated NRT payments are rather small to be seen covering the created "environmental costs". There are two policy instruments for covering these costs if new instruments are not introduced – increasing payments via the NRT (increasing NRT rates), and/or implementing additional measures (and financing their costs) for reducing the pressures. NRT is a national pricing instrument hence increasing the NRT rates would impact all respective water users nationally. Since the cost recovery problem is relevant in rather few WBs, local solutions could be preferred. Hence, the implementation of additional measures by the users for reducing their created pressures and allowing achievement of GES in the affected WBs is the recommended instrument for improving the "environmental costs" recovery level and implementing the PPP.

It should be noted concerning the centralised "water services" that the additional measures can include not only improving the wastewater treatment systems for reducing the nutrient pollution amounts discharged in the WBs. They can include also measures taken by the users of the centralised sewage services (e.g. households, industries, other companies and institutions) for reducing nutrient pollution amounts reaching their sewage.

Recommendations concerning the "significant water uses"

There are several WB in the Estonian part and considerable number of WBs in the Latvian part where the "significant water uses" create "environmental costs". There are no current pricing instruments for covering these costs. The current policy instrument relates to implementation of measures by users and financing their costs according to the mandatory requirements for environmental protection prescribed by the national regulations. However, the failure of GES for range of WBs shows that these measures are not sufficient to be the "environmental costs" covered. Introducing new pricing instruments would impact all respective water users nationally since the pricing instruments should be introduced nationally to secure equal conditions and requirements for water users. Also, establishing new pricing instruments for the most of the given water uses would be complex (and also costly) process. Local solutions (policy instruments) could be more appropriate. Hence, the implementation of additional measures by the users for reducing their created pressures and allowing achievement of GES in the affected WBs is the proposed instrument for improving the "environmental costs" recovery level according to the "polluters pay principle".

5.3. Economic evaluation of additional measures for achieving environmental targets

For the WBs failing GES additional measures need to be implemented to reduce significant pressures and ensure achievement of GES. Since various alternative measures are available for this purpose, the economic evaluation of possible additional measures aims to support their prioritisation and selection of the most socioeconomically efficient and acceptable measures.

The water uses and pressures creating significant pressures and failure of GES in both countries are described in chapter 5.1. Possible additional measures were identified to address the significant pressures and water uses causing the failure of GES. The measures must be technically feasible and cost-effective, but also relevant socioeconomic impacts of their implementation should be considered. The evaluation approach should consider all these aspects to support effectively the planning of measures.

Possible approach for the evaluation of additional measures was discussed among the project partners who represent also relevant institutions in Latvia and Estonia involved in the River Basin Management Planning. It was agreed that similar evaluation approach could be applied in both countries concerning common pressures and water uses which cause failure of GES of WBs in both countries. Most relevant of such common pressures and water uses (causing failure of GES for the largest number of WBs) are hydro-morphological pressures from dams/obstacles in rivers with various uses (including small HPPs) or no use. There were no specific methodologies applied previously for the RBMP in the countries concerning the economic evaluation of additional measures for such pressures and uses. A **multi-criteria**

analysis (MCA) approach was proposed since it was seen appropriate for the analysed pressures and measures and also practically applicable taking into account available information and resources. It was also seen relevant that the used approach and prepared assessments would be transferrable to other areas providing possibility to use them in the countries for the RBMP overall (not only concerning the trans-boundary WBs).

The multi-criteria analysis (MCA) approach allows simultaneous assessment of various relevant impacts in one methodological framework, where the applied criteria cover all relevant impacts.

The MCA approach was applied to the following cases of WBs (pressures and water uses):

- 1. dams used by small HPPs creating hydro-morphological pressures,
- 2. obstacles/impoundments with other/no use creating hydro-morphological pressure,
- 3. lakes with accumulated past nutrient pollution in sediments.

Possible additional measures were assessed with the MCA on general scale without connecting them to concrete WBs³. This assessment aims to support general prioritisation of the measures and to provide detailed information on relevant impacts and range of their magnitude. This information was used afterwards to guide selection of additional measures for concrete WBs (failing GES) in the project area.

Range of WBs fails GES in the Latvian part of the project area due to nutrient pollution from agriculture and forestry and hydro-morphological pressures from drainage for these activities. Since there is large number of possible additional measures to reduce these pressures, the evaluation of such measures should focus primarily on assessing their effectiveness and costs and finding the most cost-effective measures for achieving the environmental targets. Therefore the cost-effectiveness analysis of measures was conducted in Latvia to support development of measures for these pressures. Due to limitations of the study, the analysis was conducted based on an example of a selected WB G308 Jogla, which fails GES due to elevated phosphorus (P) load coming as diffuse pollution from agriculture (arable land). The evaluation results can be used also for other WBs failing GES due to elevated P load. The costs assessments for the analysed measures can be used also for the cost-effectiveness analysis of these measures in light of nutrient pollution reduction.

The next chapters provide summary results on the evaluation of possible additional measures conducted as part of the project – starting with the results based on MCA approach and ending

³ Except for lakes where the assessment partly addresses the WB failing GES – the Burtnieku lake in the Latvian part of the project area (which is particular lake due its size and specific environmental conditions) and the Köstrejärv lake in the Estonian part of the project area. The developed assessments can be attributed to similar lakes overall, however estimation of costs of the measures required taking into account specific characteristics of a lake. Detailed approaches and assessments, as well as their transferability are explained in respective chapters of the report.

with the cost-effectiveness analysis results for Latvia. Full results of the evaluation of additional measures are provided in the detailed report of the project on the economic analysis.

5.3.1. Additional measures included in the evaluation with the MCA

The additional measures included in the assessment are listed in Table 11. They were identified based on knowledge of the project's experts. The main principles for identifying possible measures were that they address the pressure causing failure of GES and are technically feasible. All the measures are technically feasible in principle. However their application for concrete WBs needs further analysis taking into account local conditions and selecting appropriate technical solutions (e.g. type of fish pass). This can be considered when developing the program of measures – when analysing and selecting measures on the WB scale (for each concrete WB failing GES).

It should be noted concerning the measures for dams used by small HPPs that the measures M2 and M3 have very limited applicability in Latvia since they can be implemented only in cases with an existing fish pass. But such cases are rare in Latvia (only 1 dam with a small HPP has an existing fish pass out of 5 such cases creating significant pressure in the project area). Hence, the measures M1 and M4-M8 were the main alternatives for the evaluation. Similar note applies also to Estonia where the measure M4 for dams used by small HPPs and other obstacles/impoundments has limited applicability since this can be implemented only in case where there is an existing fish pass, hence the main alternatives for the evaluation are M1-M3.

As can be seen from the table, there are differences between the countries concerning measures included in the analysis – some measures were not considered in Estonia since they were seen having limited effectiveness or applicability.

	Additional measures analysed for Estonia				
Additional measures analysed for Latvia					
Additional measures for dams used by small HPPs for energy production creating hydro-morphological pressures					
M1 Building of a fish pass	M1 Building of a fish pass				
M2 Reconstruction or improvement of an existing fish pass	M2 Demolishing a dam				
M3 Maintenance of an existing fish pass	M3 Environmentally friendly turbine				
M4 Environmentally friendly turbine	M4 Improvement of an existing fish pass				
M5 Implementation of ecological flow					
M6 Demolishing a dam					
M7 Permanently lowering a dam					
M8 Opening migration way during spawning period					
Additional measures for obstacles/impoundments wit pressure	h other/no use creating hydro-morphological				

Table 11. The additional measures included in the evaluation with the MCA approach.Similar measures analysed in both countries are marked with light green colour.

	Additional measures analysed for Estonia
Additional measures analysed for Latvia	
M1 Building of a fish pass	M1 Building of a fish pass
M2 Demolishing a dam	M2 Opening migration way during spawning period
M3 Opening migration way during spawning period (if a dam with sluice)	M3 Demolishing a dam
	M4 Improvement of an existing fish pass
Additional measures for lakes with accumulated past	nutrient pollution in sediments*
M1 Sediment dredging	M1 Sediment dredging
M2 Removal of macrophytes	M2 Removal of macrophytes
M3 Immobilization of phosphorus using chemical treatment	M3 Biomanipulation
M4 Artificial aeration and mixing	M4 Complex methods (sediment dredging and macrophytes removal)
M5 Biomanipulation	
M6 Hypolimnetic withdrawal	
M7 Artificial floating wetlands	

* Note for Estonian: For all restoration options concerning lakes with accumulated nutrient pollution in sediments, proper limnological investigations should be conducted, especially on external and internal loading, buffer capacity of a lake to that loading, inventory of biota, evaluation of the main factors influencing functioning efficiency of a lake.

5.3.2. Approach for the evaluation of additional measures with the MCA

With the MCA approach measures are assessed applying **criteria**, which aim to cover relevant impacts of the measures. Criteria identified as relevant for the evaluation and applied in the assessment are listed in Table 12. The assessments for the criteria are prepared using **assessment categories**. Table 12 provides also the used categories and related **scores**. Summary assessment is calculated for each measure by summing up scores from the individual criteria. The summary scores of measures can be compared, and they can be used for prioritisation of measures. In general, the larger is the summary score, the higher is the priority.

Criteria	Assessment categories	Scores
1. Effectiveness of a	No effect	0
measure	Low effect	1
	Moderate effect	2
	High effect	3
2. Certainty of the	-	0
Effectiveness assessment	Low certainty	1
	Moderate certainty	2
	High certainty	3
3. Negative adverse	High impact	0
environmental impacts	Moderate impact	1
from implementing a	Low impacts	2
measure	No impact	3
4. Costs of a measure	-	0
	High costs	1
	Moderate costs	2
	Low costs	3
5. Constraints/obstacles of	High constraints	0
implementation of a	Moderate constraints	1
measure (institutional,	Low constraints	2
legal, financial)	No constraints	3

Table 12. The list of criteria, assessment categories and related scores applied in the MCA of additional measures.

Three criteria are included covering relevant **environmental impacts of the measures**: C1 Effectiveness of a measure, C2 Certainty of the Effectiveness assessment and C3 Negative adverse environmental impacts. The effectiveness assessment (Criterion 1) evaluates whether and to what extent a measure improves the state and reduces the gap to GES. The certainty of the effectiveness assessment (Criterion 2) shows confidence of the effectiveness assessment (that a measure would deliver the expected effect). The negative adverse environmental impacts (Criterion 3) cover any negative environmental side impacts on the WB or wider environment from implementing a measure. The assessments of measures for these criteria were developed based on expert opinion of the environmental experts of the project for each country.

The effectiveness of measures (under Criterion 1) was assessed applying environmental state parameters which are used also for assessing status of WBs (Table 13). The effectiveness assessment (assigning the category and score) was prepared for each state parameter separately. Where more than one parameter is used, the summary effectiveness score was calculated in two ways – as an average score of all parameters' scores and as a summary score by summing up individual scores of each parameter.

As can be seen from the table, there are some differences regarding these parameters used for the assessment in Latvia and Estonia. They reflect differences and relevance of various state parameters for assessing status of WBs in each country.

Table 13. Environmental state parameters used for assessing the effectiveness of the additional measures.

Water uses and pressures causing	Environmental state parameters used for a	ssessing effectiveness of the measures
failure of GES	for Latvia	for Estonia
dams used by small HPPs for energy production creating hydro-morphological pressures	 P1 Obstacle for fish migration, disruption of river continuity (as indicator under WFD). Presence of obstacle for fish migrating (Yes/No). Length (km) of river or area (km²) of river catchment opened for fish migration. P2 Rapid Habitat areas (riverbed). Size of habitat areas (ha or m2, or m) with suitable (rapid) conditions (hydro-morphological conditions of the habitats). P3 Ecological flow (enough water in a river during different fish bio-periods). 	 P1 Obstacle for fish migration, disruption of river continuity (as indicator under WFD). Presence of obstacle for fish migrating (Yes/No). P2 Hydro-morphological quality of river. P3 Improvement of fish index. P4 Objectives of Habitats directive. Whether it improves the status or not.
obstacles/impoundments with other/no use creating hydro- morphological pressure	 P1 Obstacle for fish migration, disruption of river continuity (as indicator under WFD). Presence of obstacle for fish (Yes/No). Improvement of fish index. Length (km) of river or area (km²) of river catchment opened for fish migration. P2 Habitat areas (riverbed). Size of habitat areas (ha or m2) with suitable conditions (hydro-morphological conditions of the habitats). 	 P1 Obstacle for fish migration, disruption of river continuity (as indicator under WFD). Presence of obstacle for fish (Yes/No). P2 Hydro-morphological quality of river. P3 Improvement of fish index. P4 Objectives of Habitats directive. Whether it improves the status or not.
lakes with accumulated past nutrient pollution in sediments	P1 Phosphorus amount (concentration) in water	 P1 Macrophytes. Improvement in macrophytes status. P2 Macroinvertebrates. Improvement in macroinvertebrates status. P3 Fish. Improvement in fish status.

Full information about the assessment approach is provided in the detailed report of the project on the economic analysis.

Assessment of the **costs of measures** (under Criterion 4) included the following steps (for each measure): (i) identifying and describing relevant types of the costs; (ii) developing quantitative estimates for each type of the costs; (iii) calculating total costs of a measure (as annualised costs per year); (iv) estimating financing need for the planning period 6 years (2022-2027) for implementing a measure; (v) estimating costs as a share of a implementers' revenues/budget (%); (vi) performing sensitivity analysis of the calculated costs to incorporate variation and uncertainty in the costs' estimate; (vii) assigning the qualitative assessment category (high, moderate, low costs) based on the share of the costs in revenues/budget.

All relevant types of the costs were considered and assessed for each measure, including (i) direct financial costs of a measure (investment costs, yearly operation and maintenance costs, other direct costs); (ii) "opportunity costs" (foregone/lost revenues) for an actor who implements a measure; (iii) "induced costs" – costs due to implementing a measure to other actors than the one who implements the measure.

Total costs for each measure were estimated quantitatively. For the measures applied to small HPPs, the costs were afterwards estimated as a share of yearly revenues of a HPP. For other measures, different approaches were used in the countries. In Latvia the costs were estimated as a share of yearly municipal budget while in Estonia the costs were estimated as a share of an average yearly budget of the Environmental Investments Centre's (EIC) water management programme.

The costs are classified as low/moderate/high costs according to an approach as presented in the Tables 14 and 15. In this way the costs are linked to financial capacity of actors to implement a measure (called also as "affordability" of the costs).

Costs' category	Interpretation of the category	Costs as a share (%) of yearly HPP revenues
Low (3)	The costs are affordable, an actor could cover the costs with own funding.	< 1% of revenues
Moderate (2)	The costs are hardly affordable, some public financial support would be recommended to facilitate implementation of a measure.	1-1.5% of revenues
High (1)	The costs are not affordable, public funding would be needed for financing implementation of a measure.	> 1.5% of revenues

Table 14. Interpretation of the qualitative costs' categories (and scores) for measures applied to small HPPs.

Table 15. Interpretation of the qualitative costs' categories (and scores) for other measures.

Costs' category	Interpretation of the category	Costs as a share (%) of yearly budget*
Low (3)	The costs are affordable, an actor could cover the costs with own funding.	< 0.5% of a budget
Moderate (2)	The costs are hardly affordable, some public financial support would be recommended to facilitate implementation of a measure.	0.5-1% of a budget
High (1)	The costs are not affordable, public funding would be needed for financing implementation of a measure.	> 1% of a budget

* For Latvia: the costs as a share of a yearly municipal budget. For Estonia: the costs as a share of a yearly EIC budget of water programme.

Assessment of **constraints/obstacles of implementation** of a measure (under Criterion 5) involved identifying relevant types of the constraints/obstacles for each analysed measure and their assessment using the qualitative categories (and scores) based on expert opinion of the project's experts. All relevant types of the constraints were considered (institutional, legal and financial).

5.3.3. The evaluation results concerning measures for dams used by small HPPs creating hydro-morphological pressures

Tables 16 and 17 provide summary assessment for the analysed measures for dams used by small HPPs for each country. The measures are ordered in the tables starting with the measure with the highest summary score. However this ordering should not be taken as strict ranking because the assessment approach is rather rough to be used for strict ranking.

Table 16. Summary on the assessment for LATVIA for the analysed additional measures for dams used by small HPPs creating hydro-morphological pressures. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

* Using Sum of all (3) parameters' scores for the Effectiveness assessment. ** These measures are treated separately because of the limited applicability hence in most cases they would not provide solution for achieving GES.

The analysed additional measures	C1 Effectiveness*	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
M6 Demolishing a dam	9	High (3)	Moderate- High (0.5)	Low-High (2)	High (0)	14.5
M5 Implementation of ecological flow	6	Moderate (2)	No impact (3)	Moderate- High (1.5)	Low-Moderate (1.5)	14.0
M4 Environmentally friendly turbine	1.5	Moderate- High (2.5)	No impact (3)	High (1)	Moderate (1)	9.0
M1 Building of a fish pass	4.5	Moderate (2)	Moderate (1)	High (1)	High (0)	8.5
M7 Permanently lowering a dam	2	Low- Moderate (1.5)	Low- Moderate (1.5)	High (1)	High (0)	6.0
M8 Opening migration way during spawning period	3	Low- Moderate (1.5)	Moderate (1)	High (1)	High (0)	6.5
M3 Maintenance of an existing fish pass**	4.5	Moderate (2)	No impact (3)	Moderate- High (1.5)	Low/No (2.5)	13.5
M2 Reconstruction or improvement of an existing fish pass**	4.5	Moderate (2)	Moderate (1)	High (1)	Moderate (1)	9.5

Table 17. Summary on the assessment for ESTONIA for the analysed additional measures for dams used by small HPPs creating hydro-morphological pressures. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

* Using Sum of all (4) parameters' scores for the Effectiveness assessment.

The analysed additional measures	C1 Effectiveness*	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
M2 Demolishing a dam	11.5	High (3)	Low (2)	High (1)	Moderate- High (0.5)	18
M4 Improvement of an existing fish pass	7	Moderate (2)	Low (2)	High (1)	Low (2)	14
M1 Building of a fish pass	8	Moderate (2)	Low (2)	High (1)	Moderate (1)	14
M3 Environmentally friendly turbines	5.5	Moderate (2)	Low (2)	High (1)	Moderate (1)	11.5

Conclusions for Latvia:

• The measures M7 and M8 are not proposed further as options due to their low effectiveness, uncertainty in the effectiveness assessment and high costs.

- The only measure which fully eliminates the problem for all state parameters is the measures *M6 Demolishing a dam*. Other measures give positive effect concerning part of state parameters only.
- For small size (revenue) HPP public financial support would be needed for implementing any of the measures. Hence it would be more sustainable to stop the operation of such HPP and to demolish a dam.
- Demolishing a dam could be low cost option if the opportunity costs need to be compensated based on cadastral value of properties. It could still be affordable if compensating foregone revenues from electrical energy production assuming low-moderate compensation. The costs become high if large production value would need to be compensated (e.g. if there is a small HPP with large production).
- Removing a dam is the highest priority option where it is suitable and no large energy production is involved/possible. Otherwise other measures must be considered, but a set of measures could be needed to ensure achievement of GES (for instance, a fish pass and ecological flow implementation). It would increase the costs, hence public financial support would be necessary even for HPPs with relatively large production.
- For moderate and large size small HPPs affordability of the costs depends on actual costs of the measures and size of a HPP (production and revenues) in each concrete case. Estimates for each concrete case should be developed when elaborating the program of measures on WB scale.

Conclusions for Estonia:

- Demolishing a dam and giving up electricity production is always the most effective measure to open fish migration route and to protect aquatic biota. Also it is usually cheaper than to construct a fish pass. Hence this measure should be treated as preferred measure. Only when demolishing a dam is not feasible due to socioeconomic reasons, the construction of fish pass is reasonable.
- The installation of a fish-friendly turbine instead of a non-friendly turbine is an extra measure to protect fish when continuing electricity generation at a dam is indispensable.

The collected information and prepared assessments were used and developed further when analysing and selecting measures for concrete WBs failing GES due to this water use in the project area.

5.3.4. The evaluation results concerning measures for obstacles with other or no use creating hydro-morphological pressures

Tables 18 and 19 provide summary assessment for the analysed measures for obstacles/impoundment on rivers for each country. The measures are ordered in the tables starting with the measure with the highest summary score. However this ordering should not be taken as strict ranking because the assessment approach is rather rough to be used for strict ranking.

Table 18. Summary on the assessment for LATVIA for the analysed additional measures for obstacles/impoundments creating hydro-morphological pressures. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

The analysed additional measures	C1 Effectiveness*	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
M2 Demolishing a dam	6	High (3)	Moderate (1)	Low-High (2)	High (0)	12.0
M1 Building of a fish pass	4	Moderate (2)	Moderate (1)	Low-Moderate (2.5)	Moderate (1)	10.5
M3 Opening migration way during spawning period	3.5	Low-Moderate (1.5)	Moderate (1)	Low (3)	Moderate (1)	10.0

* Using Sum of all (2) parameters' scores for the Effectiveness assessment.

Table 19. Summary on the assessment for ESTONIA for the analysed additional measures for obstacles/impoundments creating hydro-morphological pressures. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

* Using Sum of all (4) parameters' scores for the Effectiveness assessment.

	C1 Effectiveness*	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
M3 Demolishing a dam	9	High (3)	Low (2)	High (1)	Moderate- High (0.5)	15.5
M4 Improvement of an existing fish pass	7	Moderate (2)	Low (2)	Low (3)	Moderate (1)	15
M1 Building of a fish pass	8	Moderate (2)	Low (2)	High (1)	Moderate (1)	14
M2 Opening migration way during spawning period	4.5	Low (1)	High (0)	Low (3)	Moderate (1)	9.5

Conclusions for Latvia:

- The only measure which fully eliminates the problem for both relevant state parameters is the measure *M6 Demolishing a dam*, it has also high certainty of the effectiveness assessment, and the negative environmental effect is expected to be temporal. Other measures give only partial achievement of GES.
- The costs of all measures could be affordable overall even for small budget counties. Demolishing a dam could be low cost option if the opportunity costs need to be compensated based on cadastral value of properties or assuming low to moderate compensation of the foregone revenues.
- It can be concluded overall that removing a dam is the highest priority option and should be applied where technically suitable. Where it is not the case other measures must be considered but possibility of achievement of GES needs to be evaluated carefully.

Conclusions for Estonia:

- The best option would be to demolish a dam. If it is not possible due to socioeconomic or legal reasons, effectively working fish pass should be constructed. If the fish pass is already constructed but does not work effectively, the problem should be eliminated if possible.
- The measure M2 can be a solution only in exceptional cases and it, most likely, would not be sustainable for long. Probability of achieving GES is low with implementing this measure only.

The collected information and prepared assessments were used and developed further when analysing and selecting measures for concrete WBs failing GES due to this water use in the project area.

5.3.5. The evaluation results concerning measures for lakes with accumulated nutrient pollution in sediments

Tables 20 and 21 provide summary assessment for the analysed measures for lakes for each country. The measures are ordered in the tables starting with the measure with the highest summary score. However this ordering should not be taken as strict ranking because the assessment approach is rather rough to be used for strict ranking.

Table 20. Summary on the assessment for LATVIA for the analysed additional measures for lakes with accumulated nutrient pollution. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

upprouen unu resu						
The analysed	C1 Effectiveness	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
additional measures						
M2 Removal of macrophytes	Low (1)	High (3)	Low (2)	Low (3)	No-Low (2.5)	11.5
M5 Biomanipulation	Moderate (2)	Moderate- High (2.5)	Low- Moderate (1.5)	Moderate- High (1.5)	Moderate (1)	8.5
M7 Artificial floating wetlands	Low (1)	Moderate (2)	No impact (3)	High (1)	Low-Moderate (1.5)	8.5
M1 Sediment dredging	High (3)	High (3)	Moderate (1)	High (1)	High (0)	8
M3 Immobilization of phosphorus using chemical treatment	Moderate- High (2.5)	Moderate (2)	Moderate (1)	High (1)	High (0)	6.5
M6 Hypolimnetic withdrawal	Moderate (2)	Moderate (2)	Moderate (1)	High (1)	High (0)	6
M4 Artificial aeration and mixing	Low- Moderate (1.5)	Low-Moderate (1.5)	Moderate (1)	High (1)	High (0)	5

Table 21. Summary on the assessment for ESTONIA for the analysed additional measures for obstacles/impoundments creating hydro-morphological pressures. (Source: Assessments prepared as part of the project. The assessment approach and results are described in the detailed report of the project on the economic analysis.)

* Using Sum of all (3) parameters' scores for the Effectiveness assessment.

	C1 Effectiveness*	C2 Certainty	C3 Negative impact	C4 Costs	C5 Constraints	Total
M4 Complex method (sediment dredging and macrophytes removal)	9	High (3)	Low (2)	High- Moderate (1.5)	Moderate (1)	16.5
M1 Sediment dredging	8	High (3)	Low (2)	High- Moderate (1.5)	Moderate (1)	15.5
M2 Removal of macrophytes	6	Low (1)	Low (2)	Low (3)	Low (2)	14
M3 Biomanipulation	5	Low (1)	Low (2)	Low (3)	Low (2)	13

Conclusions for Latvia:

- The measures M3, M4, M6 and M7 were not proposed further as options due to their limited effectiveness in combination with uncertainty in the effectiveness assessment and high costs.
- Taking into account the effectiveness, only the *M1 Sediment dredging* could ensure achievement of GES, but it has very high costs (in particular, if considering such a large lake as the Burtnieku lake). All other measures might bring partial achievement of GES. The next best measure is M5 with "moderate" effectiveness and quite high certainty of this assessment, besides rather low negative adverse impacts. The measure M2 cannot be considered as realistic option for achieving GES due to its low effectiveness.
- The measures, which should be investigated further, are *M5 Biomanipulation*, *M1 Sediment dredging* and *M2 Macrophyte removal* in combination, as there is no single measure that would provide achievement of GES with affordable costs. Assuming the Burtnieku lake with its large size, the costs for the highly effective measure M1 would be too high. The measure M5 could be to some extent affordable but there is uncertainty whether it alone would provide achievement of GES. The measure M2 can be considered due to its low costs but the achieved state improvement would be very limited. The main criteria which need further investigation are the effectiveness whether the measures would ensure achievement of GES, and costs since the prepared assessments are rather rough. Further investigations are needed to assess possible combined effect of measures.
- The costs are expected to be high, in particular for such large lake as the Burtnieku lake, and public financial support would be needed for implementing measures. Hence, also further studies could be suggested to look for additional (not considered in this analysis) possible measures for addressing the given environmental problem.

Conclusions for Estonia:

- The best option would be the measure M4 due to its high effectiveness. The measures M2 and M3 alone might not allow achieving GES.
- Since implementation of all measures is very much dependent on specific WB (e.g. m³ of sediments to be removed or ha of macrophytes to be cut), the cost can vary considerably. Hence, water body specific assessments need to be developed for each concrete case.

5.3.6. The evaluation of additional measures for agriculture (for Latvia only)

Scope and general approach of the analysis

Range of WBs fails GES in the Latvian part of the project area due to nutrient pollution from agriculture and forestry and hydro-morphological pressures from drainage for these activities. The largest number of these WBs fails GES due to **diffuse nutrient pollution from agriculture** (from crop farming). Due to limitation of the study the analysis was focused on evaluating possible additional measures for this pressure and source/activity.

There is large number of possible additional measures to reduce diffuse nutrient pollution from agriculture. The evaluation should support identifying and selecting the most cost-effective measures for achieving nutrient load reduction targets. Hence, the **cost-effectiveness analysis** (**CEA**) is the most appropriate tool to support the prioritisation and selection of the measures. The CEA involves assessing effectiveness and costs of the measures and estimating cost-effectiveness of each measure. The measures with higher effectiveness and lower costs are more cost-effective. The CEA can help finding the least cost way for achieving the environmental objectives.

To serve the given purpose quantitative analysis would be preferable. The more quantitative CEA is aimed, the more detailed and quantitative information is needed about the current nutrient pollution load, applicability, effect and costs of the measures. Due to limited information for the project area and limitations of the study, the analysis was conducted **based** on an example of a selected WB failing GES due to the given pressure – G308 Jogla.

Although the assessment was conducted on the basis of a selected WB, it aims to provide generalised assessment of cost-effectiveness of the measures, which could be applicable to other WBs also and support the RBMP. Running similar analysis for few other selected WBs could allow verifying outcome of the given assessment to provide general prioritisation of the measures (based on their cost-effectiveness). This information could be used afterwards to guide selection of additional measures for concrete WBs (failing GES) when planning the program of measures.

The developed methodology can be used also for evaluating measures concerning other pressures from agriculture and forestry.

Additional measures included in the evaluation

The additional measures included in the assessment are listed below. They have been identified based on knowledge of the project's experts. The main principles for identifying possible measures were that they address the pressure causing failure of GES and are technically

feasible. The technical feasibility was considered based on experience in the project's countries with implementing such measures, information from existing studies in the countries, as well as literature. All the measures are technically feasible in principle. However their application for concrete WBs needs further analysis taking into account local conditions. This can be considered in the next step of developing the program of measures – when analysing and selecting measures on the WB scale (for each concrete WB failing GES).

Possible additional measures for reducing diffuse nutrient pollution from agriculture (crop farming), which were initially identified for the analysis:

M1 Artificial (constructed) wetlands (groundwater)
M2 Artificial (constructed) wetlands (surface)
M3 Controlled drainage
M4 Buffer bars
M5 Using of nitrogen stabilizers when applying nitrogen
M6 Post-crops sowing after harvest / middle crops sowing (intermediate crops), catch crops
M7 Sedimentation basins / traps
M8 Crop rotation in arable land
M9 Spreading of fertilizers at certain distances from waters
M10 Winter green areas (stubble fields)
M11 Agricultural liming
M12 Energy crops
M13 Straw application in the field before winter sowing
M14 Preparation of fertiliser management plans or improving of basic fertiliser management plans.

Approach for assessing effectiveness of the measures

The assessment approach has been developed (in 2014) and applied (in 2016) for the CEA of marine protection measures in Latvia, also has been applied for the second RBMPs in Estonia.

The effectiveness assessment consists of **3 elements, which are combined** for estimating the total effectiveness of a measure.

<u>1) Effect of a measure in terms of load reduction</u> from the source. Such assessment is done for each measure. It is not WB-specific but general assessment for a measure as such.

The used assessment scale and categories:

- 1 "low" effect, a measure gives < 5% reduction of load from the source,
- 2 "moderate" effect, a measure gives 5-15 % reduction of load from the source,
- 3 "high" effect, a measure gives 15-30 % reduction of load from the source,
- 4 "very high" effect, a measure gives > 30 % reduction of load from the source.

<u>2) Relative significance of the activities' created pressure</u>, which, in general, shows relative contribution of each activity causing the particular pressure into the total pressure on all WBs

failing GES due to this pressure. In the given analysis, which is based on a selected WB, the total nutrient load on the selected WB is taken as the total pressure. The used assessment categories are presented in Table 22.

3) Significance of scale of the activities' created pressure, which characterises extent of impact of the activities' created pressure in terms of number of WBs failing GES due to the given pressure. The used assessment categories are presented in Table 22.

The assessments for the elements 2 and 3 are not measure specific, they are developed for the analysed pressure and relevant activities contributing into this pressure. Hence they are the same for all measures addressing the same pressure and activity (e.g. contribution of the agriculture into the total nutrient load).

Assessments with the categories can be derived based on expert judgement. In our case, nutrient modelling data are used for the element 2 (for the selected WB) and pressure and status assessment results (on WBs failing GES due to various pressures in the project area) are used for the element 3.

Table 22. Description of the assessment scale for assessing the significance of activities' caused pressures. (Source: LHEI, AKTiiVS(2014).⁴)

Scale	Categories	Description of the categories for SIGNIFICANCE OF PRESSURE	Description of the categories for SIGNIFICANCE OF SCALE of pressure
		(Effectiveness element 2)	(Effectiveness element 3)
1	Low significance	Activity makes < 20 % of the total pressure on all WBs failing GES*	Pressure from activity impacts < 5 % of the WBs failing GES due to given pressure
2	Moderate significance	Activity makes 20-30 % of the total pressure on all WBs failing GES*	Pressure from activity impacts 5 -20 % of the WBs failing GES due to given pressure
3	High significance	Activity makes 30-50 % of the total pressure on all WBs failing GES*	Pressure from activity impacts 20-60 % of the WBs failing GES due to given pressure
4	Very high significance	Activity makes > 50 % of the total pressure on all WBs failing GES*	Pressure from activity impacts > 60 % of the WBs failing GES due to given pressure

* In the given analysis total nutrient load on the analysed WB (G308 Jogla) is taken as the total pressure.

Summary effectiveness assessment for each measure is calculated by multiplying scores of each element, and interpreting the summary points according to the following categories, where the effectiveness is:

- 1 -"very low" = if total points range from 1 to 5,
- 2 ``low'' = if total points range from 6 to 10,
- 3 "moderate" = if total points range from 11 to 20,
- 4 "high" = if total points range from 21 to 30,
- 5 "very high" = if total points range above 30.

⁴ LHEI, AKTiiVS (2014) Report for a project financed by the Latvian Environment Protection Fund "Feasibility study for developing program of measures for achieving GES". Available in Latvian (at http://www.lhei.lv/attachments/article/133/Projekti-

Prieksizpete_JSD_PP_Nosleguma%20atskaite_20141222_gala.pdf).

Approach for assessing costs of the measures

A measure can involve the following categories of the costs:

- 1. direct financial costs of a measure (investment, e.g. construction, costs; yearly operation and maintenance costs; other direct costs e.g. costs of a construction project and permit);
- 2. "opportunity costs" (foregone/lost revenues) for an actor who implements a measure and for the local economy some measures create such costs due to lost production (e.g. in the measures application area for wetlands and buffer bars) or due to reduced yield in the measure application area (e.g. for *M9 Spreading of fertilizers at certain distances from waters*);⁵
- 3. administrative costs (e.g. for controlling implementation of a measure) might be relevant for some of the measures, but could not be estimated quantitatively, hence are not included.

The measures can give also economic gains (e.g. due to improving soil fertility, increasing yield), but also these could not be estimated qualitatively, therefore are not included. The exception is the measure *M12 Energy crops* where the revenues from selling the harvest are estimated and the costs of this measure are calculated as net costs (revenues minus costs).

It was concluded overall that the main cost types are covered by the developed quantitative estimates, and the provided estimates could be seen reliable for the cost-effectiveness analysis and prioritisation of the measures.

Assessment of the costs for each measure included the following steps:

- identifying and describing relevant types of the costs (related to the categories above),
- developing quantitative estimates for each type of the costs,
- calculating total costs of a measure (as annualised costs per year),
- estimating costs as a share of a implementers' revenues (%),
- performing a sensitivity analysis of the calculated costs to incorporate variation and uncertainty in the costs' estimate,
- assigning the qualitative assessment category (from "very high" to "very low" costs) based on the share of the costs in the revenues.

Total costs for each measure are estimated quantitatively. To incorporate variation and uncertainty in the costs a "sensitivity analysis" was performed. Relevant input parameters (the ones impacting the calculated total costs most significantly) are identified and cost interval is calculated (with the range of values for the relevant input parameters).

⁵ The "opportunity costs" are estimated based on the data about turnover and profit of crop farming (using CSB data and calculations) and application area of a measure.

The quantitative costs are calculated as a share of yearly turnover of the crop farming in the project area (since the analysed measures address diffuse nutrient pollution load from arable land). Various CSB data are used to estimate the turnover of the crop farming in the project area and in the analysed WB G308 Jogla.

The costs are classified as low/moderate/high costs according to an approach as presented in Table 23. In this way the costs are linked to financial capacity of actors to implement a measure (called also as "affordability" of the costs). The applied affordability threshold (for high costs) is 1.5 % of turnover. This threshold was set based on expert opinion of the project's experts, taking into account also practice in other EU countries⁶ and similar national assessments for the marine protection policy in Latvia.

Costs'	Interpretation of the category	Costs as a share (%)
category		of yearly turnover
Very low (5)	The costs are affordable, an actor could cover the costs with own	< 0.5 % of turnover
Low (4)	funding.	0.5-1 % of turnover
Moderate (3)	The costs are hardly affordable, some public financial support	1-1.5 % of turnover
	would be recommended to facilitate implementation of a	
	measure.	
High (2)	The costs are not affordable, public funding would be needed for	1.5-2 % of turnover
Very high (1)	financing implementation of a measure.	> 2 % of turnover

Table 23. Interpretation of the qualitative costs' categories (and scores).

Approach for assessing cost-effectiveness of the measures

The cost-effectiveness of measures allows comparing measures and selecting the most costeffective ones for achieving the environmental objectives (for the required P load reduction in the analysed case). The cost-effectiveness of each measure is assessed combing the assessments on their effectiveness and costs according to the approach as presented in Table 24. The costeffectiveness is assessed in the scale from 1 "very low" (red cells in the table) to 5 "very high" (dark green cells in the table). The given approach has been developed and applied in Latvia for evaluating the marine protection measures. Also has been applied for the 2nd RBMPs in Estonia.

<i>Table 24.</i> Approach for estimating cost-effectiveness of additional measures based on the assessed
effectiveness and costs. (Source: AKTiiVS, LHEI (2016) "Sociālekonomiskais novērtējums papildus
pasākumiem laba jūras vides stāvokļa panākšanai", LVAF finansēta projekta atskaite.)

Cost astaganias	Effectiveness categories					
Cost categories	5 very high	4 high	3 moderate	2 low	1 very low	
1 very high	3	3	2	1	1	
2 high	3	3	3	2	1	
3 moderate	4	4	3	2	2	
4 low	5	4	3	3	3	
5 very low	5	5	4	3	3	

⁶ European Commission (2014) "Addressing affordability concerns in WFD implementation. Resource document for the WG Economics." Version from October 2014.

In addition a **cost-effectiveness coefficient** is calculated for each measure based on the effectiveness and costs' categories (scores). It is calculated diving the costs' score by the effectiveness' score, where the costs scores are changed from 1 being "very low" costs to 5 being "very high" costs. It can take value from 0.2 to 5 - the lower is the coefficient, the better is the cost-effectiveness.

The developed quantitative estimates for the effectiveness and costs of the measures allowed also calculating **quantitative cost-effectiveness ratio** for each measure – as EUR per 1 kg of reduced P load.

All these assessments are used to demonstrate capacity of various approaches to support prioritisation of measures for developing the program of measures.

Assessment results on the cost-effectiveness of measures for phosphorus load reduction

The WB G308 Jogla, which is used as the test case in this assessment, fails GES due to elevated phosphorus (P) load.⁷ Therefore the effectiveness of the measures was assessed in light of their capacity to reduce P load. Only measures which give P load reduction are included.⁸ Note that the measures' effectiveness for reducing N load can differ, thus the given assessment can be used only for assessing cost-effectiveness of the measures concerning P load.

For quantitative estimation of the effectiveness and costs, application area for each measure was estimated. It was necessary to compile the cost estimates, and it also allowed estimating capacity of each measure to provide achievement of the required P load reduction for the WB (45.8 kg of P per year). The results show that part of measures would not serve the required P load reduction if implemented alone (M8, M9, M10 and M12). This is due to their low effectiveness and, hence, large area necessary for application (larger than available in the WB). Therefore these measures are not proposed as options for the program of measures.

Table 25 provides the assessment result on the cost-effectiveness of the analysed measures. The assessment with the qualitative cost-effectiveness categories is provided as the first. It applies 5 categories from "very low" to "very high", combining the effectiveness and costs' assessments. It shows that majority of measures has "moderate" cost-effectiveness, except *M12 Energy crops* with "high" cost-effectiveness due to zero (net) costs and *M9 Spreading of fertilizers at certain distances from waters* with "moderate-high" cost-effectiveness due to

 $^{^{7}}$ Current P load from agriculture in the WB – 245 kg/year; allowed P load to comply with GES – 199.2 kg/year; load reduction target – 45.8 kg/year. (Source: nutrient modelling results by LEGMC.)

⁸ The measures M5, M6, M13 and M14 from the initial list were excluded since they do not provide P load reduction.

relatively good effectiveness and low costs. But both measures have rather limited capacity for achieving the required load reduction, like it is also for the measures M8 and M12.

Table 25 includes also the calculated CE coefficient (the costs assessment score divided by the effectiveness assessment score). It allows slightly more differentiated assessment supporting better prioritisation of the measures based on their cost-effectiveness. As can be seen, the coefficient varies for all the measures with the same "moderate" cost-effectiveness category (from 0.9 for M7 till 1.25 for M8 and M10).

The last columns of Table 25 include fully quantitative cost-effectiveness assessment, which shows the estimated costs per 1 unit of the reduced P load (EUR/1 P kg). The measures are ranked in the table according to this result – starting with the most cost-effective measure (with the least costs per 1 reduced P kg, using the mid of the interval).

Due to the low cost-effectiveness the measures M1, M8 and M10 are not proposed as potential options. Also M12 and M9 could be seen as "second best" options (or not considered at all) – they have rather low effectiveness giving limited capacity to provide achievement of the required P load reduction.

Table 25. Assessment on the cost-effectiveness of additional measures for P load reduction. (Source: Estimates developed as part of the project.)

[1] Assessment using 5 categories from "very low" (1) to "very high" (5) cost-effectiveness (combining the effectiveness and costs' assessments).
 [2] Calculated dividing the costs category (score) by the effectiveness category (score), where the costs

^[2] Calculated dividing the costs category (score) by the effectiveness category (score), where the costs score is changed from 1 being "very low" costs to 5 being "very high" costs. The coefficient can take value from 0.2 to 5. The lower it is, the better is the cost-effectiveness of a measure.

^[3] Calculated dividing the estimated costs (EUR) by the delivered P load reduction (kg/year).

* These measures have limited capacity to provide achievement of the required P load reduction (due to their relatively low effectiveness). Hence they are not proposed as options for the WB scale analysis. Some of them have also the worst cost-effectiveness for P load reduction.

	Cost-effectivene		Yearly costs EUR pe of P reduction ^{[2}		
	Category ^[1]	CE coefficient ^[2]	Lower	Upper	Middle
M7 Sedimentation basins / traps	Moderate (3)	0.90	50	69	59
M4 Buffer bars	Moderate (3)	1	84	106	95
M2 Artificial (constructed) wetlands (surface)	Moderate (3)	1	83	227	155
M3 Controlled drainage	Moderate (3)	1	88	258	173
M11 Agricultural liming	Moderate (3)	1	384	460	422
M12 Energy crops*	High (4)	0.3	0	0	0
M9 Spreading of fertilizers at certain distances from waters*	Moderate-High (3.5)	0.88	98	195	146
<i>M1 Artificial (constructed) wetlands (groundwater)</i>	Moderate (3)	1	546	1714	1130
M8 Crop rotation in arable land*	Moderate (3)	1.25	1952	1952	<i>1952</i>
M10 Winter green areas (stubble fields)*	Moderate (3)	1.25	777	4507	2642

The results clearly demonstrate that the more quantitative is the cost-effectiveness assessment, the better results serve the prioritisation of measures for selecting the most cost-effective set of additional measures for WBs failing GES.

The given results can be used for WBs failing GES due to phosphorus pollution (they cannot be used concerning nitrogen since the measures' effectiveness and, hence, the cost-effectiveness differs for nitrogen). The prioritised list of the measures can be applied for selecting measures on WB scale when developing the program of measures – for the analysed WB G308 Jogla, but also for other WBs in the project area where the P load from agriculture (diffuse pollution from crop farming) needs to be reduced for achieving GES. When working on the WB scale, the primary issue to be analysed in possible application of the measures taking into account local conditions and also current application of a measures (which reduces applicability). The overall principle to guide the selection is to start with the most cost-effective measures and apply them as much as possible to achieve the required load reduction.

Such theoretical set of additional measures for G308 Jogla is provided in Table 26. But note that real applicability of each measure for the given WB is not analysed. Hence this result is just for illustrating the approach. The analysed measures with the lowest cost-effectiveness are not included in the list (M1, M8, M10). Also the measure *M12 Energy crops* is not proposed – although it has very good cost-effectiveness ratio, it has very limited capacity to provide load reduction.

For the given WB, even the first measure *M7 Sedimentation basins* could be sufficient for achieving the required P load reduction. If there are limitations in technical applicability of this measure in reality, also *M4 Buffer bars* can be considered in addition. Most likely there would be no need for other additional measures.

 Table 26. Illustration on selecting additional measures for the program of measures for WB G308
 G308

 Jogla.

^[1] Nutrient modelling results (LEGMC). ^[2] Assuming maximal (theoretical) application of the measures (real applicability is not analysed).

Required P load reduction for G308 Jogla, kg/year ^[1]	45.8 kg	
The proposed additional measures – RANKED starting with the most cost-effective measure	The achieved P load reduction by each single measure (kg/year) ^[2]	Comments in relation to measures' selection for the program of measures
M7 Sedimentation basins / traps	73.5	Top 1 measure. Also positive multiple effect (on suspended solids reduction, hydro-morphological quality elements)
M4 Buffer bars	73.5	Top 2 measures. Also positive multiple effect (on suspended solids reduction).
M9 Spreading of fertilizers at certain distances from waters	-	Not proposed since it overlaps with the M4 Buffer bars, but implemented alone would not allow achieving the load reduction target.
M2 Artificial (constructed) wetlands (surface)	147	No need for these measures since the required load reduction most likely could
M3 Controlled drainage	122.5	be achievable with the first measures in
M11 Agricultural liming	55	the list.

6. Programme of Measures

The measures in the current river basin management plans program of measures are divided in three groups and planned for each water body failing GES:

- 1. **basic measures**, which implementation is ensured by regulatory requirements for specific sectors and apply for all water bodies;
- 2. **national additional measures** which also apply to all water bodies but not included in the legislation;
- 3. **additional (also supplementary) measures**, which are defined for certain water bodies to improve the quality of the particular water bodies.

Chapters 6.1 and 6.2 give an overview about implementing measures and improving status for Estonian and Latvian water bodies in the project area.

It has to be noted that implementing measures creates assumption that the status of water bodies can and may improve. The change in status can take several years in nature, before the improvement reflects in the monitoring results. Therefore the proposed additional measures would have to be implemented during the next 4-5 years so the changes would reflect also in monitoring results before 2027. Some measures are already long overdue and have to be dealt with immediately. E.g opening migration routes for fish in salmonid rivers had a deadline of the 1 January in 2013 in Estonia.

Overview of measures is given in Annex 3.

6.1 Measures so far in Estonia

In the current water management period, there are altogether 128 measures developed for surface water bodies in the project area. Since the project area is forested area in the provincial area near state border, there are no basic measures for these water bodies. The 128 measures named are national additional and additional measures.

Thirty of planned measures in the current programme of measures (PoM) are implemented. Implementation is not necessary for 10 measures due to alteration in legislation. For 6 measures the implementation is in progress. As of the end of year 2018 the remaining 82 measures are not implemented. Some of these 82 measures are precaution measures for WB in good status and the main aim is to keep the good status.

Status of some water bodies has been assessed worse, so the measures from the current PoM are not relevant for improving status. Also the knowledge and information about WBs has improved since the current PoM was compiled. So for some water bodies we already knew that additional measures are needed.

As there are already 32 water bodies which have reached their good status, the measures in current PoM are not a priority anymore and we have to deal with WBs which have been assessed worse.

6.2 Measures so far in Latvia

In the current water management period 97 basic measures are outlined in Latvian RBMP. Basic measures include general requirements for bathing water quality, drinking water, use of sewage sludge, wastewater treatment, environmental impact assessment, reduction of nitrate pollution from agricultural activities, protection of surface water bodies and groundwater against pollution caused by plant protection products, preservation of biodiversity; protection of wild birds, protection of marine waters, prevention of accidents involving dangerous substances, protection of water resources. These activities are performed continuously, thus there are no measurable categories as "implemented" or "not implemented" available.

In the current water management period there are 30 national additional measures - the same for all water bodies in Latvia, except for Daugava RBD there are 31 national additional measure proposed. National additional measures include public educational activities, the need of various studies and evaluations to mitigate the impact of hydrological and morphological alterations of waters, as well as for improvement of regulatory enactments and planning documents, the need for different evaluations to develop future river basin management plans, and the need to improve access to information on water resources and their status. In the program of measures due dates for implementation of measures are set. Unfortunately, there are some measures which are already overdue, however, there are also some measures which, although the implementation deadline has expired, are still being implemented.

For water bodies is failing to achieve good ecological quality through implementation of basic and national measures, supplementary measures are needed. In the project area on Latvian side from 22 water bodies out of 63 in current Water management plans additional measures are proposed. There are some water bodies with more than one additional measure proposed, for example, Lake Burtnieks (E225) and River Salaca (G303SP). Only a few additional measures have been or are in a process of implementation, but it should be noted that public information on the implementation activities is not always easily available, so there might be some measures implemented even if there is no public information about them.

6.3 Additional measures on water body scale

Various measures should be selected and applied to achieve good ecological status and decrease the impact of pressures. Selection of measures on water body scale is based on results of economic analysis (*reference technical document*) as well as evaluation of feasibility for

each measure – applicability, constraints, potential to reach good ecological status. After selection of either a single measure or a set of measures is proposed.

Measures to mitigate significant pressures causing failure of GES were proposed. Summary about additional measures in the project area is found also in Annex 3.

6.3.1 Estonia

In addition to measures in the current water management plan there is evaluated the need for additional measures to improve the status. The measures were developed to reduce the pressure of water bodies which are in bad, poor or moderate status. The measure is effective when it's targeted directly to improve bad, poor or moderate status. To find effective additional measures, economical evaluation of measures was conducted, which is outlined in Chapter 5.

As a result of the economic evaluation, there are proposed measures, which improve the status of surface water bodies. The economic evaluation was based on generalized data about pressures and their reduction measures. Since the economic analysis doesn't take into account the site-specific circumstances of every problem and measure, then the possibility of implementing measures and suitable solutions will be under evaluation with environmental impact assessment, the procedure for the environmental permit for special use of water or with similar process.

There aren't additional measures developed for all water bodies, which status is bad, poor or moderate. For some water bodies there is no information what causes bad, poor or moderate status, monitoring data is episodic or there is no data at all. In these cases it is not possible to find measures to improve the status of the water body and it is necessary to conduct analysis to evaluate internal and external load or to find the source of pollution.

There are three different kind of pressures causing failure of GES for 5 water bodies in Estonian side. Table 27 gives an overview on pressures, water bodies and measures analysed in economic evaluation.

Pressure	WB	Measures analysed
Hydro-morphological changes due to small-scale hydropower plants:	Vaidva_2	 Building of a fish pass Demolishing a dam Environmentally friendly turbine
		• Improvement of an existing fish pass
Hydro-morphological changes due to other dams and obstacles:	Pärlijõgi_1 Pärlijõgi_2 Pedeli_2	 Building of a fish pass Opening migration way during spawning period Demolishing a dam Improvement of an existing fish pass

Table 27. Overview on pressures, water bodies and measures analysed in economic evaluation.

Accumulated nutrient pollution in lakes:	Köstrejärv	 Sediment dredging Removal of macrophytes Biomanipulation Complex methods (sediment dredging and macrophytes removal)
--	------------	---

Vaidava_2 is the only water body affected by small HPPs causing hydro-morphological pressures. There is an existing dam, hydropower plant and fish pass which is in need of improvements. The best measure from the economic evaluation of measures was M4 Improvement of an existing fish pass. Also M3 Environmentally friendly turbines will have a positive effect on the status of fish. Detailed information about dams and fish passes on Estonian side project area is presented in separate document *Overview on dams and Fish passes in Koiva Water Bodies Without Borders project area in Estonia.*

Pärlijõgi_1, Pärlijõgi_2 and Vaidava_2 water bodies are according to the Minister of the Environment 15.06.2004 regulation no 73 "The list of spawning areas or habitats of salmon, brown trout, salmon trout or grayling" protected water bodies where it is obligatory to find solutions to ensure the migration of fish if there are dams in these water bodies.

There are dams without fish passes in Pärlijõgi_1. The best measure from the economic evaluation of measures was M2 Demolishing a dam. There are also Natura 2000 objectives concerning Pärlijõgi_1 since it is Natura 2000 habitat. Demolishing dams helps to achieve Natura 2000 objectives in the best possible way.

On Pärlijõgi_2 dams fish passes were constructed in 2012 and 2015. According to the surveys conducted in the project area, all of these fish passes are in need of repair and improvements. The best measure from the analysis was M4 Improvement of an existing fish pass.

Pedeli_2 water body is not a salmon river and opening of migration routes is not obligatory. Nevertheless, the best measure to reduce impact from damming is to demolish dams - it is maintenance free and the most sustainable solution. Also building of a fish pass minimizes negative impact but it comes with maintenance costs. The choice whether to open migration routes has to be made based on expert opinion or results of environmental impact assessment.

Status of Õhne_2 water body is assessed as good. During the project, Õhne river dams and fish passes were checked. It was found out that the existing fish pass of Tõrva dam is in need of improvements. The monitoring point of Õhne_2 is downstream from Tõrva dam. So status of Õhne_2 may have been assessed as good inaccurately.

There are measures for lakes analysed only for Lake Köstrejärv, since enough information is available about this lake. The best measure for Lake Köstrejärv would be M4 Complex method, which means sediment dredging and macrophyte cutting and removal.

Table 28. gives an overview on additional measures on water body scale.

Table 28. Overview of selection of new measures on water body scale for Estonia.

Water body	Measure	
Purpose: to reduce impact of hydro-morphological changes due to small-scale hydropower plants		
Vaidva_2 1158000_2	Improvement of an existing fish pass	
	Environmentally friendly turbine	
Purpose: to reduce impact of hydro-morphological changes due to other dams and obstacles		
Pärlijõgi_1 1155700_1	Demolishing a dam	
Pärlijõgi_2 1155700_2	Improvement of an existing fish pass	
Pedeli_2 1012100_2	Demolishing a dam or building of a fish pass	
Purpose: to reduce impact of internal nutrient loading in lakes with accumulated nutrient pollution		
Köstrejärv 2133700_1	Complex method – Sediment dredging and macrophytes cutting and removal	

As said before there are more water bodies with moderate or poor status but the exact reason for failing GES in not known. There are lakes that are not reaching GES – Aheru, Hino, Ähijärv and Pullijärv. Currently, there is not enough knowledge to select specific measures for these lakes. To select measures, limnological studies about inner and outer loads impacting the lake and its buffer capacity etc. are needed. Ecological status studies for Lake Pullijärv and Lake Ähijärv are in progress and therefore the results cannot be outlined here yet. There is also a need to conduct limnological studies for Lake Aheru and Lake Hino to propose measures for status improvement.

The study for Lake Kirikumäe was completed at the end of 2019. The status of Lake Kirikumäe is at the border between good and moderate. The lake is on the edge of its ecological tolerance and therefore additional anthropogenic pressures must be eliminated within the catchment of the water body.

Koiva, Mustjõgi_5 and Lake Murati water bodies' ecological status is good but chemical status is bad. There is no information about source of contaminants in the catchment area, it is necessary to conduct re-monitoring to find out if the concentration of pollutants exceeding the

threshold is persistent. After re-monitoring there would be enough information to make a decision if there is a need to conduct a study to clarify the source of contaminants and to assess measures.

In the proceedings of relevant regulation, there has been made additional proposal about Ikla water body not to delineate it as a water body. According to experts and locals Ikla water body is small and was straightened in the past, it was excavated in the past on the Latvian side and water has been partially misdirected. The water body is waterless in the Estonian side and it's not reasonable to consider Ikla a water body.

The Estonian side of the project area is sparsely populated and the pollution load incurred in the Soviet era is significantly reduced. Still, there are many lakes which are sensitive to pressures and therefore there is a need to assess the impact of planned activities to the water quality before carrying out the activities. Thus, raising environmental awareness has an important role and it is reasonable to compose relevant information materials or to plan trainings.

6.3.2. Latvia

From the 63 water bodies in Latvian project area 24 which are failing GES - 20 river water bodies (including 4 transboundary river water bodies) and 4 lake water bodies. Appropriate additional measures were applied according to the pressures affecting the water body. Various measures to reduce impact of hydro-morphological alterations in rivers, to address accumulated nutrient pollution in lakes, and measures to reduce the impact of agriculture, forestry and land reclamation on water bodies were considered. As there are no water bodies in Estonian project area failing GES due to the impact of agriculture or forestry, measures targeting these sectors were considered only on Latvian side. Following the assessment of the cost-effectiveness appropriate measures were selected on water body scale (Table 29). Selection of measures on WB scale is based on results of economic analysis as well as evaluation of feasibility for each measure – applicability, constraints, potential to reach good ecological status. After selection either a single measure or a set of measures were proposed.

Selection of measures for lakes with accumulated nutrient pollution.

Internal nutrient load plays a significant role in lake ecology. Majority of phosphorus reserves in lakes are usually stored in bottom sediments, therefore phosphorus resuspension from sediments into the water column can act as a driving force for eutrophication processes and have greatly negative impact on the ecological quality of the lake. If external pollution sources are reduced or eliminated, lakes with accumulated nutrient pollution may still fail to reach good ecological quality due to internal recirculation of nutrients. There are two lake water bodies on Latvian side of project territory with accumulated nutrient pollution - Lake **Burtnieku (E225)**

and Lake Lielais Bauzis (E228). Various measures exist to address the issue, seven were analysed within the project:

1. Sediment dredging – removal of sediments form lake bed.

2. Biomanipulation – targeted fishing of cyprinid fish species.

3. Removal of macrophytes – harvesting and removing mocrophytes from lake, especially common reed (*Phragmites australis*) with the aim to remove nutrients with the plant biomass.

Immobilization of phosphorus using chemical treatments – application of various aluminium and calcium based chemical compounds to immobilise sediment phosphorus by turning phosphorus in the upper layer of sediments into insoluble, non-bioavailable forms.
 Artificial aeration and mixing – oxygenation of lake by either injecting oxygen / air into the hypolimnion, or mixing lake water colum to bring hypoxic bottom waters to the surface.
 Hypolimnetic withdrawal – suctioning and removing nutrient rich hypolimnetic water from the lake.

7. Floating treatment wetlands – artificial wetland islands with nutrient demanding plant species planted on them. Nutrients are removed from the lake during plant growth, plants are harvested after.

Majority of these measures can only be expected to be effective when external nutrient sources are not causing significant pressures on the lake, therefore measures that prevent external nutrient pollution (such as diffuse source pollution) need to be implemented prior to addressing internal lake nutrient loads. Three measures are proposed currently for improvement of the lake Burtnieka ecological quality - sediment dredging, macrophyte mowing and biomanipulation. Calculations were done to determine amounts of nitrogen and phosphorus possible to remove from the lake using biomanipulation and macrophyte removal, but the measures are not sufficient on their own in reduction of nutrient loads to reach good ecological status. Detailed limnological studies are needed with focus on in-lake distribution of nutrient pollution in sediments, sediment nutrient release and analysis of internal nutrient load. These lake studies would help to determine the most appropriate combination of measures for lake restoration.

Rivers with hydro-morphological pressures from small scale hydroelectric power plant dams.

On Latvian side of project territory three water bodies were identified, where main pressures causing failing GES are hydro-morphological changes from small HPP's: G235 Vaidava_2 ("Karva" HPP, "Grūbe" HPP), G317 Pedele_2 ("Dzirnavnieku" HPP, "Kalndzirnavu" HPP), G322 Briede_1 ("Kārlīšu dzirnavu" HPP). A list of measures was proposed for mitigating negative impacts of hydro-morphological pressures from small HPPs. Measures then were compared in their efficiency in regards to achievement of good ecological quality. The parameters for evaluation include river continuity, fish migration and habitat areas, and ecological flow. Eight measures were initially proposed for small HPP's:

- 1. building of a fish pass;
- 2. reconstruction or improvement of an existing fish pass;
- 4. maintenance of an existing fish pass;
- 5. environmentally friendly turbine;
- 6. implementation of ecological flow (assessment and implementation);
- 7. demolishing a dam used for energy production;
- 8. permanently lowering the dam;
- 9. opening migration way during spawning period.

Second and third measures were proposed specifically for cases where fish pass exists already, but it is not functioning (one case – Karva HPP on Vaidava 2).

Rivers with hydro-morphological pressures from dams.

In Latvian project area there are three river WBs where hydro-morphological pressures are caused by dams – G306 Salaca_1, G301 Salaca_1, G322 Briede_1. A list of measures was proposed for mitigating negative effects of dams on WB ecological quality:

- 1. Demolishing the obstacle
- 2. Building of fish pass
- 3. Reconstruction or improvement of an existing fish pass
- 4. Maintenance of existing fish pass
- 5. Opening migration way during spawning period

There are some historically constructed dams with no current use in the Latvian project area the only measure proposed for those dams is demolishing. For other dams that are used for economic or recreational purposes building a fish pass is considered as the second measure, if demolishing the dam is not possible due to the restraints, however demolishing the dam is the priority measure as it is the most effective for achieving all the parameters of GES in rivers with hydro-morphological pressures from dams.

Purpose: to reduce impact of hydro-morphological changes due to small-scale hydropower plants										
Water body	Obstacle and measure / combination of measures									
Vaidava_2 G235	<i>"Karva" HPP</i> - demolishing a dam <i>or</i> implementation of ecological flow + reconstruction / improvement and maintenance of existing fish pass.									
	<i>"Grūbe" HPP</i> - implementation of ecological flow + building a fish pass.*									

Table 29. Overview of selection of new measures on water body scale for Latvia

Pedele_2 G317	<i>"Dzirnavnieku" HPP</i> - demolishing dam <i>or</i> implementation of ecological flow + building a fish pass.
	<i>"Kalndzirnavu" HPP</i> - demolishing dam <i>or</i> implementation of ecological flow + building a fish pass.
Briede_1 G322	" $K\bar{a}rl\bar{i}su$ " HPP - demolishing dam <i>or</i> implementation of ecological flow + building a fish pass.
	<i>"Sviluma" impoundment lake</i> - demolishing a dam <i>or</i> building a fish pass.
	Impoundment lake on river Briede - demolishing a dam.
Purpose: to reduce imp	act of hydro-morphological changes due to other dams and obstacles
Water body	Obstacle and measure / combination of measures
Salaca_1 G306	<i>Impoundment lake on river Nātrene "Ķāvu dzirnavezers"</i> - demolishing a dam or building a fish pass.
	Impoundment lake on river Lāčupīte "Grūbes dzirnavas/ Grūbes dzirnavu ezers" - demolishing a dam or building a fish pass.
	Impoundment lake on river Lāčupīte (2) - demolishing a dam.
Salaca_2 G301	Impoundment lake on river Puršena (1) - demolishing a dam.
	Impoundment lake on river Puršena (2) - demolishing a dam.
	Staicele dam on river Salaca - demolishing a dam or building a fish pass
Purpose: to reduce impact	of internal nutrient loading in lakes with accumulated nutrient pollution
Water body	Measure / measure combination
Burtnieka lake E225	Complex method - sediment dredging, biomanipulation and removal of macrophytes. Detailed lake studies are needed to determine the most appropriate combination of these measures.
Lielais Bauzis lake E228	Complex method - sediment dredging, biomanipulation, artificial treatment wetlands. Detailed lake studies are needed to determine the most appropriate combination of these measures.
Purpose: To reduce the in	npact of agriculture / reduce nutrient leaching (due to plant cultivation)
Water bodies	Proposed measures to consider when developing basin management plans for the next period
Burtnieku ezers E225 Lielais Bauzis E228 Vija_1 G229 Melnupe_2 G233** Melnupe_1 G234 Vaidava_2 G235 Gauja_6 G241	 Artificial (constructed) groundwater wetlands Artificial (constructed) surface wetlands Controlled drainage Buffer bars Using of nitrogen stabilizers when applying nitrogen Post-crops sowing after harvest / middle crops sowing (intermediate crops), catch crops

Salaca_2 G301 Salaca_3 G303SP Iģe_1 G304 Jogla G308 Briede_1 G322 Blusupīte G325	 Sedimentation basins / traps Crop rotation in arable land Spreading of fertilizers at certain distances from waters Using legumes in grasslands Winter green areas (stubble fields) Agricultural liming Energy crops Straw application in the field before winter sowing Preparation of fertiliser management plans or improving of basic fertiliser management plans
Purpose: to reduce in	npact of forestry / reduce nutrient leaching (due to tree felling)
Water bodies	Proposed measures to consider when developing basin management plans for the next period
Salainis E203 Lūkumīša ezers E204 Vija_1 G229 Gauja_6 G241 Salaca_2 G301	 Controlled drainage Buffer bars Sedimentation basins / traps
Purpose: to redu	ice the effects of reclamation in arable and/or forest lands
Water bodies	Proposed measures to consider when developing basin management plans for the next period
Vija_1 G229 Iģe_1 G304 Blusupīte G325 Melnupe_1 G234 Vizla_2 G242 Salaca_1 G306 Rūja_4 G310 Rūja_2 G313 Ķire G315 Acupīte_2 G320	 Controlled drainage Sedimentation basins / traps Phosphorus filters Stacks of stones Meandering Two-stage drainage ditches

*Additional evaluation is needed to determine whether building a fish pass would be a suitable measure for "Grūbe" HPP, as the power plant is constructed on an existing geological object - a dolomite platform, which might be a natural obstacle for fish migration.

**According to the latest monitoring data, the quality of the Melnupe_2 is rated as moderate, but this is questionable due to the fact that the monitoring station is located in a location that is unlikely to objectively represent the quality of the entire waterbody. The proposed measure is therefore linked to the choice of site for the monitoring station.

7. Practical results of measures

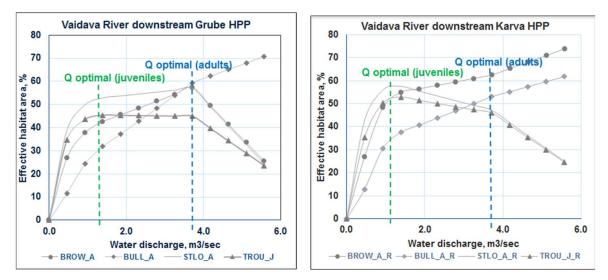
7.1. Ecological flow estimation for Vaidava River

Water quantity and hydrological regime have a critical role in the quality of aquatic ecosystems, including available habitat areas. According to EEA, about 40% of European water bodies are affected by hydro-morphological degradation, including habitat alterations. In the context of WFD environmental flow is "a hydrological regime consistent with the achievement of the environmental objectives of the WFD in natural surface water bodies" (CIS guidance document No. 31).

On Latvian side of trans-boundary water body Vaidava_2 (G235) two HPPs are located: "Karva" HPP (installed capacity: 480 kW, head: 11 m, turbine flow: 0.2-5.5 m3/sec, ecological flow: 0.94 m3/sec) and Grube HPP (installed capacity: 250 kW, head: 6 m, turbine flow: 5.0 m3/sec, ecological flow: 0.57 m3/sec). The water body G235 hydro-morphological quality is assessed as "bad" and ecological quality as "moderate".

Input data

The mesohabitat simulation model (MesoHABSIM) was used for Karva and Grube HPP Eflow estimation. Model builds to predict the response of the aquatic fauna and flora to habitat changes. The types of mesohabitat are determined by their geomorphic (hydro-morphological) units (GUs), such as pools, riffles and rapids, substrate diversity and other hydrological characteristics. Vaidava River habitats were mapped during summer-autumn period of 2018 and 2019 in 4 water flow conditions: *min* (minimal) and *average* discharge *of low flow period*, water discharge *between low flow average* and *annual mean*, as well as water discharge *between annual mean* and *annual max* (maximum).


Fish data were collected in 2018 within the same mesohabitats, where habitat surveys have been carried out. Data of every fish species and life stages are used to build a presence/absence and a presence/abundance model of fish. These data are used to develop mathematical models that describe which mesohabitats are used by fish more frequently. It gives the possibility to assess the availability of habitats at the different flow ranges.

Additionally, daily water flow series for normal (2015), wet (2016) and dry (2018) years in reference and altered conditions (upstream and downstream HPPs) have been created for river habitat modelling.

As a result, Habitat - Flow rating curves, Habitat Suitability (suitable, optimal, not suitable) maps, Habitat Time series and Integrity Indices have been calculated for each fish species of interest below Karva and Grube HPPs.

Modelling results & E-flow estimation

Habitat curves depending on flow rate, used for E-flow determination, were modelled for each fish species of interest (brown trout, stone loach, bullhead, etc.) that were pre-selected by fish expert. To establish the E-flow in the modelled river stretches, the Optimum flow (thereafter Q_{OPTIMUM}) should be chosen as a baseline. The Q_{OPTIMUM} is a flow value, at which the area of suitable habitat reaches its maximum, or continues to increase, depending solely on the surface area of the water. Herewith the maximum value of habitat area for juveniles is smaller than for adults and corresponds with smaller water discharge (Figure 13).

Figure 13. Habitat-Flow rating curves of Vaidava River downstream HPPs (green arrow shows the optimal water discharge for juveniles and blue arrow - for adults).

Consequently, it can be assumed that if the habitat area is the function of flow, then 0.6 of QOPTIMUM should guarantee at least good status of fish species of concern.

Table 30. Estimated values of E-flow for adult and juvenile fish that should be provided by Karva and Grube HPP.

E-flow estimation	Karva HPP	Grube HPP
Q _{OPTIMUM} (adult)*0.6	2.32	2.41
Q _{OPTIMUM} (juvenile)*0.6	0.66	0.71

Comparing of the E-flow values required by *Permissions of water resources use* are 0.57 m³/sec for the Grube HPP and 0.94 m³/sec for the Karva HPP, and these values are almost equal to the estimated E-flow for juveniles (Grube HPP) or even higher of it (Karva HPP). However, for adults these values are very low.

Conclusions

Modelling results shows close relationships between water flow and habitat availability as well as fish species presence/absence in hydrologically altered conditions.

Currently existing ecological flow for both HPPs of Vaidava River does not completely support the sustainability of Vaidava River aquatic ecosystems. It makes no sense that existing ecological flow for the downstream HPP is almost two times smaller than for the upstream HPP of the same river.

Project results show the necessity to provide the "ecological regime" in hydrologically regulated Vaidava River, and allow to estimate "winter E-flow" for salmonid fish spawning periods (from mid-October to May) and "summer E-flow" for growing of juveniles (from June to October).

8.2. Experience with small-scale filtration system

Lake Burtnieks is located in northeastern Latvia, in the administrative territory of Burtnieki County. Burtnieks is the fourth largest lake in Latvia with a total area of 39.01 km², its average depth is 2.2 m. The catchment area of the lake is 2250 km². The amount of water flowing into and out of Lake Burtnieks is ~ 0.487 km³ and 0.485 km³ per year.

The survey of the watercourses flowing into Lake Burtnieks was carried out on August 20, 2018. During the survey, water samples were taken to determine the nutrient content, the width and depth of the watercourse, its flow velocity, coastal overgrowth, land use in adjacent areas, and site availability for convenient filter construction.

Figure 14 shows the watercourses chosen for filter construction. These areas, around the watercourses, are active in economic activities (agriculture, animal husbandry, forestry), their size and stream speed are suitable for the installation and successful operation of the filters (small predicted runoff in spring floods) and have sufficient total phosphorus ($\geq 0.1 \text{ mg L-1}$).

Figure 14. Locations of watercourses chosen for filter construction

Filters installed in the ditches discharging into Burtnieks are 10 m long, 3 m wide and 1 m deep. A 50 m long water sedimentation basin is formed in front of the filter where suspended particles (mainly sand and organic matter) settles. This prevents rapid filter clogging.

The filter is made of moisture-resistant plywood at the ends of the structure, the geotextile filter bed, and 110 mm diameter perforated pipes for diffusing incoming water (Figure 15). The ends of the water distribution pipes are designed to be cleaned if necessary (Figure 16).

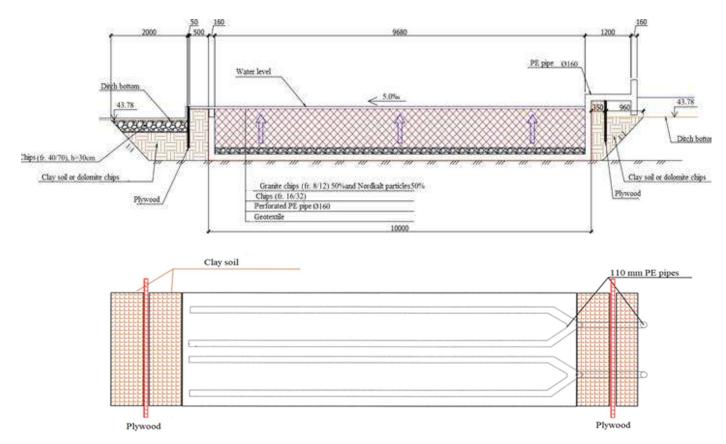
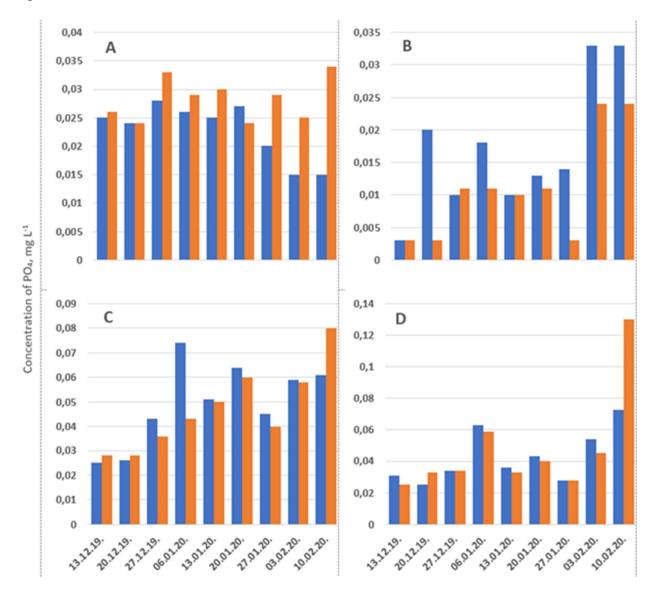


Figure 15. Schematic representation of phosphorus filter. Top - side view, bottom - top view.

The filter fill is calcium-containing material. All installed filters are filled with dolomite (CaMg (CO3) 2) chips. Two filters built in the ditch with the highest water flow rate, filled with 30 m² dolomite chips of 16 - 32 mm fraction. Filters built into ditches with lower water flow rate are filled with 12 - 16 mm fraction dolomite chips and 2 m² of Nordkalk TM calcium hydroxide (Ca (OH) 2) granules added. After contact with the calcium P dissolved in water precipitates and forms and forms insoluble compound. The simplified phosphorus precipitation reaction is illustrated as follows:

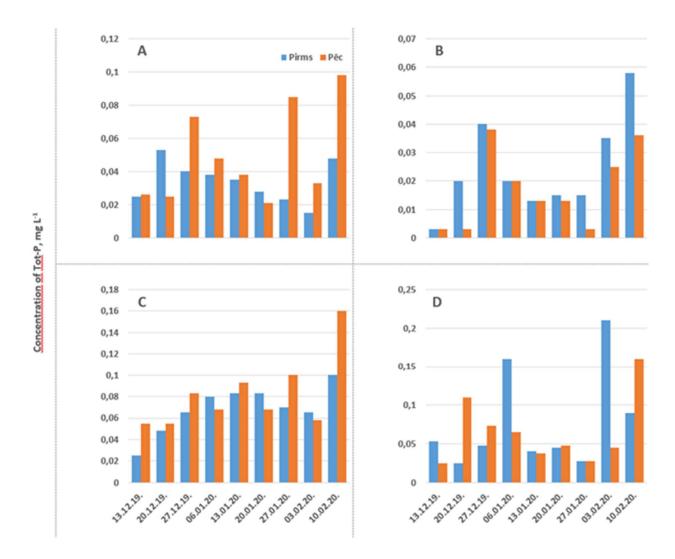
 $5[Ca]^{(2+)+[3PO]}_4^{(3-)+[OH]}^{-} \rightarrow [Ca]_5 [(PO]_4]_3 OH$

Figure 16. Phosphorus filters on small ditches around Lake Burtnieks


The effectiveness of the filters installed in the watercourses is assessed by sampling water before and after discharge into the filter. Concentrations of total nitrogen and phosphorus and their compounds (NO3, NO2, PO4) were determined in the water samples taken once a week starting December 13, 2019 for two months. The results obtained are shown in Figures 17. and 18. The results show the characteristics of filtration material impact on the reduction of phosphorus concentration.

For filter # 1 (Figure 17 - A), dolomite chips with a fraction of 16 - 32 mm are used, which provide faster water throughput and shorter contact time with the filtering material. Under heavy rainfall, there is also an overflow of ditch water which results in no water filtration.

For filter # 2 (Figure 17 - B), a mixture of dolomite chips (12 -16 mm) and calcium hydroxide granules were used. Figure 18. shows that the phosphorus concentration in the water discharged from the filter in six cases out of nine measurements is 15 - 85% lower than in the inflowing water.


The filter # 3 (Figure 17 - C) is filled with 12 - 16 mm fraction of dolomite chips. Also in this filter a decrease in P concentration was observed in six of the nine samples with a PO4 concentration reduction of 1.5 - 42%. However, this filter is impacted by water overflow which reduces the amount of precipitated phosphorus.

For filter # 4 (Figure 17 - D), dolomite chips of 16 - 32 mm fraction were used as the filter material, ensuring a smooth flow of water through the filter without overflow. In the case of

heavy rainfall, the water filter structure didn't function properly, resulting in no change or higher PO₄ concentration in the effluent than at the inlet.

Figure 17. Changes in PO_4 concentration. Blue - PO_4 concentration in water before entering the filter construction, orange - PO_4 in water after discharge of the filter structure. A - Filter # 1, B - Filter # 2, C - Filter # 3, D - Filter # 4.

Figure 18. Changes in total phosphorus (Tot-P) concentration. Blue - Tot-P concentration in water before entering the filter, orange - Tot-P content of the water at discharge from the filter structure. A - Filter # 1, B - Filter # 2, C - Filter # 3, D - Filter # 4.

Conclusions

Effectiveness

Phosphate (PO₄) and total phosphorus (P) concentrations were monitored to evaluate the effectiveness of the phosphorus filters in the ditches in the lake Burtnieks catchment area. The concentrations of these forms of phosphorus were compared with water at the inlet to the filter design and with water at the outlet from the filter structure. The results obtained show that the efficiency of the filters is mainly influenced by the filtration material chosen.

The best results are provided by Filter # 2, whose filter material consists of a mixture of 12 - 16 mm fraction of dolomite chips and calcium hydroxide granules. This filtration material provides not only adsorption of phosphorus (dolomite) but also precipitation (calcium

hydroxide). Phosphorus reduction was also observed in Filter # 3, which used 12 to 16 m fraction of dolomite chips. However, due to regular water floods, the amount of adsorbed phosphorus is relatively small.

Filters # 1 and # 4 use dolomite chips of 16 - 32 mm fraction. These filters are less effective in reducing phosphorus than the other two. This is due to the rapid flow of water, which is facilitated by the coarse fraction of the filtration material. As a result, the contact time between water and dolomite is too short to absorb more phosphorus.

The performance of the filters was adversely affected by the heavy rainfalls, which caused extremely high water levels. As a result, water overflows were often observed in ditches with filter constructions. Under these conditions water is only partially filtered. Rainfall also facilitated the inflow of additional water into the filter structure directly from surrounding areas along the ditch slopes.

In order to be able to objectively evaluate the performance of the filters, it is necessary to continue monitoring for the rest of the year 2020. This would demonstrate the ability of filters to reduce phosphorus concentrations at low water flow rates and longer contact times between water and filtration material.

The total catchment area of the ditches selected for the construction of the filters is 14.39 km². It is 156 times smaller than the Burtnieks catchment area (2250 km²). It can be concluded that the four watercourses discharging into Lake Burtnieks where phosphorus filters are installed account for less than 2.7% of the total phosphorus load of the three largest rivers discharging into the lake. Taking into account that the installed phosphorus filters do not work with 100% continuous efficiency (complete phosphorus removal from water), the resulting decrease in phosphorus load to Lake Burtnieks is no more than 2% of its total phosphorus load.

One of sources of Burtnieks phosphorus load is agriculture in the catchment area. In order to create a significant reduction in the phosphorus load to Lake Burtnieks, it is necessary to limit the use of phosphorus-containing fertilizers. The installation of phosphorus filters in all watercourses flowing into the lake is not possible due to different size, availability of suitable space and legal considerations. Therefore, these types of filters cannot serve as the primary and most effective solution for reducing phosphorus loads on Lake Burtnieks, but it is a good option to combine with other measures.

Annex 1

Project "Water bodies without borders" (EstLat 66)

EstModel modelling for nutrient load calculation at transboundary waterbodies

Main principles of modelling, pressures information involved, results of modelling, results comparison with environmental standard in EE and LV, recommendation regarding to action plan (where does the pressure come from, is it natural or man-made), figures which illustrate the origin of N and P pressure about waterbodies in not good status.

Disclaimer: This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used.

February 2020

EstModel background

EstModel is a model for the assessment of the runoff of plant nutrients (phosphorus, nitrogen) from a catchment that is customised with monitoring data. The idea and the calculating logarithms were created by Peeter Ennet (Estonian Environment Agency) and Eero Pihelgas (Estonian Environmental Research Centre).

The model consists of calculation of the loads of N and P; thereat, the load on the catchment, the load on the waterbody, and the load carried out of the area included in the calculation are differentiated. Decreases in the load arising from retention are taken into consideration in calculating the loads.

Compared to the complicated models which describe the runoff processes from catchments in detail, such as SWAT (*Neitsch, S.L. et al.,2011*), HYPE (*Lindstrom, G. et al., 2010*), or the Qual2 stationary river water quality model (*Pelletier, G. and Chapra, S., 2008*), *EstModel* requires a significantly smaller amount of data and has a higher level of generalisation. One of the most time-consuming and work-extensive issues involved in using models is the existence of and access to the source data. Compared to large-scale models, using *EstModel* is considerably easier to use, as the model adjusts automatically to the area included in the calculation and is reset automatically. Thus, the model does not call for the work-extensive and time-consuming collection of source data and preparation by the user.

One of the prerequisites of creating the calculation logarithms of *EstModel* was that all the source data required should be available from national databases by automatic inquiries (Figure 1).

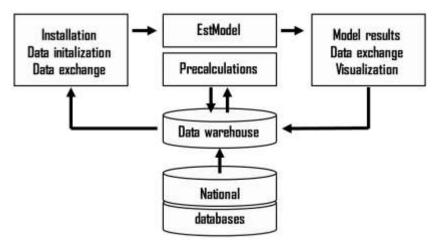


Figure 1. Estmodel scheme.

Several assumptions, simplifications, and original calculation algorithms were used in preparing *EstModel*. The characteristics of *EstModel* include:

- full adjustment of the results achieved by the model with monitoring data;
- calculations based on subcatchments;
- calculations based on land cover class;
- differentiation of natural and man-made loads;
- calculation of the measures to alleviate the man-made load;
- enabling the use of the user's calculation versions;
- enabling selection of a random calculated area;
- automatic installation in a randomly selected area;
- automatic resetting based on national monitoring data;

The primary assumptions and simplifications are:

- stationarity (constant calculation conditions in the area);
- homogeneity (similarity of the calculation parameters of the subcatchment).

The temporal and spatial scale of the calculations of *EstModel* enables to estimate the runoff of nutrients from a catchment in the temporal and spatial dimensions characteristic to the specific catchment. Figure 2 demonstrates the temporal and spatial dimensions characteristic to the source data and calculations of *EstModel*.

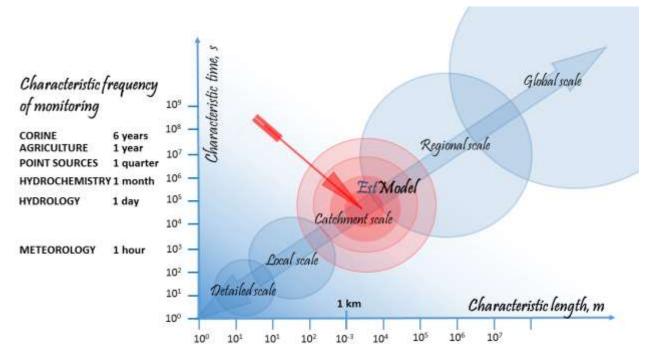


Figure 2. The temporal and spatial dimensions characteristic to the estimations of EstModel.

The reference spatial units used for calculations in *EstModel* include sub-basins, subcatchments, and the surface areas of the CORINE land cover classes in the subcatchments.

The model is customised with the monitoring data separately in each sub-area of the calculations of the model.

EstModel enables to calculate runoff of nutrients from any randomly selected calculated area.

The intermediate catchments are used as units of calculation in the model. A intermediate catchment is a section of the catchment of a hydrochemical monitoring station that does not include the catchments of other hydrochemical monitoring stations in the catchment thereof. All calculation areas are divided into monitored and unmonitored areas.

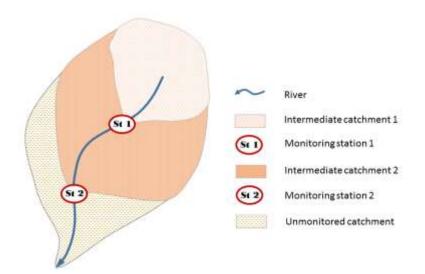


Figure 3. Division of the catchment of a river into intermediate catchments

Figure 3 is a schematic drawing of a river with two monitoring stations. In the drawing, the first subcatchment is the entire catchment of monitoring station 1 and the other subcatchment is the part of the catchment of monitoring station 2 minus the catchment of monitoring station 1.

As the intermediate catchments are determined every year based on monitoring data, the number of intermediate catchments in an area and the contours thereof may differ by years based on whether or not there is monitoring data available.

The smallest calculation units based on surface area in the *EstModel* assessments are the surface areas of the CORINE land cover classes in a subcatchment or a sub-area of a subcatchment. The land cover classes used in the model include arable land, forest, pastureland, peat bog, wetland, waters, and other areas. The model calculates runoff of nutrients separately from each

land cover class of a calculated area and from point sources. The model distinguishes natural and man-made load (see Figure 4).

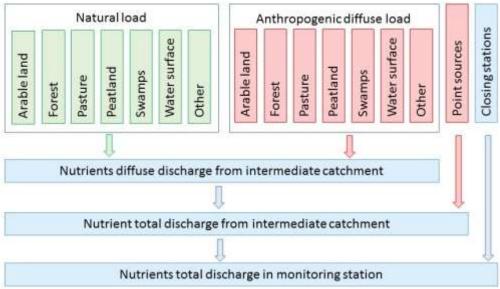


Figure 4. The calculation elements of EstModel's load estimations.

Runoff from a catchment is divided into natural runoff and man-made load based on the origin of the source of the load. Based on the type of the source of the load, runoff is divided into diffused load and point source load. The diffused load of a catchment includes natural runoff and man-made load; point source load, however, is man-made load. The load of each reference sub-area is the total of the diffused load and point source load of the calculated area.

Temporally, *EstModel* has been applied to calculate average annual values. Any period of time in years may be used for the calculation; thereat, the model is adjusted with monitoring data in each year of calculation and separately for each intermediate catchments.

Input data are found for each subcatchment to perform the calculations. The runoff from the subcatchments, which is an input for the model, is calculated based on hydrological monitoring data. The remaining input data are found by making queries to national databases and geoinquiries of different contours (subcatchment, reference sub-area, etc.). If no data is available, assumed default values stored in the administration interface are used in the case of some data.

Using the model and the calculation process consists of the following main steps:

- selection of the total reference area (the area selected for the calculation by the user);
- identification of the subcatchments in the reference total area;
- identification of the reference sub-areas;
- resetting of the model in the reference sub-areas;
- determining of the retention factors of the subcatchments;
- determining of the adjustment factors of the subcatchments;

- model calculations for each reference sub-area;
- visualisation and saving of the results.

Model results and discussion

Nutrient runoff was calculated from the catchment area of 29 waterbodies in the Koiva River Basin. The calculations are based on 2017 data. Due to the large number of model results and the limited size of the report, it is not possible to analyze all of these modeled indicators. The detailed summary output for the all *EstModel* calculations is provided in an excel file (appendix 1). Model results are explained using figures, tables, brief comments and conclusions. The model results are illustrated by 9 figures:

Figure 5. N,P status classes of waterbodies in the Koiva river basin.

Figure 6. N – concentration dependence on anthropogenic load.

Figure 7. P – concentration dependence on anthropogenic load.

Figure 8. P – concentration dependence on N concentration.

Figure 9. P – concentration dependence on specific runoff.

Figure 10. Dependence of retention on catchment area.

Figure 11. N/P ratios.

Figure 12. Distribution of anthropogenic and natural N load in waterbodies.

Figure 13. Distribution of anthropogenic and natural P load in waterbodies.

There are 15 tables that explain the results:

Table 1. General data of calculated river waterbodies

Table 2. N diffused anthropogenic discharge of calculated river waterbodies

Table 3. N atmospheric discharge of calculated river waterbodies

Table 4. N natural discharge of calculated river waterbodies

Table 5. N diffused discharge (ant. + atm. + nat.) of calculated river waterbodies

Table 6. N diff. concentrations (ant. + atm. + nat.) of calculated river waterbodies

Table 7. N diff. specific load (ant. + atm. + nat.) of calculated river waterbodies

Table 8. P diffused anthropogenic discharge of calculated river waterbodies

Table 9. P atmospheric discharge of calculated river waterbodies

Table 10. P natural discharge of calculated river waterbodies

Table 11. P diffused discharge (ant. + atm. + nat.)) of calculated river waterbodies

Table 12. P diff. concentrations (ant. + atm. + nat.) of calculated river waterbodies

Table 13. Comparison of N concentrations with standards in EE and LV
Table 14. P diff. specific load (ant. + atm. + nat.) of calculated river waterbodies
Table 15. Comparison of P concentrations with standards in EE and LV
Table 16. Potential actionable diffuse source loads for nitrogen
Table 17. Potential actionable diffuse source loads for phosphorus

All model results and data derived from model results are presented as an excel file in the appendix. There are five worksheets in this file:

- 1) "Load" in this worksheet the results are presented as loads (kg/a) from the catchment area;
- 2) "Concentration" the results are presented as concentrations (mg/l);
- 3) "Specific load" the results are presented as specific loads (kg/a/km²);
- 4) "Source load" the results are presented as source loads (kg/a);
- 5) "Opportunity" the load volumes to be reduced in order to achieve the objectives.

Below, the model results are presented in a generalized form, attempting to represent all calculated areas together. The aim of water management plans is to achieve good status for all waterbodies. Based on modelled N concentrations 27 waterbodies in the Koiva river basin district were in the good and high status class and only 2 waterbodies were in the moderate status class. Based on P concentrations 12 waterbodies in the Koiva river basin district were 12 waterbodies were in the high status class, 5 in the good, 7 in the moderate, 4 in the poor and 1 waterbody was in the bad status class. In Figure 5 the aggregated overview in the Koiva river basin district is presented as a percentage of status classes.

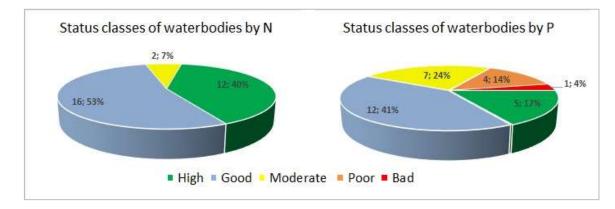


Figure 5. N,P status classes of waterbodies in the Koiva river basin.

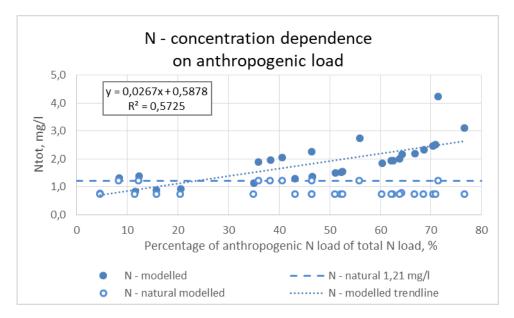


Figure 6. N – concentration dependence on anthropogenic load.

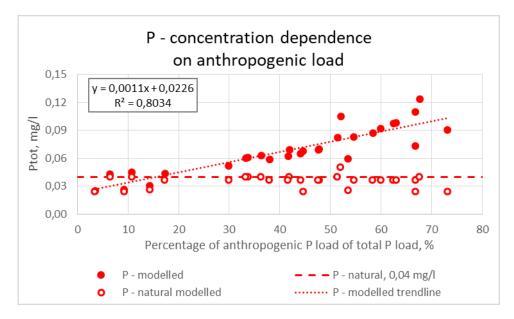


Figure 7. P – concentration dependence on anthropogenic load.

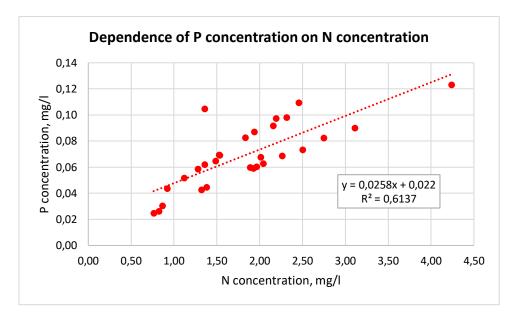


Figure 8. P – concentration dependence on N concentration.

Figure 9. P – concentration dependence on specific runoff.

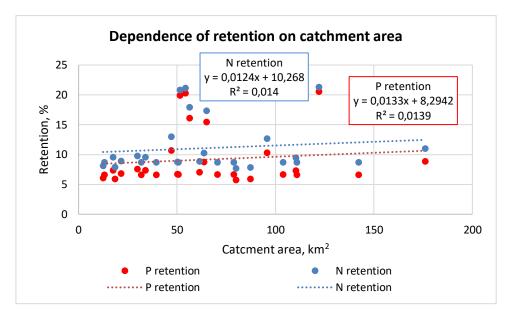


Figure 10. Dependence of retention on catchment area.

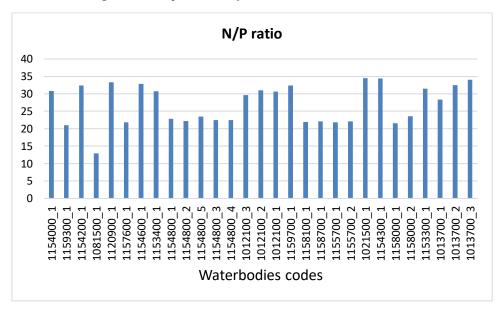


Figure 11. N/P ratios.

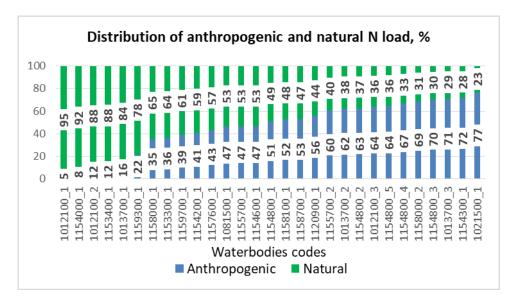


Figure 12. Distribution of anthropogenic and natural N load in waterbodies.

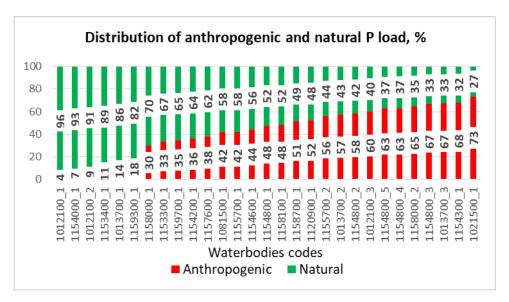


Figure 13. Distribution of anthropogenic and natural P load in waterbodies.

	Obje	ct	Ru	noff				Areas by la	nd use, km ²			
	Catchment	Code	m ³ /s	l/s/km ²	Arable	Forest	Pasture	Swamps	Peatland	Water	Other	Total
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Atse_1	1154000_1	0,22	12,12	0,27	17,34	0,78	0,00	0,00	0,00	0,00	18,39
2	Hargla_1	1159300_1	0,56	10,36	2,00	48,17	1,72	0,48	0,48	0,39	0,89	54,13
3	Koiva_1	1154200_1	0,52	10,33	4,65	39,65	4,55	0,00	0,00	0,00	1,76	50,61
4	Kolga (1)_1	1081500_1	0,51	10,16	5,78	37,48	2,97	0,66	0,66	0,00	2,58	50,13
5	Kolga (2)_1	1120900_1	1,06	12,18	14,75	64,96	7,51	0,00	0,00	0,00	0,00	87,22
6	Kuura_1	1157600_1	0,73	10,37	7,53	50,81	1,76	0,26	0,00	0,00	10,12	70,48
7	Laanemetsa_1	1154600_1	0,67	10,33	7,58	47,47	5,82	0,00	0,97	0,11	3,02	64,97
8	Lilli_1	1153400_1	0,36	12,11	0,61	27,16	0,95	0,49	0,21	0,01	0,31	29,74
9	Mustjõgi_1	1154800_1	0,33	10,36	5,26	19,49	0,28	0,00	0,00	0,00	6,76	31,79
10	Mustjõgi_2	1154800_2	1,47	10,37	30,88	90,41	9,16	0,25	0,00	0,00	11,37	142,07
11	Mustjõgi_3	1154800_3	1,15	10,37	33,95	55,71	6,23	0,00	0,97	0,00	13,94	103,78
12	Mustjõgi_4	1154800_4	0,82	10,37	21,00	44,08	1,14	0,29	2,21	0,00	9,95	110,80
13	Mustjõgi_5	1154800_5	1,08	10,36	25,41	63,15	7,28	0,19	0,19	0,00	7,56	78,67
14	Pedeli_1	1012100_1	0,16	8,91	0,14	17,26	0,00	0,00	0,00	0,00	0,06	63,65
15	Pedeli_2	1012100_2	0,30	8,91	0,68	25,61	0,57	0,00	0,00	0,00	6,90	33,76
16	Pedeli_3	1012100_3	0,57	8,91	12,82	38,36	5,06	0,49	0,11	0,00	6,81	17,46
17	Pedetsi_1	1159700_1	1,26	10,31	10,28	92,00	4,08	0,00	0,00	1,01	14,63	122,00
18	Peeli_1	1158100_1	0,58	10,37	8,16	34,64	4,90	0,00	1,76	0,11	6,67	56,24
19	Peetri_1	1158700_1	0,41	10,37	5,95	29,29	1,52	0,57	0,57	0,00	1,48	39,38
20	Pärlijõgi _1	1155700_1	0,99	10,37	11,32	60,94	1,69	3,93	3,63	0,04	14,12	95,67
21	Pärlijõgi _2	1155700_2	0,64	10,36	12,49	34,40	0,92	0,00	0,00	0,00	13,47	61,28
22	Rõngu_1	1021500_1	1,04	9,39	47,70	38,56	8,69	0,00	0,00	0,00	15,37	110,32
23	Ujuste_1	1154300_1	0,53	10,33	17,16	21,90	6,77	0,00	0,00	0,32	5,23	51,38
24	Vaidava_1	1158000_1	0,22	10,36	1,68	17,73	1,25	0,00	0,00	0,00	0,82	21,48
25	Vaidava_2	1158000_2	0,14	10,36	4,30	6,22	2,50	0,00	0,00	0,00	0,02	13,04
26	Vedame_1	1153300_1	0,15	12,18	1,03	10,16	0,00	0,00	0,00	0,00	1,22	12,41
27	Õhne_1	1013700_1	0,23	4,86	1,06	39,37	0,30	3,14	3,14	0,00	0,00	47,01
28	Õhne_2	1013700_2	1,11	6,29	32,59	110,90	4,93	2,51	4,76	0,00	20,25	175,94
29	Õhne_3	1013700_3	0,99	12,35	25,79	38,56	4,21	1,43	0,77	0,00	9,02	79,78

Table 1. General data of calculated river waterbodies

	Obje	ct				N diffus	ed anthropog	genic discl	narge, kg/	a	
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other	Total	N diffused anthrop., total
1	2	3	4	5	6	7	8	9	10	11	12
1	Atse_1	1154000_1	762,63	8,26	0,00	0,00	0,00	0,00	0,00	770,89	1
2	Hargla_1	1159300_1	3263,61	12,09	0,00	0,00	55,18	0,00	0,00	3330,88	
3	Koiva_1	1154200_1	13615,83	49,22	0,00	0,00	0,00	0,00	0,00	13665,05	100000 A
4	Kolga (1)_1	1081500_1	9703,31	31,42	0,00	0,00	75,12	0,00	0,00	9809,85	
5	Kolga (2)_1	1120900_1	51297,16	136,81	0,00	0,00	0,00	0,00	0,00	51433,97	
6	Kuura_1	1157600_1	12679,73	10,55	0,00	0,00	0,00	0,00	0,00	12690,28	
7	Laanemetsa_1	1154600_1	21989,87	70,25	0,00	0,00	186,48	0,00	0,00	22246,60	
8	Lilli_1	1153400_1	1770,13	106,07	0,00	0,00	48,38	0,00	0,00	1924,58	
9	Mustjõgi_1	1154800_1	7863,30	12,32	0,00	0,00	0,00	0,00	0,00	7875,62	-
10	Mustjõgi_2	1154800_2	56148,13	61,64	0,00	0,00	0,00	0,00	0,00	56209,77	
11	Mustjõgi_3	1154800_3	62535,88	24,86	0,00	0,00	111,96	0,00	0,00	62672,70	p
12	Mustjõgi_4	1154800_4	37263,24	56,28	0,00	0,00	255,32	0,00	0,00	37574,84	
13	Mustjõgi_5	1154800_5	46903,01	39,47	0,00	0,00	21,51	0,00	0,00	46963,99	n
14	Pedeli_1	1012100_1	172,12	0,07	0,00	0,00	0,00	0,00	0,00	172,19	
15	Pedeli_2	1012100_2	881,39	13,04	0,00	0,00	0,00	0,00	0,00	894,43	1
16	Pedeli_3	1012100_3	19623,59	30,26	0,00	0,00	11,15	0,00	0,00	19665,00	
17	Pedetsi_1	1159700_1	29724,82	36,12	0,00	0,00	0,00	0,00	0,00	29760,94	1
18	Peeli_1	1158100_1	14398,47	43,16	0,00	0,00	203,78	0,00	0,00	14645,41	
19	Peetri_1	1158700_1	10286,16	2,90	0,00	0,00	65,70	0,00	0,00	10354,76	-
20	Pärlijõgi _1	1155700_1	19316,51	18,70	0,00	0,00	419,67	0,00	0,00	19754,88	
21	Pärlijõgi _2	1155700_2	21895,87	21,96	0,00	0,00	0,00	0,00	0,00	21917,83	
22	Rõngu_1	1021500_1	77583,01	151,71	0,00	0,00	0,00	0,00	0,00	77734,72	
23	Ujuste_1	1154300_1	50624,00	75,73	0,00	0,00	0,00	0,00	0,00	50699,73	
24	Vaidava_1	1158000_1	2737,65	2,25	0,00	0,00	0,00	0,00	0,00	2739,90	Part and a second se
25	Vaidava_2	1158000_2	6748,28	13,66	0,00	0,00	0,00	0,00	0,00	6761,94	
26		1153300_1	3010,40	225,60	0,00	0,00	0,00	0,00	0,00	3236,00	
27		1013700_1	767,51	40,21	0,00	0,00	170,35	0,00	0,00	978,07	
28		1013700_2	37509,29	234,97	0,00	0,00	289,68	0,00	0,00	38033,94	
29	Õhne_2	1013700_3	54708,09	291,54	0,00	0,00	80,36	0,00	0,00	55079,99	

Table 2. N diffused anthropogenic discharge of calculated river waterbodies

	Obje	ct				Ν	atmospheric o	discharge	, kg/a		
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other	Total	N atmospheric, total
1	2	3	4	5	6	7	8	9	10	11	12
1	Atse_1	1154000_1	0,03	3,20	0,15	0,00	0,00	0,00	0,00	3,38	F
2	Hargla_1	1159300_1	0,37	8,90	0,32	0,09	0,09	171,63	0,16	181,56	
3	Koiva_1	1154200_1	0,86	7,33	0,84	0,00	0,00	0,00	0,32	9,35	
4	Kolga (1)_1	1081500_1	1,07	6,93	0,55	0,12	0,12	0,00	0,48	9,27	1
5	Kolga (2)_1	1120900_1	2,72	12,00	1,39	0,00	0,00	0,00	0,00	16,11	· ·
6	Kuura_1	1157600_1	1,39	9,39	0,32	0,05	0,00	0,00	1,87	13,02	2 0
7	Laanemetsa_1	1154600_1	1,39	8,77	1,07	0,00	0,18	48,79	0,56	60,76	
8	Lilli_1	1153400_1	0,12	5,01	0,18	0,09	0,04	2,30	0,05	7,79	
9	Mustjõgi_1	1154800_1	0,98	3,60	0,05	0,00	0,00	0,00	1,25	5,88	3
10	Mustjõgi_2	1154800_2	5,71	16,71	1,69	0,05	0,00	0,00	2,10	26,26	3 - 3
11	Mustjõgi_3	1154800_3	6,27	10,29	1,15	0,00	0,18	0,00	2,58	20,47	a
12	Mustjõgi_4	1154800_4	3,88	8,15	0,21	0,05	0,41	0,00	1,84	14,54	*
13	Mustjõgi_5	1154800_5	4,69	11,67	1,35	0,03	0,03	0,00	1,40	19,17	a
14	Pedeli_1	1012100_1	0,02	3,19	0,00	0,00	0,00	0,00	0,01	3,22	1
15	Pedeli_2	1012100_2	0,12	4,73	0,10	0,00	0,00	0,00	1,27	6,22	3
16	Pedeli_3	1012100_3	2,37	7,09	0,93	0,09	0,02	0,00	1,26	11,76	1
17	Pedetsi_1	1159700_1	1,90	17,00	0,75	0,00	0,00	442,59	2,70	464,94	
18	Peeli_1	1158100_1	1,50	6,40	0,91	0,00	0,33	49,46	1,23	59,83	
19	Peetri_1	1158700_1	1,10	5,41	0,28	0,10	0,10	0,00	0,27	7,26	1
20	Pärlijõgi _1	1155700_1	2,10	11,26	0,31	0,73	0,67	17,82	2,61	35,50	-
21	Pärlijõgi _2	1155700_2	2,31	6,36	0,17	0,00	0,00	0,00	2,49	11,33	1
22	Rõngu_1	1021500_1	8,81	7,13	1,61	0,00	0,00	0,64	2,84	21,03	-
23	Ujuste_1	1154300_1	3,16	4,04	1,25	0,00	0,00	142,26	0,97	151,68	
24	Vaidava_1	1158000_1	0,32	3,28	0,23	0,00	0,00	0,15	0,15	4,13	
25	Vaidava_2	1158000_2	0,79	1,15	0,46	0,00	0,00	0,00	0,00	2,40	
26	_	1153300_1	0,19	1,88	0,00	0,00	0,00	0,11	0,23	2,41	1
27	Õhne_1	1013700_1	0,19	7,28	0,06	0,58	0,58	0,00	0,00	8,69	
28	Õhne_2	1013700_2	6,01	20,49	0,91	0,47	0,87	0,00	3,74	32,49	
29	Õhne_2	1013700_3	4,78	7,13	0,77	0,26	0,14	0,00	1,66	14,74	1 I.

 Table 3. N atmospheric discharge of calculated river waterbodies

	Obje	ct					N natural dis	charge, k	g/a		
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total
1	2	3	4	5	6	7	8	9	10	11	12
1	Atse_1	1154000_1	123,26	8017,56	360,94	0,00	0,00	0,00	0,00	8501,76	_
2	Hargla_1	1159300_1	473,66	11430,70	407,43	113,17	113,17	0,00	211,05	12749,18	
3	Koiva_1	1154200_1	1831,67	15639,20	1793,86	0,00	0,00	0,00	692,88	19957,61	
4	Kolga (1)_1	1081500_1	1346,52	8717,44	691,35	154,07	154,07	0,00	600,84	11664,29	_
5	Kolga (2)_1	1120900_1	6857,35	30193,53	3490,04	0,00	0,00	0,00	0,00	40540,92	
6	Kuura_1	1157600_1	1785,54	12059,14	416,91	62,46	0,00	0,00	2401,46	16725,51	
7	Laanemetsa_1	1154600_1	2989,49	18713,44	2295,60	0,00	382,44	0,00	1191,17	25572,14	
8	Lilli_1	1153400_1	282,34	12556,06	440,40	226,29	99,21	0,00	139,73	13744,03	
9	Mustjõgi_1	1154800_1	1248,13	4624,73	66,16	0,00	0,00	0,00	1604,51	7543,53	_
10	Mustjõgi_2		7330,42	21456,33	2174,07	60,46	0,00	0,00		33719,90	
11	Mustjõgi_3	1154800_3	8057,21	13220,53	1478,11	0,00	229,62	0,00		26293,96	
12	Mustjõgi_4	1154800_4	4984,75	10461,37	271,64	67,90	523,62	0,00	2360,51	18669,79	
13	Mustjõgi_5	1154800_5	6342,00	15897,41	1784,98	44,12	44,12	0,00	1969,99	26082,62	
14	Pedeli_1	1012100_1	27,83	3521,93	0,00	0,00	0,00	0,00	12,81	3562,57	-
15	Pedeli_2	1012100_2	138,18	5226,98	115,52	0,00	0,00	0,00	1408,56	6889,24	-
16	Pedeli_3	1012100_3	2617,37	7829,51	1031,88	99,10	22,86	0,00		12989,98	
17	Pedetsi_1	1159700_1	4054,70	36225,57	1609,37	0,00	0,00	0,00		47614,91	
18	Peeli_1	1158100_1	1938,66	8221,20	1163,13	0,00	417,92	0,00	1582,40	13323,31	
19	Peetri_1	1158700_1	1412,23	6951,34	361,81	134,73	134,73	0,00	352,02	9346,86	_
20	Pärlijõgi _1	1155700_1	2685,13	14463,30	401,92	932,25	860,68	0,00	3350,91	22694,19	
21	Pärlijõgi _2	1155700_2	2963,09	8163,93	217,85	0,00	0,00	0,00		14541,18	
22	Rõngu_1	1021500_1	10251,49	8286,76	1866,87	0,00	0,00	0,00		23707,19	
23	Ujuste_1	1154300_1	6761,48	8637,31	2669,04	0,00	0,00	0,00	2041,04	20108,87	
24	Vaidava_1	1158000_1	399,00	4206,94	295,86	0,00	0,00	0,00	194,47	5096,27	-
25	Vaidava_2	1158000_2	1019,45	1475,26	594,37	0,00	0,00	0,00	4,53	3093,61	- I I
26	Vedame_1	1153300_1	474,90	4724,26	0,00	0,00	0,00	0,00	568,48	5767,64	-
27		1013700_1	117,76	4380,65	33,76	349,36	349,36	0,00	0,00	5230,89	-
28		1013700_2	5062,30	14907,48	547,76	318,56	593,84	0,00	,	25356,51	
29	Õhne_2	1013700_3	7369,14	10857,50	1222,22	307,66	164,81	0,00	2638,26	22559,59	

Table 4. N natural discharge of calculated river waterbodies

		Object					N diffuse	d dischar	ge (anthropo	ogenic + atmosp	oheric + n	atural), l	kg/a
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total		
1	2	3	4	5	6	7	8	9	10	11			12
1	Pedeli_1	1012100_1	199,97	3525,19	0,00	0,00	0,00	0,00	12,82	3737,98			
2	Pedeli_2	1012100_2	1019,69	5244,75	115,62	0,00	0,00	0,00	1409,83	7789,89			
3	Pedeli_3	1012100_3	22243,33	7866,86	1032,81	99,19	34,03	0,00	1390,52	32666,74			
4	Õhne_1	1013700_1	885,46	4428,14	33,82	349,94	520,29	0,00	0,00	6217,65			
5	Õhne_2	1013700_2	42577,60	15162,94	548,67	319,03	884,39	0,00	3930,31	63422,94			
6	Õhne_3	1013700_3	62082,01	11156,17	1222,99	307,92	245,31	0,00	2639,92	77654,32		-	
7	Rõngu_1	1021500_1	87843,31	8445,60	1868,48	0,00	0,00	0,64	3304,91	101462,94			
8	Kolga (1)_1	1081500_1	11050,90	8755,79	691,90	154,19	229,31	0,00	601,32	21483,41			
9	Kolga (2)_1	1120900_1	58157,23	30342,34	3491,43	0,00	0,00	0,00	0,00	91991,00			
10	Vedame_1	1153300_1	3485,49	4951,74	0,00	0,00	0,00	0,11	568,71	9006,05			
11	Lilli_1	1153400_1	2052,59	12667,14	440,58	226,38	147,63	2,30	139,78	15676,40			
12	Atse_1	1154000_1	885,92	8029,02	361,09	0,00	0,00	0,00	0,00	9276,03			
13	Koiva_1	1154200_1	15448,36	15695,75	1794,70	0,00	0,00	0,00	693,20	33632,01		I.	
14	Ujuste_1	1154300_1	57388,64	8717,08	2670,29	0,00	0,00	142,26	2042,01	70960,28		_	1
15	Laanemetsa_1	1154600_1	24980,75	18792,46	2296,67	0,00	569,10	48,79	1191,73	47879,50		6 - C	
16	Mustjõgi_1	1154800_1	9112,41	4640,65	66,21	0,00	0,00	0,00	1605,76	15425,03			
17	Mustjõgi_2	1154800_2	63484,26	21534,68	2175,76	60,51	0,00	0,00	2700,72	89955,93			
18	Mustjõgi_3	1154800_3	70599,36	13255,68	1479,26	0,00	341,76	0,00	3311,07	88987,13		-	
- 19	Mustjõgi_4	1154800_4	42251,87	10525,80	271,85	67,95	779,35	0,00	2362,35	56259,17		e	
20	Mustjõgi_5	1154800_5	53249,70	15948,55	1786,33	44,15	65,66	0,00	1971,39	73065,78		()	
21	Pärlijõgi _1	1155700_1	22003,74	14493,26	402,23	932,98	1281,02	17,82	3353,52	42484,57			
22	Pärlijõgi _2	1155700_2	24861,27	8192,25	218,02	0,00	0,00	0,00	3198,80	36470,34			
23	Kuura_1	1157600_1	14466,66	12079,08	417,23	62,51	0,00	0,00	2403,33	29428,81			
24	Vaidava_1	1158000_1	3136,97	4212,47	296,09	0,00	0,00	0,15	194,62	7840,30			
25	Vaidava_2	1158000_2	7768,52	1490,07	594,83	0,00	0,00	0,00	4,53	9857,95		•	
26	Peeli_1	1158100_1	16338,63	8270,76	1164,04	0,00	622,03	49,46	1583,63	28028,55			
27	Peetri_1	1158700_1	11699,49	6959,65	362,09	134,83	200,53	0,00	352,29	19708,88			
28	Hargla_1	1159300_1	3737,64	11451,69	407,75	113,26	168,44	171,63	211,21	16261,62			
29	Pedetsi_1	1159700_1	33781,42	36278,69	1610,12	0,00	0,00	442,59	5727,97	77840,79			

Table 5. N diffused discharge (anthropogenic + atmospheric + natural) of calculated river waterbodies

	Obje	ct		N dif	fused dischar	ge concentratio	n (anthropogei	nic + atmos	pheric + na	itural), mg	/I
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total
1	2	3	4	5	6	7	8	9	10	11	12
1	Pedeli_1	1012100_1	5,082	0,727					0,760	0,762	-
2	Pedeli_2	1012100_2	5,335	0,729	0,722				0,727	0,821	-
3	Pedeli_3	1012100_3	6,172	0,730	0,726	0,720	1,101		0,726	1,826	
4	Õhne_1	1013700_1	5,450	0,734	0,736	0,727	1,081			0,863	-
5	Õhne_2	1013700_2	6,582	0,689	0,561	0,640	0,936		0,978	1,816	
6	Õhne_2	1013700_3	6,180	0,743	0,746	0,553	0,818		0,751	2,499	
7	Rõngu_1	1021500_1	6,222	0,740	0,726				0,726	3,107	
8	Kolga (1)_1	1081500_1	5 <i>,</i> 965	0,729	0,727	0,729	1,084		0,727	1,337	
9	Kolga (2)_1	1120900_1	10,264	1,216	1,210					2,746	
10	Vedame_1	1153300_1	8,810	1,269					1,214	1,889	
11	Lilli_1	1153400_1	8,809	1,221	1,214	1,209	1,840	0,602	1,180	1,380	
12	Atse_1	1154000_1	8,588	1,212	1,212					1,320	
13	Koiva_1	1154200_1	10,194	1,215	1,210				1,209	2,039	
14	Ujuste_1	1154300_1	10,265	1,222	1,211			1,364	1,198	4,239	
15	Laanemetsa_1	1154600_1	10,114	1,215	1,211		1,801	1,361	1,211	2,262	
16	Mustjõgi_1	1154800_1	5,300	0,728	0,723				0,727	1,485	
17	Mustjõgi_2	1154800_2	6,288	0,729	0,727	0,740			0,727	1,937	
18	Mustjõgi_3	1154800_3	6,362	0,728	0,726		1,078		0,727	2,457	
19	Mustjõgi_4	1154800_4	6,155	0,730	0,730	0,717	1,079		0,726	2,188	
20	J U _	1154800_5	6,414	0,773	0,751	0,711	1,058		0,798	2,155	
21	Pärlijõgi _1	1155700_1	5,947	0,728	0,728	0,726	1,080	1,363	0,727	1,359	
22	Pärlijõgi _2	1155700_2	6,090	0,729	0,725				0,727	1,821	
23	Kuura_1	1157600_1	5,878	0,727	0,725	0,736			0,727	1,277	
24	Vaidava_1	1158000_1	5,714	0,727	0,725				0,726	1,117	
25	Vaidava_2	1158000_2	5,529	0,733	0,728				0,693	2,313	
26	Peeli_1	1158100_1	6,124	0,730	0,727		1,081	1,375	0,726	1,524	
27	Peetri_1	1158700_1	6,014	0,727	0,729	0,724	1,076		0,728	1,531	
28	Hargla_1	1159300_1	5,719	0,728	0,725	0,722	1,074	1,347	0,726	0,919	
29	Pedetsi_1	1159700_1	10,104	1,212	1,213			1,347	1,204	1,962	

Table 6. N diffused concentrations (anthropogenic + atmospheric + natural) of calculated river waterbodies

		Object				N dif	fused specific l	oad (anthro	pogenic +	atmosph	eric + natural), kg/a/km2
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total
1	2	3	4	5	6	7	8	9	10	11	12
1	Pedeli_1	1012100_1	1428	204					214	214	
2	Pedeli_2	1012100_2	1500	205	203				204	231	
3	Pedeli_3	1012100_3	1735	205	204	202	309		204	513	
4	Õhne_1	1013700_1	835	112	113	111	166			132	-
5	Õhne_2	1013700_2	1306	137	111	127	186		194	360	
6	Õhne_3	1013700_3	2407	289	290	215	319		293	973	
7	Rõngu_1	1021500_1	1842	219	215				215	920	
8	Kolga (1)_1	1081500_1	1912	234	233	234	347		233	429	
9	Kolga (2)_1	1120900_1	3943	467	465					1055	
10	Vedame_1	1153300_1	3384	487					466	726	
11	Lilli_1	1153400_1	3365	466	464	462	703	230	451	527	
12	Atse_1	1154000_1	3281	463	463					504	
13	Koiva_1	1154200_1	3322	396	394				394	665	
14	Ujuste_1	1154300_1	3344	398	394			445	390	1381	
15	Laanemetsa_1	1154600_1	3296	396	395		587	444	395	737	
16	Mustjõgi_1	1154800_1	1732	238	236				238	485	
17	Mustjõgi_2	1154800_2	2056	238	238	242			238	633	
18	Mustjõgi_3	1154800_3	2080	238	237		352		238	803	
19	Mustjõgi_4	1154800_4	2012	239	238	234	353		237	715	
20	Mustjõgi_5	1154800_5	2096	253	245	232	346		261	704	
21	Pärlijõgi _1	1155700_1	1944	238	238	237	353	446	238	444	
22	Pärlijõgi _2	1155700_2	1990	238	237				237	595	
23	Kuura_1	1157600_1	1921	238	237	240			237	418	
24	Vaidava_1	1158000_1	1867	238	237				237	365	
25	Vaidava_2	1158000_2	1807	240	238				227	756	
26	Peeli_1	1158100_1	2002	239	238		353	450	237	498	
27	Peetri_1	1158700_1	1966	238	238	237	352		238	500	
28	Hargla_1	1159300_1	1869	238	237	236	351	440	237	300	
29	Pedetsi_1	1159700_1	3286	394	395			438	392	638	

Table 7. N diffused specific load (anthropogenic + atmospheric + natural) of calculated river waterbodies

	Obje	ct				P diffus	ed anthropoge	enic disch	arge, kg/a	a	
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total
1	2	3	4	5	6	7	8	9	10	11	12
1	Atse_1	1154000_1	18,78	0,73	0,00	0,00	0,00	0,00	0,00	19,51	
2	Hargla_1	1159300_1	129,64	1,62	0,00	0,00	2,83	0,00	0,00	134,09	•
3	_	1154200_1	372,43	4,36	0,00	0,00	0,00	0,00	0,00	376,79	-
4	Kolga (1)_1	1081500_1	858,82	9,15	0,00	0,00	8,37	0,00	0,00	876,34	
5	Kolga (2)_1	1120900_1	1407,51	12,12	0,00	0,00	0,00	0,00	0,00	1419,63	
6	Kuura_1	1157600_1	512,07	1,41	0,00	0,00	0,00	0,00	0,00	513,48	_
7	Laanemetsa_1	1154600_1	598,30	6,22	0,00	0,00	6,32	0,00	0,00	610,84	_
8		1153400_1	43,92	9,39	0,00	0,00	1,64	0,00	0,00	54,95	
9	Mustjõgi_1		295,92	1,65	0,00	0,00	0,00	0,00	0,00	297,57	-
10	Mustjõgi_2		2356,10	8,26	0,00	0,00	0,00	0,00	0,00	2364,36	
11	Mustjõgi_3		2640,61	3,33	0,00	0,00	5,74	0,00	0,00	2649,68	
12	Mustjõgi_4		1545,24	7,54	0,00	0,00	13,08	0,00	0,00	1565,86	
13	50_		1864,06	4,43	0,00	0,00	1,10	0,00	0,00	1869,59	
14	Pedeli_1		4,24	0,00	0,00	0,00	0,00	0,00	0,00	4,24	
15	Pedeli_2		22,11	1,16	0,00	0,00	0,00	0,00	0,00	23,27	
16	Pedeli_3		539,04	2,68	0,00	0,00	0,38	0,00	0,00	542,10	_
17	Pedetsi_1		807,35	3,20	0,00	0,00	0,00	0,00	0,00	810,55	
18	Peeli_1		595,15	5,78	0,00	0,00	10,44	0,00	0,00	611,37	
19	Peetri_1		420,98	0,39	0,00	0,00	3,37	0,00	0,00	424,74	
20	Pärlijõgi _1	1155700_1	785,47	2,50	0,00	0,00	21,51	0,00	0,00	809,48	
21	Pärlijõgi _2		902,75	2,94	0,00	0,00	0,00	0,00	0,00	905,69	
22	Rõngu_1	1021500_1	2140,91	13,44	0,00	0,00	0,00	0,00	0,00	2154,35	
23	Ujuste_1	1154300_1	1389,65	6,71	0,00	0,00	0,00	0,00	0,00	1396,36	
24	Vaidava_1		108,49	0,30	0,00	0,00	0,00	0,00	0,00	108,79	
25	Vaidava_2		261,90	1,83	0,00	0,00	0,00	0,00	0,00	263,73	
26	Vedame_1		75,24	19,99	0,00	0,00	0,00	0,00	0,00	95,23	
27	Õhne_1		21,20	3,87	0,00	0,00	6,27	0,00	0,00	31,34	
28		1013700_2	1073,69	21,22	0,00	0,00	10,51	0,00	0,00	1105,42	
29	Õhne_2	1013700_3	1495,41	25,84	0,00	0,00	2,72	0,00	0,00	1523,97	

 Table 8. P diffused anthropogenic discharge of calculated river waterbodies

	Object		P atmospheric discharge, kg/a									
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total	
1	2	3	4	5	6	7	8	9	10	11	12	
1	Atse_1	1154000_1	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,06		
2	Hargla_1	1159300_1	0,00	0,16	0,01	0,00	0,00	3,16	0,00	3,33		
3	Koiva_1	1154200_1	0,01	0,13	0,02	0,00	0,00	0,00	0,01	0,17		
4	Kolga (1)_1	1081500_1	0,01	0,13	0,01	0,00	0,00	0,00	0,01	0,16		
5	Kolga (2)_1	1120900_1	0,05	0,22	0,03	0,00	0,00	0,00	0,00	0,30		
6	Kuura_1	1157600_1	0,03	0,17	0,01	0,00	0,00	0,00	0,03	0,24		
7	Laanemetsa_1	1154600_1	0,02	0,16	0,02	0,00	0,00	0,90	0,01	1,11		
8	Lilli_1	1153400_1	0,00	0,09	0,00	0,00	0,00	0,04	0,00	0,13		
9	Mustjõgi_1	1154800_1	0,01	0,07	0,00	0,00	0,00	0,00	0,02	0,10		
10	Mustjõgi_2	1154800_2	0,11	0,31	0,03	0,00	0,00	0,00	0,04	0,49	-	
11	Mustjõgi_3	1154800_3	0,12	0,19	0,02	0,00	0,00	0,00	0,05	0,38	•	
12	Mustjõgi_4	1154800_4	0,07	0,15	0,00	0,00	0,01	0,00	0,03	0,26	•	
13	Mustjõgi_5	1154800_5	0,09	0,22	0,02	0,00	0,00	0,00	0,02	0,35	•	
14	Pedeli_1	1012100_1	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,06		
15	Pedeli_2	1012100_2	0,00	0,09	0,00	0,00	0,00	0,00	0,02	0,11	1	
16	Pedeli_3	1012100_3	0,04	0,13	0,02	0,00	0,00	0,00	0,02	0,21	• · · · · · · · · · · · · · · · · · · ·	
17	Pedetsi_1	1159700_1	0,03	0,31	0,01	0,00	0,00	8,15	0,05	8,55		
18	Peeli_1	1158100_1	0,03	0,12	0,02	0,00	0,01	0,91	0,02	1,11	-	
19	Peetri_1	1158700_1	0,02	0,10	0,01	0,00	0,00	0,00	0,01	0,14	1	
20	Pärlijõgi _1	1155700_1	0,03	0,21	0,01	0,01	0,01	0,33	0,05	0,65	-	
21	Pärlijõgi _2	1155700_2	0,04	0,12	0,00	0,00	0,00	0,00	0,05	0,21		
22	Rõngu_1	1021500_1	0,16	0,13	0,03	0,00	0,00	0,01	0,05	0,38	•	
23	Ujuste_1	1154300_1	0,06	0,07	0,02	0,00	0,00	2,62	0,02	2,79		
24	Vaidava_1	1158000_1	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,06		
25	Vaidava_2	1158000_2	0,02	0,02	0,01	0,00	0,00	0,00	0,00	0,05		
26	Vedame_1	1153300_1	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,03		
27	Õhne_1	1013700_1	0,00	0,13	0,00	0,01	0,01	0,00	0,00	0,15		
28	Õhne_2	1013700_2	0,11	0,38	0,02	0,01	0,01	0,00	0,07	0,60	-	
29	Õhne_2	1013700_3	0,08	0,13	0,01	0,00	0,00	0,00	0,03	0,25	•	

 Table 9. P atmospheric discharge of calculated river waterbodies

	Object			P natural discharge, kg/a									
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total		
1	2	3	4	5	6	7	8	9	10	11	12		
1	Atse_1	1154000_1	4,07	265,04	11,93	0,00	0,00	0,00	0,00	281,04			
2	Hargla_1	1159300_1	23,67	571,29	20,36	5,66	5,66	0,00	10,55	637,19			
3	Koiva_1	1154200_1	60,55	517,00	59,30	0,00	0,00	0,00	22,91	659,76			
4	Kolga (1)_1	1081500_1	92,74	600,37	47,61	10,61	10,61	0,00	41,38	803,32			
5	Kolga (2)_1	1120900_1	226,69	998,13	115,37	0,00	0,00	0,00	0,00	1340,19			
6	Kuura_1	1157600_1	89,24	602,69	20,84	3,12	0,00	0,00	120,02	835,91			
7	Laanemetsa_1	1154600_1	98,83	618,63	75,88	0,00	12,64	0,00	39,38	845,36			
8		1153400_1	9,34	415,08	14,56	7,48	3,28	0,00	4,62	454,36			
9	Mustjõgi_1	1154800_1	62,38	231,14	3,31	0,00	0,00	0,00	80,19	377,02			
10	Mustjõgi_2	1154800_2	366,37	1072,35	108,66	3,02	0,00	0,00	134,87	1685,27			
11	Mustjõgi_3	1154800_3	402,69	660,74	73,87	0,00	11,48	0,00	165,35	1314,13			
12	Mustjõgi_4	1154800_4	249,12	522,84	13,58	3,39	26,17	0,00	117,97	933,07			
13	Mustjõgi_5		303,68	755,81	86,78	2,21	2,21	0,00	90,93	1241,62			
14	Pedeli_1	1012100_1	0,93	116,42	0,00	0,00	0,00	0,00	0,42	117,77	-		
15		1012100_2	4,57	172,79	3,82	0,00	0,00	0,00	46,57	227,75	-		
16		1012100_3	86,53	258,83	34,11	3,28	0,76	0,00	45,93	429,44			
17		1159700_1	134,04	1197,54	53,20	0,00	0,00	0,00	189,27	1574,05	200		
18	Peeli_1	1158100_1	96,90	410,88	58,13	0,00	20,89	0,00	79,09	665,89			
19	_	1158700_1	70,58	347,42	18,08	6,73	6,73	0,00	17,59	467,13			
20	Pärlijõgi _1		134,20	722,85	20,09	46,59	43,02	0,00	167,47	1134,22			
21	Pärlijõgi _2		148,09	408,02	10,89	0,00	0,00	0,00	159,75	726,75			
22		1021500_1	338,89	273,94	61,71	0,00	0,00	0,00	109,16	783,70			
23		1154300_1	223,52	285,52	88,23	0,00	0,00	0,00	67,47	664,74			
24		1158000_1	19,94	210,26	14,79	0,00	0,00	0,00	9,72	254,71			
25		1158000_2	50,95	73,73	29,71	0,00	0,00	0,00	0,23	154,62			
26		1153300_1	15,70	156,17	0,00	0,00	0,00	0,00	18,79	190,66			
27	_	1013700_1	4,23	157,24	1,21	12,54	12,54	0,00	0,00	187,76	-		
28		1013700_2	175,21	523,46	19,66	11,26	21,02	0,00	133,41	884,02			
29	Õhne_2	1013700_3	243,60	358,93	40,40	10,17	5,45	0,00	87,22	745,77			

 Table 10. P natural discharge of calculated river waterbodies

	Object		P diffused discharge (anthropogenic + atmospheric + natural), kg/a									
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total	
1	2	3	4	5	6	7	8	9	10	11	12	
1	Atse_1	1154000_1	22,85	265,83	11,93	0,00	0,00	0,00	0,00	300,61	L I I	
2	Hargla_1	1159300_1	153,31	573 <i>,</i> 07	20,37	5,66	8,49	3,16	10,55	774,61		
3	Koiva_1	1154200_1	432,99	521,49	59,32	0,00	0,00	0,00	22,92	1036,72		
4	Kolga (1)_1	1081500_1	951,57	609 <i>,</i> 65	47,62	10,61	18,98	0,00	41,39	1679,82	_	
5	Kolga (2)_1	1120900_1	1634,25	1010,47	115,40	0,00	0,00	0,00	0,00	2760,12		
6	Kuura_1	1157600_1	601,34	604,27	20,85	3,12	0,00	0,00	120,05	1349,63		
7	Laanemetsa_1	1154600_1	697,15	625,01	75,90	0,00	18,96	0,90	39,39	1457,31		
8	Lilli_1	1153400_1	53,26	424,56	14,56	7,48	4,92	0,04	4,62	509,44	_	
9	Mustjõgi_1	1154800_1	358,31	232,86	3,31	0,00	0,00	0,00	80,21	674,69		
10	Mustjõgi_2	1154800_2	2722,58	1080,92	108,69	3,02	0,00	0,00	134,91	4050,12		
11	Mustjõgi_3	1154800_3	3043,42	664,26	73,89	0,00	17,22	0,00	165,40	3964,19		
12	Mustjõgi_4	1154800_4	1794,43	530,53	13,58	3,39	39,26	0,00	118,00	2499,19		
13	Mustjõgi_5	1154800_5	2167,83	760,46	86,80	2,21	3,31	0,00	90,95	3111,56		
14	Pedeli_1	1012100_1	5,17	116,48	0,00	0,00	0,00	0,00	0,42	122,07	-	
15	Pedeli_2	1012100_2	26,68	174,04	3,82	0,00	0,00	0,00	46,59	251,13	-	
16	Pedeli_3	1012100_3	625,61	261,64	34,13	3,28	1,14	0,00	45,95	971,75		
17	Pedetsi_1	1159700_1	941,42	1201,05	53,21	0,00	0,00	8,15	189,32	2393,15		
18	Peeli_1	1158100_1	692,08	416,78	58,15	0,00	31,34	0,91	79,11	1278,37		
19	Peetri_1	1158700_1	491,58	347,91	18,09	6,73	10,10	0,00	17,60	892,01	_	
20	Pärlijõgi _1	1155700_1	919,70	725,56	20,10	46,60	64,54	0,33	167,52	1944,35		
21	Pärlijõgi _2	1155700_2	1050,88	411,08	10,89	0,00	0,00	0,00	159,80	1632,65		
22	Rõngu_1	1021500_1	2479,96	287,51	61,74	0,00	0,00	0,01	109,21	2938,43		
23	Ujuste_1	1154300_1	1613,23	292,30	88,25	0,00	0,00	2,62	67,49	2063,89		
24	Vaidava_1	1158000_1	128,43	210,62	14,79	0,00	0,00	0,00	9,72	363,56		
25	Vaidava_2	1158000_2	312,87	75,58	29,72	0,00	0,00	0,00	0,23	418,40	-	
26	Vedame_1	1153300_1	90,94	176,19	0,00	0,00	0,00	0,00	18,79	285,92	-	
27	Õhne_1	1013700_1	25,43	161,24	1,21	12,55	18,82	0,00	0,00	219,25	-	
28	Õhne_2	1013700_2	1249,01	545,06	19,68	11,27	31,54	0,00	133,48	1990,04		
29	Õhne_2	1013700_3	1739,09	384,90	40,41	10,17	8,17	0,00	87,25	2269,99		

 Table 11. P diffused discharge (anthropogenic + atmospheric + natural) of calculated river waterbodies

	Object			P diffused discharge concentration (anthropogenic + atmospheric + natural), mg/l									
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total		
1	2	3	4	5	6	7	8	9	10	11	12		
1	Pedeli_1	1012100_1	0,131	0,024					0,025	0,025			
2	Pedeli_2	1012100_2	0,140	0,024	0,024				0,024	0,026			
3	Pedeli_3	1012100_3	0,174	0,024	0,024	0,024	0,037		0,024	0,054			
4	Õhne_1	1013700_1	0,157	0,027	0,026	0,026	0,039			0,030			
5	Õhne_2	1013700_2	0,193	0,025	0,020	0,023	0,033		0,033	0,057			
6	Õhne_3	1013700_3	0,173	0,026	0,025	0,018	0,027		0,025	0,073			
7	Rõngu_1	1021500_1	0,176	0,025	0,024				0,024	0,090			
8	Kolga (1)_1	1081500_1	0,514	0,051	0,050	0,050	0,090		0,050	0,105			
9	Kolga (2)_1	1120900_1	0,288	0,040	0,040					0,082			
10	Vedame_1	1153300_1	0,230	0,045					0,040	0,060			
11	Lilli_1	1153400_1	0,229	0,041	0,040	0,040	0,061	0,010	0,039	0,045			
12	Atse_1	1154000_1	0,222	0,040	0,040					0,043			
13	Koiva_1	1154200_1	0,286	0,040	0,040				0,040	0,063			
14	Ujuste_1	1154300_1	0,289	0,041	0,040			0,025	0,040	0,123			
15	Laanemetsa_1	1154600_1	0,282	0,040	0,040		0,060	0,025	0,040	0,069			
16	Mustjõgi_1	1154800_1	0,208	0,037	0,036				0,036	0,065			
17	Mustjõgi_2	1154800_2	0,270	0,037	0,036	0,037			0,036	0,087			
18	Mustjõgi_3	1154800_3	0,274	0,036	0,036		0,054		0,036	0,109			
19	Mustjõgi_4	_	0,261	0,037	0,036	0,036	0,054		0,036	0,097			
20	Mustjõgi_5	1154800_5	0,261	0,037	0,036	0,036	0,053		0,037	0,092			
21	Pärlijõgi _1	1155700_1	0,249	0,036	0,036	0,036	0,054	0,025	0,036	0,062			
22	Pärlijõgi _2	_	0,257	0,037	0,036				0,036	0,082			
23	Kuura_1	1157600_1	0,244	0,036	0,036	0,037			0,036	0,059			
24	Vaidava_1	1158000_1	0,234	0,036	0,036				0,036	0,052			
25	Vaidava_2		0,223	0,037	0,036				0,035	0,098			
26	Peeli_1	1158100_1	0,259	0,037	0,036		0,054	0,025	0,036	0,070			
27	Peetri_1	1158700_1	0,253	0,036	0,036	0,036	0,054		0,036	0,069			
28	Hargla_1	1159300_1	0,235	0,036	0,036	0,036	0,054	0,025	0,036	0,044			
29	Pedetsi_1	1159700_1	0,282	0,040	0,040			0,025	0,040	0,060			

 Table 12. P diffused concentrations (anthropogenic + atmospheric + natural) of calculated river waterbodies

	Obje	et			P diffused spo	ecific load (anth	ropogenic + atm	nospheric +	natural), kg	/a/km2	
	Catchment	Code	Arable	Forest	Pasture	Swamps	Peatland	Water	Other		Total
1	2	3	4	5	6	7	8	9	10	11	12
1	Pedeli_1	1012100_1	36,93	6,75					7,00	6,99	
2	Pedeli_2	1012100_2	39,24	6,80	6,70				6,75	7,44	
3	Pedeli_3	1012100_3	48,80	6,82	6,75	6,69	10,36		6,75	15,27	
4	Õhne_1	1013700_1	23,99	4,10	4,03	4,00	5,99			4,66	-
5	Õhne_2	1013700_2	38,32	4,91	3,99	4,49	6,63		6,59	11,31	-
6	Õhne_3	1013700_3	67,43	9,98	9,60	7,11	10,61		9,67	28,45	
7	Rõngu_1	1021500_1	51,99	7,46	7,10				7,11	26,64	
8	Kolga (1)_1	1081500_1	164,63	16,27	16,03	16,08	28,76		16,04	33,51	
9	Kolga (2)_1	1120900_1	110,80	15,56	15,37					31,65	
10	Vedame_1	1153300_1	88,29	17,34					15,40	23,04	
11	Lilli_1	1153400_1	87,31	15,63	15,33	15,27	23,43	4,00	14,90	17,13	
12	_	1154000_1	84,63	15,33	15,29					16,35	
13	Koiva_1	1154200_1	93,12	13,15	13,04				13,02	20,48	
14	J –	1154300_1	94,01	13,35	13,04			8,19	12,90	40,17	
15	Laanemetsa_1		91,97	13,17	13,04		19,55	8,18	13,04	22,43	
16	Mustjõgi_1	1154800_1	68,12	11,95	11,82				11,87	21,22	
17	Mustjõgi_2	_	88,17	11,96	11,87	12,08			11,87	28,51	
18	Mustjõgi_3		89,64	11,92	11,86		17,75		11,87	35,78	
19	Mustjõgi_4		85,45	12,04	11,91	11,69	17,76		11,86	31,77	
20	Mustjõgi_5	1154800_5	85,31	12,04	11,92	11,63	17,42		12,03	29,98	
21	Pärlijõgi _1	1155700_1	81,25	11,91	11,89	11,86	17,78	8,25	11,86	20,32	
22	Pärlijõgi _2	_	84,14	11,95	11,84				11,86	26,64	
23		1157600_1	79,86	11,89	11,85	12,00			11,86	19,15	
24	Vaidava_1	1158000_1	76,45	11,88	11,83				11,85	16,93	
25	Vaidava_2	1158000_2	72,76	12,15	11,89				11,50	32,09	
26		1158100_1	84,81	12,03	11,87		17,81	8,27	11,86	22,73	
27	Peetri_1	1158700_1	82,62	11,88	11,90	11,81	17,72		11,89	22,65	
28	Hargla_1	1159300_1	76,66	11,90	11,84	11,79	17,69	8,10	11,85	14,31	
29	Pedetsi_1	1159700_1	91,58	13,05	13,04			8,07	12,94	19,62	

 Table 13. P diffused specific load (anthropogenic + atmospheric + natural) of calculated river waterbodies

Objec	t	P-tot	Estonia	n status	Latvi	an statu	s classes	s by river	type (T	1-T6)
Name	Code	mg/l	Class	Limits	T1	T2	Т3	T4	T5	Т6
Pedeli_3	1012100_3	0,762	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Pedeli_2	1012100_2	0,821	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Õhne_1	1013700_1	0,863	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Hargla_1	1159300_1	0,920	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Vaidava_1	1158000_1	1,117	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Kuura_1	1157600_1	1,278	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Atse_1	1154000_1	1,320	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Kolga (1)_1	1081500_1	1,358	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Pärlijõgi _1	1155700_1	1,359	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Lilli_1	1153400_1	1,380	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Mustjõgi_1	1154800_1	1,485	High	<1,5	<1,5	<1,5	<1,8	<2,0	<1,8	<1,8
Peeli_1	1158100_1	1,524	Good	1,5–3,0	1,5–2,0	1,5–2,5	<1,8	<2,0	<1,8	<1,8
Peetri_1	1158700_1	1,531	Good	1,5–3,0	1,5–2,0	1,5–2,5	<1,8	<2,0	<1,8	<1,8
Pärlijõgi _2	1155700_2	1,832	Good	1,5–3,0	1,5–2,0	1,5–2,5	1,8-2,3	<2,0	1,8-2,8	1,8-2,8
Vedame_1	1153300_1	1,889	Good	1,5–3,0	1,5–2,0	1,5–2,5	1,8-2,3	<2,0	1,8-2,8	1,8-2,8
Õhne_2	1013700_2	1,923	Good	1,5–3,0	1,5–2,0	1,5–2,5	1,8-2,3	<2,0	1,8-2,8	1,8-2,8
Mustjõgi_2	1154800_2	1,937	Good	1,5–3,0	1,5–2,0	1,5–2,5	1,8-2,3	<2,0	1,8-2,8	1,8-2,8
Pedetsi_1	1159700_1	1,963	Good	1,5–3,0	1,5–2,0	1,5–2,5	1,8-2,3	<2,0	1,8-2,8	1,8-2,8
Pedeli_1	1012100_1	2,011	Good	1,5–3,0	2,0-2,5	1,5–2,5	1,8-2,3	2,0-3,0	1,8-2,8	1,8-2,8
Koiva_1	1154200_1	2,039	Good	1,5–3,0	2,0–2,5	1,5–2,5	1,8-2,3	2,0-3,0	1,8-2,8	1,8-2,8
Mustjõgi_3	1154800_3	2,156	Good	1,5–3,0	2,0-2,5	1,5–2,5	1,8-2,3	2,0-3,0	1,8-2,8	1,8-2,8
Mustjõgi_5	1154800_5	2,190	Good	1,5–3,0	2,0-2,5	1,5–2,5	1,8-2,3	2,0-3,0	1,8-2,8	1,8-2,8
Laanemetsa_1	1154600_1	2,262	Good	1,5–3,0	2,0-2,5	1,5–2,5	1,8-2,3	2,0-3,0	1,8-2,8	1,8-2,8
Vaidava_2	1158000_2	2,313	Good	1,5–3,0	2,0-2,5	1,5–2,5	2,3-2,8	2,0-3,0	1,8-2,8	1,8-2,8
Mustjõgi_4	1154800_4	2,457	Good	1,5–3,0	2,0-2,5	1,5–2,5	2,3-2,8	2,0-3,0	1,8-2,8	1,8-2,8
Õhne_3	1013700_3	2,500	Good	1,5–3,0	2,0-2,5	1,5–2,5	2,3-2,8	2,0-3,0	1,8-2,8	1,8-2,8
Kolga (2)_1	1120900_1	2,747	Good	1,5–3,0	2,5-3,0	2,5-3,5	2,3-2,8	2,0-3,0	1,8-2,8	1,8-2,8
Rõngu_1	1021500_1	3,111	oderate	>3,0–6,0	>3,0	2,5-3,5	2,8-3,3	3,0-4,0	2,8-3,8	2,8-3,8
Ujuste_1	1154300_1	4,239	oderate	>3,0–6,0	>3,0	3,5-4,5	>3,3	4,0-5,0	3,8-4,8	3,8-4,8

Table 14. Comparison of N-tot concentrations with standards in EE and LV

Ob	ject	P-tot	Estonia	an status		Latvian s	tatus classes	by river typ	e (T1-T6)	
Name	Code	mg/l	Class	Limits	T1	T2	Т3	T4	T5	Т6
Pedeli_1	1012100_1	0,025	High	<0,05	<0,04	<0,045	<0,05	<0,06	<0,04	<0,045
Pedeli_2	1012100_2	0,026	High	<0,05	<0,04	<0,045	<0,05	<0,06	<0,04	<0,045
Õhne_1	1013700_1	0,030	High	<0,05	<0,04	<0,045	<0,05	<0,06	<0,04	<0,045
Atse_1	1154000_1	0,043	High	<0,05	0,04-0,065	<0,045	<0,05	<0,06	0,04-0,065	<0,045
Hargla_1	1159300_1	0,044	High	<0,05	0,04-0,065	<0,045	<0,05	<0,06	0,04-0,065	<0,045
Lilli_1	1153400_1	0,045	High	<0,05	0,04-0,065	<0,045	<0,05	<0,06	0,04-0,065	<0,045
Vaidava_1	1158000_1	0,052	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	<0,06	0,04-0,065	0,045-0,09
Kuura_1	1157600_1	0,059	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	<0,06	0,04-0,065	0,045-0,09
Õhne_2	1013700_2	0,059	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	<0,06	0,04-0,065	0,045-0,09
Vedame_1	1153300_1	0,060	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	<0,06	0,04-0,065	0,045-0,09
Pedetsi_1	1159700_1	0,061	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	0,06-0,09	0,04-0,065	0,045-0,09
Pärlijõgi _1	1155700_1	0,062	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	0,06-0,09	0,04-0,065	0,045-0,09
Koiva_1	1154200_1	0,063	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	0,06-0,09	0,04-0,065	0,045-0,09
Mustjõgi_1	1154800_1	0,065	Good	0,05–0,08	0,04-0,065	0,045-0,09	0,05-0,075	0,06-0,09	0,04-0,065	0,045-0,09
Pedeli_3	1012100_3	0,068	Good	0,05–0,08	0,065-0,09	0,045-0,09	0,05-0,075	0,06-0,09	0,065-0,09	0,045-0,09
inemetsa_1	1154600_1	0,069	Good	0,05–0,08	0,065-0,09	0,045-0,09	0,05-0,075	0,06-0,09	0,065-0,09	0,045-0,09
Peetri_1	1158700_1	0,069	Good	0,05–0,08	0,065-0,09	0,045-0,09	0,05-0,075	0,06-0,09	0,065-0,09	0,045-0,09
Peeli_1	1158100_1	0,070	Good	0,05–0,08	0,065-0,09	0,045-0,09	0,05-0,075	0,06-0,09	0,065-0,09	0,045-0,09
Õhne_3	1013700_3	0,073	Good	0,05–0,08	0,065-0,09	0,045-0,09	0,05-0,075	0,06-0,09	0,065-0,09	0,045-0,09
Kolga (2)_1	1120900_1	0,082	Moderate	>0,08–0,1	0,065-0,09	0,045-0,09	0,075-0,10	0,06-0,09	0,065-0,09	0,045-0,09
Pärlijõgi _2	1155700_2	0,083	Moderate	>0,08-0,1	0,065-0,09	0,045-0,09	0,075-0,10	0,06-0,09	0,065-0,09	0,045-0,09
Mustjõgi_2	1154800_2	0,087	Moderate	>0,08–0,1	0,065-0,09	0,045-0,09	0,075-0,10	0,06-0,09	0,065-0,09	0,045-0,09
Rõngu_1	1021500_1	0,090	Moderate	>0,08-0,1	0,065-0,09	0,09-0,135	0,075-0,10	0,09-0,135	0,09-0,115	0,09-0,135
Mustjõgi_5	1154800_5	0,092	Moderate	>0,08-0,1	0,09-0,115	0,09-0,135	0,075-0,10	0,09-0,135	0,09-0,115	0,09-0,135
Mustjõgi_4	1154800_4	0,097	Moderate	>0,08-0,1	0,09-0,115	0,09-0,135	0,075-0,10	0,09-0,135	0,09-0,115	0,09-0,135
Vaidava_2	1158000_2	0,098	Moderate	>0,08-0,1	0,09-0,115	0,09-0,135	0,075-0,10	0,09-0,135	0,09-0,115	0,09-0,135
Kolga (1)_1	1081500_1	0,105	Poor	>0,1-0,12	0,09-0,115	0,09-0,135	0,10-0,125	0,09-0,135	0,09-0,115	0,09-0,135
Mustjõgi_3	1154800_3	0,109	Poor	>0,1-0,12	0,09-0,115	0,09-0,135	0,10-0,125	0,09-0,135	0,09-0,115	0,09-0,135
Ujuste_1	1154300_1	0,123	Bad	>0,12	>0,115	0,09-0,135	0,10-0,125	0,09-0,135	>0,115	0,09-0,135

Table 15. Comparison of P-tot concentrations with standards in EE and LV

OBJEC	т	Existing	status in		Loa	d reducti	on to acl	nieve N "	High" sta	tus			
		catchm	ent outlet		Catchme	nt outlet		(Catchmer	nt source			
				N_tot	N_tot	N_dif	N_dif needed reduction	N_tot	N_tot	N_dif	N_dif needed reduction		
Catchment	Code	mg/l	class	mg/l	kg/a	kg/a	kg/a	kg/a	kg/a	kg/a	kg/a		
Pedeli_3	1012100_3	0,762	High	1,500	7360,6	7360,6	-3623	1,659	8140,1	8140,1	-4006		
Pedeli_2	1012100_2	0,821	High	1,500	14233	14233	-6443	1,659	15741	15741	-7126		
Õhne_1	1013700_1	0,863	High	1,500	10808	10808	-4590	1,725	12429	12429	-5278		
Hargla_1	1159300_1	0,920	High	1,500	26533	26528	-10267	1,903	33656	33651	-13023		
Vaidava_1	1158000_1	1,117	High	1,500	10530	10530	-2689	1,647	11565	11565	-2954		
Kuura_1	1157600_1	1,278	High	1,500	34557	34548	-5119	1,644	37870	37858	-5610		
Atse_1	1154000_1	1,320	High	1,500	10539	10539	-1263	1,629	11445	11445	-1372		
Kolga (1)_1	1081500_1	1,358	High	1,500	24100	23766	-2283	1,645	26428	26074	-2505		
Pärlijõgi _1	1155700_1	1,359	High	1,500	46909	46909	-4424	1,718	53734	53734	-5068		
Lilli_1	1153400_1	1,380	High	1,500	17041	17041	-1365	1,663	18894	18894	-1513		
Mustjõgi_1	1154800_1	1,485	High	1,500	15586	15586	-160,8	1,644	17079	17079	-176,2		
Peeli_1	1158100_1	1,524	Good	1,500	27583	27583	445,92	1,828	33620	33620	543,53		
Peetri_1	1158700_1	1,531	Good	1,500	19312	19312	397,17	1,644	21162	21162	435,22		
Pärlijõgi _2	1155700_2	1,832	Good	1,500	30044	29812	6658,4	1,647	32997	32668	7296,3		
Vedame_1	1153300_1	1,889	Good	1,500	7150,1	7150,1	1855,9	1,633	7782,9	7782,9	2020,2		
Õhne_2	1013700_2	1,923	Good	1,500	52385	48646	14777	1,687	58923	54568	16576		
Mustjõgi_2	1154800_2	1,937	Good	1,500	69669	69669	20287	1,644	76344	76344	22230		
Pedetsi_1	1159700_1	1,963	Good	1,500	59519	59457	18384	1,907	75669	75581	23369		
Pedeli_1	1012100_1	2,011	Good	1,500	26839	23528	9138,9	1,677	30004	26019	10107		
Koiva_1	1154200_1	2,039	Good	1,500	24741	24737	8895,4	1,644	27117	27111	9749,4		
Mustjõgi_3	1154800_3	2,156	Good	1,500	50863	50823	22243	1,644	55743	55693	24375		
Mustjõgi_5	1154800_5	2,190	Good	1,500	38574	38518	17742	1,644	42273	42208	19441		
Laanemetsa_1	1154600_1	2,262	Good	1,500	31755	31755	16124	1,816	38444	38444	19520		
Vaidava_2	1158000_2	2,313	Good	1,500	6391,7	6391,7	3466,2	1,644	7004,1	7004,1	3798,3		
Mustjõgi_4	1154800_4	2,457	Good	1,500	54326	54320	34667	1,644	59532	59524	37988		
Õhne_3	1013700_3	2,500	Good	1,500	46611	46578	31077	1,626	50521	50487	33685		
Kolga (2)_1	1120900_1	2,747	Good	1,500	50257	50217	41774	1,629	54573	54516	45349		
Rõngu_1	1021500_1	3,111	Moderate	1,500	48982	48865	52598	1,658	54139	53971	58095		
Ujuste_1	1154300_1	4,239	Moderate	1,500	25110	25110	45850	1,895	31728	31728	57933		

Table 16. Potential actionable diffuse source loads for nitrogen

OBJEC	т	Existing	status in		Loa	d reducti	on to acl	nieve P "l	High" sta	itus	
		catchm	ent outlet		Catchme	nt outlet		(Catchmei	nt source	
				P_tot	P_tot	P_dif	P_dif needed reduction	P_tot	P_tot	P_dif	P_dif needed reduction
Catchment	Code	mg/l	class	mg/l	kg/a	kg/a	kg/a	mg/l	kg/a	kg/a	kg/a
Pedeli_1	1012100_1	0,025	High	0,050	245	245	-123	0,054	265	265	-133
Pedeli_2	1012100_2	0,026	High	0,050	474	474	-223	0,054	512	512	-241
Õhne_1	1013700_1	0,030	High	0,050	360	360	-141	0,056	403	403	-158
Atse_1	1154000_1	0,043	High	0,050	351	351	-51	0,053	374	374	-54
Hargla_1	1159300_1	0,044	High	0,050	884	884	-109	0,063	1110	1109	-137
Lilli_1	1153400_1	0,045	High	0,050	568	568	-59	0,054	615	615	-63
Vaidava_1	1158000_1	0,052	Good	0,050	351	351	13	0,054	377	377	13
Kuura_1	1157600_1	0,059	Good	0,050	1152	1151	199	0,054	1235	1233	213
Õhne_2	1013700_2	0,059	Good	0,050	1746	1672	320	0,055	1920	1834	349
Vedame_1	1153300_1	0,060	Good	0,050	238	238	48	0,053	254	254	51
Pedetsi_1	1159700_1	0,061	Good	0,050	1984	1974	420	0,063	2499	2485	528
Pärlijõgi _1	1155700_1	0,062	Good	0,050	1564	1564	381	0,056	1745	1745	425
Koiva_1	1154200_1	0,063	Good	0,050	825	824	212	0,054	884	883	228
Mustjõgi_1	1154800_1	0,065	Good	0,050	520	520	155	0,054	557	557	166
Pedeli_3	1012100_3	0,068	Good	0,050	895	660	320	0,056	995	713	337
Laanemetsa_1	1154600_1	0,069	Good	0,050	1059	1059	399	0,059	1253	1253	472
Peetri_1	1158700_1	0,069	Good	0,050	644	644	248	0,054	690	690	266
Peeli_1	1158100_1	0,070	Good	0,050	919	919	359	0,060	1097	1097	428
Õhne_3	1013700_3	0,073	Good	0,050	1554	1544	726	0,053	1649	1640	771
Kolga (2)_1	1120900_1	0,082	Moderate	0,050	1675	1674	1087	0,053	1781	1779	1155
Pärlijõgi _2	1155700_2	0,083	Moderate	0,050	1001	977	656	0,054	1082	1047	702
Mustjõgi_2	1154800_2	0,087	Moderate	0,050	2322	2322	1728	0,054	2488	2488	1851
	1021500_1	0,090	Moderate	0,050	1633	1627	1312	0,054	1763	1755	1415
Mustjõgi_5	1154800_5	0,092	Moderate	0,050	1695	1689	1422	0,054	1818	1809	1525
Mustjõgi_4	1154800_4	0,097	Moderate	0,050	1286	1279	1221	0,054	1378	1370	1308
Vaidava_2	1158000_2	0,098	Moderate	0,050	213	213	205	0,054	228	228	220
Kolga (1)_1		0,105	Poor	0,050	803	799	881	0,054	862	857	945
Mustjõgi_3	1154800_3	0,109	Poor	0,050	1811	1810	2154	0,054	1940	1939	2308
	1154300_1	0,123	Bad	0,050	837	837	1227	0,062	1045	1045	1532

Table 17. Potential actionable diffuse source loads for phosphorus

Comments and conclusions

EstModel has been used to calculate N, P loads and concentrations in 29 waterbodies in the Koiva river basin. The calculated waterbodies differed from each other in terms of surface area, specific flow rate and types of land cover (Table xxx.1). Calculations were based on 2017 data. The advantage of the *EstModel* is that the model results express the discharge solely from the catchment area. It means that the loads are estimated without impacted of catchment upstream flow and so the model allows analysis impacts only within the catchment area. The main conclusions that can be drawn from the present results are as follows:

- 1) Source data for the model were obtained automatically from Estonian national databases. The model was automatically installed based on the contours of the water catchment areas. (Figure 1 and Figure 3).
- 2) The model calculates runoff of nutrients separately from each Corine land cover class of a calculated area and from point sources. The model distinguishes natural and manmade load (see Figure 4).
- 3) Simplifications used in the model:
 - a. stationarity (constant calculation conditions in the area);
 - b. homogeneity (similarity of the calculation parameters of the subcatchment).
- 4) Based on nitrogen content, most of the waterbodies (27) were in high or good status, two waterbodies were in moderate status class (Figure 5 and Table 14). In the case of phosphorus, 6 waterbodies were in high status class, 12 in good, 7 in moderate, 4 in poor and 1 in bad status class (Figure 5 and Table 15).
- 5) It is obvious that nutrient concentrations are dependent on the human activity. Model results confirm this strong dependence for nitrogen (Figure 6) and for phosphorus (Figure 7). These figures also show that the calculated natural concentrations of nitrogen and phosphorus are not constant. The natural concentration of nitrogen ranged from 0.73 to 1.21 mgN / 1 and the phosphorus from 0.024 to 0.050 mgP / 1.
- 6) The relationship between N and P concentrations was significant, with higher concentrations of N the concentration of P is also higher (Figure 8). In contrast, there was no remarkable dependence of N and P concentrations on the runoff (Figure 9).
- 7) The dependence of the N and P retention on the size of the catchment area was weak (Figure 10) since the model assumes that retention is occurring mainly along the river. Therefore, it can be assumed that the modelled retention is slightly underestimated. In the case of phosphorus, the retention was between 6 and 21% and in the case of nitrogen between 8 and 21% (Appendix 1).
- 8) The N / P ratio varied in the range of 13 to 35 (Figure 11), indicating that phosphorus was a limiting element for plants vegetation in all waterbodies.

- 9) The calculated part of natural load in the total load varied within very large range in case of N from 5 to 77% (Figure 12) and in case of P from 4 to 73% (Figure 13).
- 10) In Estonia, the same status class boundaries have been used for different river types, Latvia has different limit values for different river types. In general view, the boundaries of the Estonian and Latvian status classes coincide well. Division of waterbodies into status classes yielded a fairly similar result for both countries methodology (Table 16 and Table 17).
- 11) Nitrogen concentrations ranged from 0,76 to 4,27 mg / 1 (Table 14) and phosphorus concentrations ranged from 0,025 to 0,123 mg / 1 (Table 15). N, P concentrations were strongly related to the proportion of anthropogenic load in the total load (Appendix 1).
- 12) The modelled natural concentrations varied in case of N from 0,72 mg/l to 1,21 mg/l and in case of P from 0,024 mg/l to 0,050 mg/l (Appendix 1).
- 13) Specific diffused load of calculated river waterbodies varied in case of N from 132 kg/a/km² to 1382 kg/a/km² (Table 6) and in case of P from 7 kg/a/km² to 40 kg/a/ km² (Table 13).
- 14) The model indicated that significantly higher concentrations were from agricultural land, whereas in other areas the proportion of natural concentration in the total concentration was predominant (Table 6 and Table 12).
- 15) In all waterbodies, the share of point source loads in the total load was small and the diffuse load was predominant (Appendix 1).
- 16) Potential actionable loads (the amounts that may be removed by the measures) have been calculated for all waterbodies. It is also found the amouts of load that should be eliminated to provide a certain status class (Table 16 and Table 17).
- 17) Modelling work showed three bottleneck topics that need to be clarified for the better planning of mitigation measures. They are:
 - a. the effectiveness of the measures requires clarification it is needed to find a quantitative relationship between the implementation of measures and results of measures;
 - b. the diffuse pollution retention needs to be better understood;
 - c. the calculation of the anthropogenic load is based on our not good knowledge of the natural load and therefore the accuracy of calculated human load depends on the quite hypothetical value of the natural concentrations.

Literature

Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute. Available electronically from <u>http://hdl.handle.net/1969.1/128050</u>.

Lindstrom G., Pers C., Rosberg J., Stromqvist J., Arheimer B. et al. (2010). <u>Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales</u>. Hydrology Research,41,295-319.

Pelletier, Greg and Chapra, Steve (2008). QUAL2K2w Theory and Documentation (Version 5.1). (Ed. Tipping et al, 2014). (<u>https://www.researchgate.net/publication/260196035_Atmospheric_Deposition_of_Phosphor_us_to_Land_and_Freshwater</u>)

Annex 2

Project "Water bodies without borders" (EstLat 66)

FyrisNP modelling for nutrient load calculation at Latvian project area

Disclaimer: This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used.

February 2020

Introduction

To evaluate the nitrogen and phosphorus loads in water bodies within the Latvian part of project area *FyrisNP* tool for catchment-scale modelling of nutrients was used. N and P loads were modelled for Salaca river basin (30 WBs in project area), Gauja river basin (23 WBs in project area) and Daugava river basin (3 WBs in project area). Modelling was carried out for a period of 18 years (2000-2017).

This annex gives a brief insight into the model concept and provides some examples of modelling results.

Model description

For the dynamic *FyrisNP* model calculates source apportioned gross and net transport of nitrogen and phosphorus in rivers and lakes. The time step for the model is in the majority of applications one month and the spatial resolution is on the sub-catchment level. Retention, i.e. losses of nutrients in rivers and lakes through sedimentation, up-take by plants and denitrification, is calculated as a function of water temperature, nutrients concentrations, water flow, lake surface area and stream surface area. The model is calibrated against time series of measured nitrogen or phosphorus concentrations by adjusting two parameters (Hansson et al. 2008).

Data used for calibrating and running the model can be divided into time dependent data, e.g. timeseries on observed nitrogen and phosphorus concentration, water temperature, runoff and point source discharges, and time independent data, e.g. land-use information, lake area and stream length and width (Hansson et al. 2008).

Input data

In order to perform simulations with the *FyrisNP* model, an Excel-file containing all input data is required. The Excel data file consists of eight to ten different worksheets depending on features used. In an Excel-file must contain data describing sub-catchments (land use data, data about stream lengths and lake areas etc.), data about water temperature, specific runoff, observed P_{tot} or N_{tot} concentrations, minor point sources (in this case data about residents not connected to centralized sewerage system were used), major point sources (data of N and P amounts discharged from waste water treatment plants acquired from national statistical database "Ūdens-2", type specific concentrations (N_{tot} and P_{tot} concentrations in runoff from different land use types), storage (volume changes in Lake Burtnieks).

Running the model

After the Excel file is loaded into the model, the data is automatically subdivided by subcatchments, and the number of monitoring stations is determined.

Calibration is performed automatically, starting with the Monte Carlo method. When complete, auto calibration is performed. The calibration afterwards is completed with manual calibration. When complete, it is possible to analyse the calibration results - observed concentrations and the simulated concentrations. Figure 1 shows an example of calibration results for a water body G306 Salaca in the Salaca river basin - observed and simulated N_{tot} values.

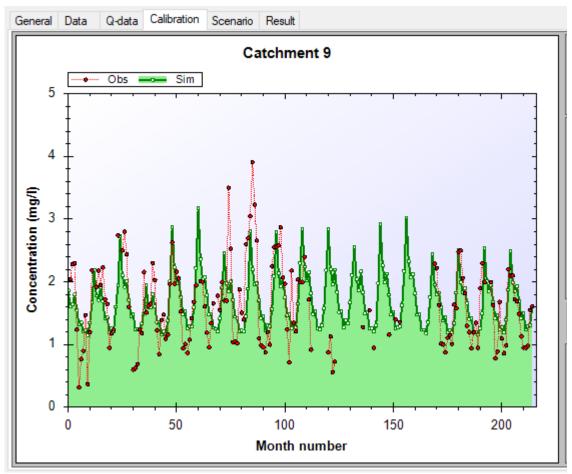


Figure 1. Calibration result (observed values and simulated for WB G306 Salaca).

The Result section shows the results of the modelling. "Internal load" shows the incoming load in the water body and the outgoing load. "Sources" show how much load is given from different land use types or minor or major point source, as seen in a plot (Figure 2).

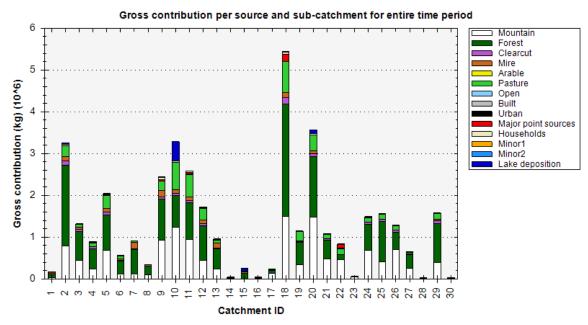


Figure 2. Nitrogen loads from various sources in Salaca river basin WBs over the whole time period.

Loads are also calculated by months. This data can be transferred to an Excel file for further analysis or graphical presentation. Figure 3 shows the N load volumes by months in the whole modelled period for the water body G306 Salaca.

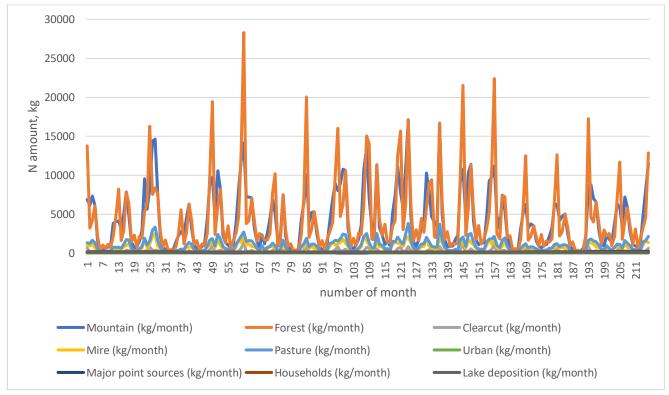


Figure 3. N load volumes by months

Conclusions

After modeling of the Salaca, Gauja and Daugava river basins, results for the water bodies included in the project area were compiled. Table 1 shows the amounts of N and P from different sources in the whole modelled period for the whole modelled project area.

	5 55			1 0					
	Arable lands, t	Forests, t	Clearcuts, t	Mires, t	Pastures, t	Urban areas, t	WWPT, t	Households, t	Lake deposition, t
N amount in									
modelled project									
territory (2000-2017)	17108.4	30375.7	1787.6	1518.2	8439.0	31.2	764.2	608.1	1300.4
P amount in									
modelled project									
territory (2000-2017)	300.2	483.0	28.2	30.6	152.8	2.1	140.3	96.4	4.7

 Table 1. N and P loads from different sources in modelled project area (2000-2017).

References

Hansson, K., Wallin, M., Djodjic, F., Orback, C. 2008. The *FyrisNP* model Version 3.1 – A tool for catchment-scale modelling of source apportioned gross and net transport of nitrogen and phosphorus in rivers. A user's manual. Institutionen för miljöanalys, SLU.

Annex 3

Project "Water bodies without borders" (EstLat 66) INTRODUCTION TO THE DATABASE FOR PROGRAM OF MEASURES

Disclaimer: This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used.

Explanations of table columns

	WB Code	Water body code
	WB Estonian name	Water body name in Estonian. Both Estonian and Latvian names are given only for transboundary waterbodies.
Water body	WB Latvian name	Water body name in Latvian. Both Estonian and Latvian names are given only for transboundary waterbodies.
information	Transboundary WB code	Transboundary water body harmonized code
mormation	Country	Name of the country
	County	Name of the county
	Municipality	Nme of the municipality
	Status 2019	Last available status information, 2019.
Status information	Not good status element, 2019	Not good status element according to latest status assessment.
2019	Reason for the not good status	Reason for not good status according to latest status assessment; see also row 44 and onwards.
2015	monitored)	Latest year that waterbody has been monitored or not monitored at all.
	level	other supportive conditions) on each waterbody for assessing ecological status: 0 - no information, 1 - low, 2 -
Pressures	good ecological status/good	Name of the water use that is causing failure of good ecological status/good ecological potential.
information 2019	sector/water user	Name of the sector that is causing the load.
Information 2013	GAP	The gap between status 2019 and good status.
	The purpose of measure	the purpose of the measure shows the pressure that has to be minimized by measures.
	Code of measure	Code of measure
Existing measures	Type of measure	Type of measure: administrative, technical, consulting, study.
from 2015-2021	measure	Supplementary or additional measure
river basin	Measure	Name of the measure
management plan	implementing the measure	Name of responsible partner for implementing the measure.
	not implemented / in progress	Information on the implementation of the existing measure.
	End of implementation	Information on the due date of implementation existing measure.
	Type of measure	Type of measure: administrative, technical, consulting, study.
	Code of measure	Code of measure
Additional	Measure	Name of the measure
measures	Description of measure	Description of measure
	Responsible partner for	
	implementing the measure	Name of responsible partner for implementing the measure.
	Time for implementation	Information on the due date of implementation measure.
Not good status		
	FISH	

phytobenthos Biological quality elements based on which the status assessment is given. macroinvertebrates phytoplancton macrophytes Phys-Chem, Ntot, Ptot, N-NH4

Physical-Chemical (e.g N, P) quality elements based on which the status assessment is given.

		v	Vaterbody informa	ation					Status information 2019			Pres	sures information	n 2019			Existing m	easures from 20	15-2021 river basin mana	gement plan]
1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17 Type of	18	19	20	21	22	23 Type of	24	25	26	27	28
WB Code	WB Estonian na	Latvian name for transboundary WB	Transboundary	y Countr	ry Coun	ty Municipality	Status 2019	Not good status element, 2019	Reason for the not good status	Monitoring year (latest or not monitored)	Status assessment confidence level	water use causing failure of GES/GEP	What causes the load: sector/water user	GAP (good status- status2019=gap ; tons per year etc	The purpose of measure	Code of measure	measure (administrative, technical, consulting, study)	supplementar additional measure	y, Measure	Responsible partner for implementing the measure	not implemented / in progress / implemented	End of implementation	administrative, technical, consulting)	Code of measure	Measure	Description of measure	Responsible partner for implementing the measure	Time for implementation
1155700_1	Pärlijōgi_1	Pērļupīte	LVEE1005	Estonia	Võru	Rõuge	Poor	FISH	there are 2 dams without fishpasses	never monitored	3	Other obstacles causing hudromorphologi cal pressures	recreation	Status class has to be improved by 2 classes.	Reducing pressure from hydrological and hydro- morphological changes on rivers with other obstacles/impou ndments	VHP03	Study	Additional	Technical measure for improvement of fish migration conditions/considering other alternatives fo Saarlase and Pärlijõe dams	Owner	Not implemented	2021	Technical	VHP04	Demolishing the dam	Measure for opening the migration way for fish by demolishing the dam.	owner	
1155700_2	Pärlijōgi_2			Estonia	Võru	Rõuge	Moderate	phytobenthos	dams fishpasses need improvement	never monitored	3	Other obstacles causing hudromorphologi cal pressures	recreation	Status class has to be improved by 1 class.	Avoiding risk to water body from new and ongoing pressures	KE05	Administrative	Supplementary	Additional supervision on water permits and other approvements on nutrients, hazardous substances and hydromorphological alterations in waterbody	Environmental Board, Municipality	Not implemented	2021	Technical	VHP09	Improvement of existing fish passes	Measure for making improvements in fish passes in order to be more efficient	owner	
1158000_1	Vaidva_1*	Vaidava_1	EELV1007	Estonia	Võru	Rõuge	Moderate	FISH	dams	2010	3	Small HPP causing hydromorphologi cal pressures	hydroenergy	Status class has to be improved by 1 class.	Reducing pressure from hydrological and hydro- morphological changes on rivers with other obstacles/impou ndments	VHP05	Study	Supplementary	Inspection of Vastse- Roosa fish pass	Environmental Board	Implemented	2017		-		-		-
1158000_2	Vaidva_2*	Vaidava_2	LVEE1008	Estonia	Võru	Rõuge	Moderate	FISH	2013 confirmation from dams inventory - good, fishpass done, but later years (2014- 2017) it has not worked effectively because of the watermassive overflow and dam brokening issues. Fish expert has said that in 2017 the was no water lead to fishpass	2017	3	Small HPP causing hydro- morphological pressures	hydroenergy	Status class has to be improved by 1 class.	Avoiding risk to water body from new and ongoing pressures	KE05	Administrative	Supplementary	Additional supervision on water permits and other approvements on nutrients, hazardous substances and hydromorphological alterations in waterbody	Environmental Board, Municipality	Continuous		Technical	VHP09	Improvement of existing fish passes	Measure for making improvements in fish passes in order to be more efficient	owner	
1012100_2	Pedeli_2	Pedele_2	EELV1016	Estonia	Valga	Valga	Moderate	FISH	dams Kolva/Gauja projekt (2013)	2012	3	Tther dams and obstacles creating hydro- morphological pressures	recreation	Status class has to be improved by 1 class.	Avoiding risk to water body from new and ongoing pressures	KE05	Administrative	Supplementary	Additional supervision on water permits and other approvements on nutrients, hazardous substances and hydromorphological alterations in waterbody	Environmental Board, Municipality	Continuous		Study	VHP03	Additional measure for improvement of fish migration conditions/considering other alternatives for Pedeli river dams	Additional measure for deciding whether to demolish the dams, build fish passes or to find some other alternative options	owner	
2136600_1	Aheru järv			Estonia	Valga	Valga	Moderate	Phys-Chem, phytoplancton	nutrients	2016	3	not known	not known	Status class has to be improved by 1 class.	Avoiding risk to water body from new and ongoing pressures	KE05	Administrative	Supplementary	Additional supervision on water permits and other approvements on nutrients, hazardous substances and hydromorphological alterations in waterbody	Environmental Board, Municipality	Continuous		Study	KE03	Study to clarify the outer and inner loads of the lake and to propose relevant measures	Study to clarify the outer and inner loads of the lake and to propose relevant measures		
2155500_1	Hino järv			Estonia	Võru	Rõuge	Moderate	macrophytes, macroinvertebrates	lake has species poverty situation, same type lakes are rich of species	2017	3	not known	not known	Status class has to be improved by 1 class.	Avoiding risk to water body from new and ongoing pressures	KE05	Administrative	Supplementary	Additional supervision on water permits and other approvements on nutrients, hazardous substances and hydromorphological alterations in waterbody	Environmental Board, Municipality	Continuous		Study	KE03	Study to clarify the outer and inner loads of the lake and to propose relevant measures	Study to clarify the outer and inner loads of the lake and to propose relevant measures		
2144700_1	Kirikumäe järv			Estonia	Võru	Võru	Moderate	Phys-Chem, macroinvertebrates	nutrients	2017	3	not known	not known	Status class has to be improved by 1 class.	Additional studies	KE03	Administrative	Supplementary	Study to clarify the outer and inner loads of the lake and to propose relevant measures	Environmental Board	Implemented	2019	Administrative	KE05	Limit activities that may have impact on lake nutrient content and hydromorphological changes.	Limit activities that may have impact on lake nutrient content and hydromorphologica I changes	Environmental Board, Municipality	
2133700_1	Köstrejärv			Estonia	Valga	Valga	Poor	macrophytes, macroinvertebrates	nutrients	2018	3	Accumulated pollution in sediments	historical pollution	Status class has to be improved by 2 classes.	There are several these measures.	measures for Kös	strejärv in the curre	ent programme o	f measures but there has b	een no information	collection about in	nplementing	Technical		Complex method for remediation of lake	Complex method includes sediment dredging and macrophyte cutting and removal. Also sediment distribution and volum study is necessary		

* - the border between Vaidva_1 and Vaidva_2 has been changed since the current river basin management plan and programme of measures was compiled. Previously the measure of Inspection on Vastee-Roosa fish pass was for Vaidva_1. Today the fish pass is on the Vaidva_2 water body.

			Waterbody				Stat	tus information	2019		Pressures inf	formation 2019			Ex	isting measures	from 2015-2021 river basin management plan					
WB Code	WB Estonian name	WB Latvian name	Transboundary WB code	Country	County	Status 2019	Not good status element (last monitoring)	Reason for the not good status	Monitoring year (latest or not monitored)	Status assessment confidence level	What causes the load: sector/water user	GAP (good status- status2019=gap; tons per year etc)	The purpose of measure	Code of measure	Type of measure (administrativ e, technical, consulting, study)	supplementar y, additional measure	Measure	not implemented / in progress	End of implementation	Type of measure (administrativ e, technical, consulting)	Measure	Description of measure
E203		Salainis		Latvia	Valkas	moderate	Ptot, Ntot, low Secchi-possible algae blooms	Nutrient pollution forestry	2013	3		Status class has to be improved by 1 class.										
E204		Lūkumīša ezers		Latvia		moderate	Secchi depth	Nutrient pollution forestry	2017	3		Status class has to be improved by 1 class.	To improve the quality of lake water bodies	A7.6.	technical	supplementary	A7.6. Improving the functionality of the lake: mowing aquatic plants in the direction of prevailing winds and amplifying the wavy effect.	not implemented	2021			
E225		Burtnieku ezers		Latvia	Alojas, Burtnieku, Mazsalacas	poor	All nutrients	Nutrient pollution agriculture	2018	3	Diffuse and historical pollution	Status class has to be improved by 2 clases.	Minimize the impact of hydrological and morphological alterations and water status; To improve the quality of lake water bodies	A6.4. A7.3. A7.7	technical (A6.4., A7.3.), study (A7.7.)	supplementary	A6.4. Keeping polders in a good condition (polder "Sitzemnieki"); A7.3. cleaning of the lake - removal of plants and rubbish; A7.7. in plans of Nature protection agency of Latvia - defining the size of area that needs to be free of aquatic vegetation for aquatic birds to thrive in lake Burtnieki	not implemented (A7.3., A7.7.); A6.4. In progress	07. 2020	Technical measure	Complex measure - sediment dredging, macrophyte removal, biomanipulation	Biomanipulation - changing dominating fish species in lake to decrease amount of cyprind fish species, and increase species of predatory fish. Measure can include both increased targeted fishing of cyprinid fish and artificial increase of piscivory fish populations. Macrophyte removal - cuting and removing macrophytes, such as common reed (Phragmites australis) from lake. It can be done by using aquatic movers and collection containers attached to boats or by using specially designed aquatic weed harvesters. Macrophytes use available nutrients to grow, cutting them and removing from lake removes secondary useable nutrients routients remaining in lake from decomposing plant matter. Sediment dredging - removal of sediments from the lake bed using dredger (excavator) or cutter and suction dredger would need to be used – appliances and dispose in collection containers on ships. Biomanipulation - changing dominating fish species in lake to decrease amount of
E228		Lielais Bauzis		Latvia	Kocēnu, Pārgaujas	moderate	Ntot,Ptot	Nutrient pollution agriculture	2011	3		Status class has to be improved by 1 class.		A5.1.	technical	supplementary	A5.1 Environmentally friendly rebuilding or restoration of forest drainage systems to include environmentally friendly elements of drainage systems (sedimentation basins, two-stage drainage ditches, etc. Measures referred to in Annex 12 of Cabinet Regulation No. 600).	t not implemented	2021	Technical measure	Complex measure - sediemnt dredging, biomanipulation, floating treatment wetlands, hypolimmetic withdrawal	containing the second sec
G229		Vija_1		Latvia	Smiltenes, Strenču, Valkas	moderate	N-NH4	Nutrient pollution Agriculture. / Drainage - forestry / Nutrien pollution - forestry	2013	3		Status class has to be improved by 1 class.	Minimize the impact of hydrological and morphological alterations and water status; To improve the quality of lake water bodies	A6.1.	study (A6.1.), technical (A6.5.)	supplementary	 A6.1. Survey of natural discharge regime in hydroelectrostation "Skripstu HES"; A6.5. cleaning of river from overgrowth of macrophytes and rubbish; mowing vegetation in meander shape in morphologically regulated parts of river 	not implemented	2021			
G233		Melnupe_2	EELV1004	Latvia	Alūksnes, Apes	moderate		Nutrient pollution	2016	1		Status class has to be improved by 1 class.								study	Find a representative monitoring location.	According to the latest monitoring data, the quality of the Melnupe_2 is rated as moderate, but this is questionable due to the fact that the monitoring station is located in a location that is unlikely to objectively represent the quality of the entire waterbody. The proposed measure is therefore linked to the choice of site for the monitoring station.
G234		Melnupe_1		Latvia	Alūksnes, Apes	moderate	Ptot	Nutrient pollution from agriculture / Drainage - Agriculture.	2017	3		Status class has to be improved by 1 class.										
G235	Vaidva_2	Vaidava_2	LVEE1008	Latvia	Alūksnes, Apes	moderate	Hydromorphologi cal alterations (and biological response)	Dams, barrier and locks - hydropower / Nutrient pollution?	2016	3	Hydromorphologi cal alterations (and biological response)	Status class has to be improved by 1 class.	To reduce the point pollution load on the waters	A1.3.	technical	supplementary	A1.3. Improving the efficiency of sewage treatment plants by providing additional waste water treatment in aggiomerations with CE> 2000 which affects water bodies at risk.	In progress	2021	Technical measure. Technical measure. Technical +administrative measure.	For "Karva" HPP - demolishing dam or building a fish pass and implementing ecological flow For "Grübe" HPP - demolishing am or building a fish pass and implementing ecological flow*	Demolishing a dam - includes complete removal of the dam and its structures. It aims restore fully natural continuity of river and remove all adverse effects of HPP dam on ecological status of river. Buildinga fish pass - construction of an alternative way for migration of fish on rivers affected by dams or other obstacles. Case specific requirements for each fish pass should be established, depending on fish species of concern and specifics of river, such as depth, typology of river, as well as local specifics – availability of space, geology, etc. There are two main types of fish passes - natural type and technical type. Natural type fish passes require more space, as they mimic the river artificial river bed is created. Technical type fish passes require less space. Problems are usually present with both upstream and downstream migration of fish, construction of two fish passes could be necessary to resolve both problems. Best available technological solutions must be applied based on scientific tudies about fish passe ficiency rate, to enhance the effectivness. The measure also includes further maintenance of the fish pass in good working condition. Implementing ecological flow - addresses need for higher water level/discharge in river. Can be implemented by technical mount of water to flow over the dam, to guarantee at least minimal good ecological conditions downstream. Fish pass or environmentally friendly HPP turbines can also be used to fish with the dam, to guarantee at least minimal good ecological conditions and be using the dam. The measure requires a study to assess the ecological flow regime, as well as hydrological monitoring of the flow regime.
G241		Gauja_6		Latvia	Apes	moderate		Nutrient pollution agriculture / Nutrient pollution forestry	2016	3		Status class has to be improved by 1 class.										
G242		Vizla_2		Latvia	Apes, Smiltenes	moderate		Drainage - Agriculture	2013	3		Status class has to be improved by 1 class.		A5.1.	technical	supplementary	A5.1 Environmentally friendly rebuilding or restoration of forest drainage systems to include environmentally friendly elements of drainage systems (sedimentation basins, two-stage drainage ditches, etc. Measures referred to in Annex 12 of Cabinet Regulation No. 600).		2021			
G245		Gauja_5		Latvia	Alūksnes, Apes, Gulbenes	moderate			2016	3		Status class has to be improved by 1 class.										
G301		Salaca_2		Latvia	Alojas, Mazsalacas, Salacgrívas	moderate		Dams, barrier and locks - industry / Nutrient pollution forestry / Nutrient pollution - agriculture	2017	3		Status class has to be improved by 1 class.								Technical measure	Demolishing dam or building a fish pass.	Demolishing a dam - includes complete removal of the dam and its structures. It aims restore fully natural continuity of river and remove all adverse effects of HPP dam or other dam on ecological status of fiver. Buildinga a fish pass - construction of an alternative way for migration of fish on rivers affected by dams or other obstacles. Case specific requirements for each fish pass should be established, depending on fish species of concern and specifics of river, such as depth, typology of river, as well as local specifics – availability of space, geology, etc. There are two main types of fish passes - natural type and technical type. Natural type fish passes require more space, as they mimic the river - artificial river bed is created. Technical type fish passes require less space. Problems are usually present with both upstream and downstream migration of fish, construction of two fish passes could be necessary to resolve both problems. Best available technological solutions must be applied based on scientific studies about fish pass efficiency rate, to enhance the effectivness. The measure also includes further maintenance of the fish pass in good working condition.

G303SP	Salaca_3	Latvia	Salacgrīvas	moderate	Ptot (occasionally)	Nutrient pollution	2017	3	Ptot (occasionally)	Status class has to be improved by 1 class.	To reduce the point poliution load on the waters A4 - Ensure the reduction of pollution from agricultural activities A6 - Samazinät hidroloģisko un morfoloģisko pārveidojumu ietekmi un ūdeņu stāvokli	A1.1.; A1.2.; A4.2., A6.3.	technical (A1.1 A1.2., A4.2.), study (A6.3.)	supplementary	 A1.1. Improving the efficiency of waste water treatment plants by providing additional waste water treatment in agglomerations with CE> 2000 affecting water bodies at risk; A1.2. Improvement of the functioning of centralized wastewater collection systems by providing actual connections and extending networks in agglomerations with CE> 2000 affecting water bodies at risk; A4.2. Environmentally friendly rebuilding and restoration of agricultural drainage systems, including environmentally friendly elements of drainage systems (sedimentation basins, two-stage drainage ditches, etc. Measures referred to in Annex 12 of Cabinet Regulation No. 600); A6.3. Implement the established action plans and priority "mitigating" measures to reduce the negative impacts of ports. 	2021			
G304	lģe_1	Latvia	Alojas, Kocēnu, Limbažu, Mazsalacas	moderate	Nutriens from agriculture	Nutrient pollution from agriculture / Drainage - Forestry	Never monitored	3		Status class has to be improved by 1 class.									
G306	Salaca_1	Latvia	Alojas, Burtnieku, Mazsalacas	moderate		Dams, barrier and locks - unknown / Drainage - Agriculture	2013	3		Status class has to be improved by 1 class.	To reduce the point pollution load on the waters	A1.2.	technical	supplementary	A1.2. Improvement of the functioning of centralized wastewater collection systems by providing actual connections and extending networks in agglomerations with CE> 2000 affecting water bodies at risk;	2021	Technical measure	Demolishing dam or building a fish pass.	Demolishing a dam - includes complete removal of the dam and its structures. It aims restore fully natural continuity of river and remove all adverse effects of HPP dam or other dam on ecological status of river. Buildinga a fish pass - construction of an alternative way for migration of fish on rivers affected by dams or other obstacles. Case specific requirements for each fish pass should be established, depending on fish species of concern and specifics of river, such as depth, typology of river, as well as local specifics – availability of space, geology, etc. There are two main types of fish passes - natural type and technical type. Natural type fish passes require more space, as they minic the river - artificial river bed is created. Technical type fish passes require less space. Problems are usually present with both upstream and downstream migration of fish, construction of two fish passes could be applied based on scientific studies about fish pass efficiency rate, to enhance the effectivness. The measure also includes further maintenance of the fish pass in good working condition.
G308	Jogla	Latvia	Alojas, Limbažu	moderate	Ptot	Point source - non IED plants / Nutrients pollution	2018	3		Status class has to be improved by 1 class.									
G310	Rūja_4	Latvia	Burtnieku, Mazsalacas, Naukšēnu, Rūjienas	moderate		Drainage - Forestry / Drainage - Agriculture	2018	3		Status class has to be improved by 1 class.									
G313	Rūja_2	Latvia	Naukšēnu, Rūjienas	moderate		Drainage - Agriculture	2013	3		Status class has to be improved by 1 class.									
G315	Ķire	Latvia	Naukšēnu, Rūjienas, Valkas	moderate		Drainage - Agriculture	2012	3		Status class has to be improved by 1 class.									
G317 Pedeli_2	Pedele_2 LVEE10)16 Latvia	Valkas	moderate	Biological response to hydromorphologic al alterations	Dams, barrier and locks - hydropower	2015	3	Biological response to hydromorphologi cal alterations	Status class has to be improved by 1 class.	To reduce the point pollution load on the waters; Minimize the impact of hydrological and morphological alterations and water status	A.1.2., A6.5.	technical	supplementary	A1.2. Improvement of the functioning of centralized wastewater collection systems by providing actual connections and extending networks in agglomerations with CE> 2000 affecting water bodies at risk; A6.5. Watercourse cleaning (controlling the degree of overgrowth of aquatic plants, decontamination of water), clean up of the coasts in accordance with good practice, with the aim of improving the ecological quality of the water; meandering of macrophytes in regulated river sections.	11. 2022	Technical measure	For Kalndzirnavu HPP - demolishing a dam. For Dzirnavnieku HPP - demolishing a dam.	Demolishing a dam - includes complete removal of the HPP dam and its structures. It aims restore fully natural continuity of river and remove all adverse effects of HPP dam on ecological status of river.
G320	Acupīte_2	Latvia	Naukšēnu, Valkas	moderate		Drainage - Agriculture	2011	3		Status class has to be improved by 1 class.									
G322	Briede_1	Latvia	Kocēnu, Limbažu, Pārgaujas	moderate	Nutrients, hymo alterations	1. Dams, barrier and locks - hydropower. 2. Dams, barrier and locks - unknown / Nutrients runoff - Agriculture	2018	3		Status class has to be improved by 1 class.		A5.1.	technical	supplementary	A5.1 Environmentally friendly rebuilding or restoration of forest drainage systems to include environmentally friendly elements of drainage systems (sedimentation basins, two-stage drainage ditches, etc. Measures referred to in Annex 12 of Cabinet Regulation No. 600).	2021	Technical measure	demolishing dam or building a fish pass and implementing ecological flow. For "Sviluma" impoundment lake - demolishing dam or building fish pass. For impoundment	
G325	Blusupīte	Latvia	Salacgrīvas	moderate		Nutrients pollution - Agriculture /Drainage -	2016	3		Status class has to be improved by 1 class.									
G334 Vaidva_2	Vaidava_1 EELV10	007 Latvia	Alūksnes	moderate		Forestrv	Never monitored	3		Status class has to be improved by 1 class.									

Ülevaade paisudest ja kalapääsudest Koiva Veekogud ilma piirideta projekti alal Eestis

Tähelepanekud, probleemid, võimalikud lahendused teostatavuse ja maksumuse hinnanguga

Overview on dams and Fish passes in Koiva Waterbodies Without Borders Project area in Estonia

Observations, problems, possible solutions with feasibility and cost assessments

Koostajad: Rein Järvekülg (EMÜ PKI PKKH) Elina Leiner (Keskkonnaamet)

Ülevaate tegemise aeg: 8-10.12.2019

Disclaimer: This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used.

Sisukord

Abstract
PÄRLIJÕGI4
Sänna Alaveski pais4
Sänna Mäeveski pais7
Ala-Raudsepa (Kaugu) pais11
Saarlase pais17
Pärlijõe pais21
VAIDVA JÕGI25
Vastse-Roosa pais25
ÕHNE JÕGI
Tõrva paisu kalapääs33
Koorküla Veskijärve pais41
Paisuvare Jeti–Kiinimäe tee sillast ca 50 m allavoolu44
Dzirnavase pais (Läti)46
Holdre Vanaveski pais49
Taagepera pais52
Dzirnavas dam (in English)56

Abstract

In the project area, dams are one of the main pressure factors for the water bodies. That is why the fish expert has looked over and given evaluations about the status of dams and fish passes and about necessary actions. Following a brief overview about these necessary actions. A full overview will be added to the home page of the project and it is in Estonian.

The reasons for not good status for five of the water bodies are dams. In the Estonian side of the project area there are together 11 dams, to four of them there are constructed fish passes during the years of 2012-2015.

The fish expert, Rein Järvekülg, conducted field observations in dams and fish passes in December 8th and 10th of 2019. Generally the solutions for fish passes are good and they are passable for fish with good buoyancy.

There are five dams in the Pärlijõgi River, to three of them are constructed fish passes. The functioning of Sänna Alaveski dam would improve adding the flow relief stones to rapids that are downstream of threshold and between thresholds of overflow. In the Sänna Mäeveski fish pass there is necessary to correct the placement of stones, to restore the shifted rows of stones and if needed, to strengthen the rows of stones with additional stones.

The environmental permit of the Ala-Raudsepa dam should be over checked and the water level should be reduced miinimum 20 cm. Then the fish pass should be corrected, it's slope should be leveled and the position and layout of the flow relief stones should be adjusted. Also there is a need to repair the excess water outlet.

The owners of Saarlase and Pärlijõgi dams have the responsibility to find the way to ensure the passage of fish.

There is one dam in the River of Vaidava which has a fish pass. In this fish pass there is a need to partially relocate the stones and to add the flow relief stones in the lower part.

The River of Õhne has five dams, to one of them is constructed a fish pass. In the dam of Tõrva there is a need to over check the environmental permit and to reduce the permitted level of damming to ensure the functioning of fish pass. In addition there is a need to adjust some of the overflows made of stones and the locations of flow relief stones in the fish pass.

Downstream of the bridge of the road of Jeti-Kiinimäe there are ruins of damming, which owner and the owner of the dam of Koorküla Veskijärve have to find solutions to ensure fish passage. The dams of Holdre Vanaveski and Taagepera need fish passes in case the need is added to the environmental permits.

Õhne river has a dam also on Latvian side. Since Õhne waterbody cannot achieve good status without a solution for Dzirnavas dam, it is also described in this document.

PÄRLIJÕGI

Sänna Alaveski pais

Olukord, probleemid:

Jõgi on paisu juures kahes harus. Vasaku haru paisutuskõrgus oli vaatluspäeval 0,7 m, parema haru oma 0,6 m. Vaatluspäeval oli jõe vooluhulk 1,5-2 m³/s. Madalvee tingimustes on paisutuskõrgused suuremad, sest paisu alavee tase on oluliselt madalam. Jõe vasak haru on kujundatud kalapääsuks, parem haru liigveelasuks. Veekasutus paisu juures puudub. Pais ja paisjärv asuvad munitsipaalmaal. Kalade läbipääs on vajalik tulenevalt õigusaktidest: Looduskaitseseaduse (edaspidi LKS) § 51¹, keskkonnaministri 15.06.2004 määrus nr 73 Lõhe, jõeforelli, meriforelli ja harjuse kudemis- ja elupaikade nimistu (edaspidi määrus nr 73²) ja veeseadus § 174 lg 3³ (edaspidi VeeS).

Jõe vasakus harus olev kalapääs koosneb kolmest ülevoolu lävendist (veetasemete vahed välitööpäeval 0,15...0,18 m) ning neile järgnevast ca 10 m pikkusest kärestikulisest jõeosast. Kärestikulises jõeosas allpool ülevoolu lävendeid pole voolurahustusrahne ja seetõttu on vee voolukiirus seal suur ning kaladel pole piisavalt varjepaiku.

Kalapääs on hea ujumisvõimega kalaliikidele püsivalt läbitav, kehvema ujumisvõimega kaladel (kes ei tee sööste ja hüppeid) on kalapääs tõenäoliselt läbitav vaid jõe keskmiste vooluhulkade korral (vh $0,5...1,5 \text{ m}^3$ /s).

Vajalikud tegevused:

Kalapääsu toimimist parandaks voolurahustuskivide lisamine lävenditest allavoolu jäävale kärestikule ning ülevoolu lävendite vahele. Kokku võiks lisada 10 kivi Ø 0,6-0,8 ning 20 kivi Ø 0,4-0,6. Tegevuse eeldatav maksumus kuni 1000 EUR. Väikese maksumuse ja töömahu tõttu võiks nimetatud tegevuse siduda tegevustega Sänna Mäeveski paisu juures, kus olemasolev kalapääs normaalselt ei toimi ning kus kalapääsu parandamistegevused on hädavajalikud. Seejärel tuleks läbi viia kalapääsu seire kahe aasta jooksul (ihtüoloogilise ja hüdraulilise seire maksumus koos Sänna Mäeveski ja Ala-Raudsepa paisudega ca 15 000 EUR).

¹ Looduskaitseseadus <u>https://www.riigiteataja.ee/akt/122022019021?leiaKehtiv</u>

² Lõhe, jõeforelli, meriforelli ja harjuse kudemis- ja elupaikade nimistu

https://www.riigiteataja.ee/akt/109072016022?leiaKehtiv

³ Veeseadus <u>https://www.riigiteataja.ee/akt/122022019001</u>

Joonis 1. Pärlijõe Sänna Alaveski paisu asukoht põhikaardil.

Joonis 2. Sänna Alaveski paisu kalapääs asub jõe vasakul harul, liigveelask paremal harul.

Foto 1. Jõe paremal harul asuv liigveelask, paisutuskõrgus vaatluspäeval oli 0,7 m (R. Järvekülg, 10.12.2019).

Foto 2. Jõe vasak haru on kujundatud kolme veeastmega kalapääsuks (R. Järvekülg, 10.12.2019).

Sänna Mäeveski pais

Olukord, probleemid:

Paisu paisutuskõrgus oli vaatluspäeval (10.12.2019) 1,5 m ning seda jõe suhteliselt kõrge veetaseme tingimustes. Madalvee tingimustes on veeastme kõrgus oluliselt suurem. Paisu juures toimub vähene veekasutus (<0,1 m³/s). Ülavee poolelt juhitakse osa veest paremal kaldal eemal oleva veski kaudu paisust allavoolu olevasse tiiki. See veekasutus ei muuda oluliselt jõe vooluhulka paisu juures. Pais ja selle lähiümbrus asuvad eramaal. Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3).

Paisu juurde on rajatud kalapääs. Vaatluspäeva seisuga olid kalade rändetingimused kalapääsus väga ebasoodsad. Kalapääsu lang oli ebaühtlane, kohati oli vool väga kiire ning kalapääs oli kaladele kas läbimatu või läbitav vaid üksikutele väga hea ujumisvõimega kaladele. Kalapääs oli projekteeritud juba algusest peale piiripealse 3%-lise languga. Selline kalapääs saab toimida rändeteena vaid ideaalilähedastes tingimustes. Praegu on lõiguti kalapääsu lang erinev, kohati on voolurahustusrahnud ja kiviread nihkunud paigast ning nende asendid vajavad korrigeerimist.

Vajalikud tegevused:

Vajalik on madalvee ajal kalapääsu sissevool sulgeda ning korrigeerida kivide asetust kalapääsus, taastada paigast nihkunud kiviread, vajadusel neid tugevdada/toestada juurde toodavate lisakividega. Töö maksumus 3 000 EUR. Seejärel oleks vajalik läbi viia kalapääsu seire 2 aasta jooksul (ihtüoloogilise ja hüdraulilise seire maksumus koos Sänna Mäeveski ja Ala-Raudsepa paisudega ca 15 000 EUR). Seejärel saaks otsustada, kas kalapääs praegusel kujul lahendab kalade rändeprobleemi või on vajalik kalapääsu ümberehitustööd.

Joonis 3. Pärlijõe Sänna Mäeveski paisu paiknemine põhikaardil.

Joonis 4. Sänna Mäeveski paisu kalapääs on rajatud jõe paremale kaldale paisust ülesvoolu.

Foto 3. Vaade Sänna Mäeveski paisule alavee poolt. Liigveelaskme paremas servas (fotol vasakul) asub kalapääsu väljavool (R. Järvekülg, 10.12.2019).

Foto 4. Nagu puitvarjadega paisude puhul sageli, nii tuleb ka Sänna Mäeveski paisul varjade eemaldamiseks ja lisamiseks turnida kahel prussil. Ohutuspiirded puuduvad. Kui vajadus varjade eemaldamiseks peaks tekkima talvel, kui prussid on jäätunud ja libedad, siis ega keegi neid varjasid sealt paisult eemaldama ei pruugi minnagi. Just seetõttu rikkus varakevadine tulvavesi 2012. aastal valminud kalapääsu 2013. a algul ära. Hiljem kalapääs küll taastati, kuid mitte enam algse kvaliteediga (R. Järvekülg, 10.12.2019).

Foto 5. Sänna Mäeveski kalapääsu alumine osa silla alla sisenemisel ja vahetult enne silda on väga suure languga ning algselt sinna paisutatud voolurahustusrahnud on nihkunud paigast. Seetõttu on vool paiguti väga kiire ja rändetingimused kaladele ebasoodsad (R. Järvekülg, 10.12.2019).

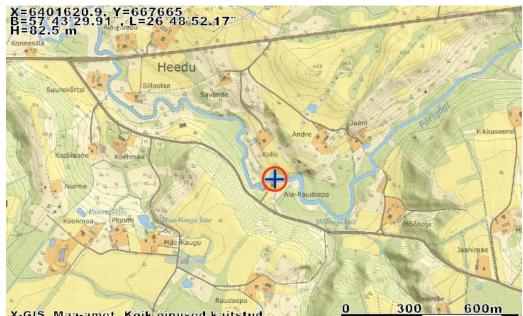
Foto 6. Ka kalapääsu keskosa on ebaühtlase languga ja voolurahustuskivide reas vajavad korrigeerimist (R. Järvekülg, 190.12.2019).

Foto 7. Kalapääsu sissevool – jällegi suure languga ja kivide paigutus vajab korrigeerimist. Kokkuvõtlikult on Sänna Mäeveski kalapääs kaladele praegu raskesti läbitav. Seda suudavad läbida ainult vähesed hea ujumisvõimega kalad. Kalapääs vajab korrigeerimist ning seejärel tuleb läbi viia seire, mis näitab kas sellest piisas või on vajalikud ka ulatuslikumad ümberehitustööd (R. Järvekülg, 10.12.2019).

Ala-Raudsepa (Kaugu) pais

Olukord, probleemid:

Paisu paisutuskõrgus oli vaatluspäeval (10.12.2019) ca 0,8 m. Paisu juures veekasutust hetkel ei toimu, kuid omanik on teinud ettevalmistusi hüdroenergia kasutamiseks. Turbiinikanali sissevoolu ees on võre avadega 17...27, keskmiselt 20 mm. Pais ja sellega seotud rajatised paiknevad eramaadel. Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3).


Paisu juurde on rajatud kalapääs. Vaatluspäeva seisuga olid kalade rändetingimused kalapääsus väga ebasoodsad. Kalapääsu sissevoolul asus kivivall, mis takistas sissevoolu kalapääsu ning tekitas ca 20 cm veeastme. Kalapääsu lang oli ebaühtlane ning paiguti vool väga kiire. Kalapääs oli kaladele kas läbimatu või läbitav vaid üksikutele väga hea ujumisvõimega kaladele.

Paisu liigveelase oli osaliselt lagunenud ning avariiohtlik. Paisul oleva mõõdulati järgi oli veetase ülemises bjefis 0,20 m allpool NPT⁴. Normaalpaisutustaseme korral on välistatud olemasoleva kalapääsu efektiivne toimimine.

Vajalikud tegevused:

Vajalikud on läbirääkimised paisu omaniku ja Keskkonnaameti vahel. KA peab paisu omanikule selgitama, et hüdroenergia kasutamine paisul on välistatud (see välistaks täielikult olemasoleva kalapääsu toimimise, tõstaks ülikõrgeks vee liigvähendamise riski ning ohustaks jõeelustikku paisust allavoolu jäävas jõeosas). Paisu NPT-d tuleks praegusega võrreldes vähendada minimaalselt 20 cm võrra. Vastsel juhul ei ole võimalik olemasoleva kalapääsu normaalne funktsioneerimine. Seejärel tuleb kalapääs korrastada, selle lang ühtlustada ning korrigeerida voolurahustuskivide asetust ning kiviridade paigutust kalapääsus. Juurde tuleb tuua 15 suuremat kivi (Ø 50...70 cm). Töö maksumus 4 000 EUR. Vajalik on ka liigveelaskme parandamine (maksumus sõltuvalt parandamise või rekonstrueerimise ulatusest 2 000 kuni 10 000 EUR). See peaks olema otseselt omaniku kohustus. Seejärel oleks vajalik läbi viia kalapääsu seire 2 aasta jooksul (ihtüoloogilise ja hüdraulilise seire maksumus koos Sänna Mäeveski ja Ala-Raudsepa paisudega ca 15 000 EUR).

⁴ NPT- normaalpaisutustase

X-GIS. Maa-amet. Kõik õigused kaitstud. Joonis 5. Pärlijõe Ala-Raudsepa paisu paiknemine põhikaardil.

Joonis 6. Ala-Raudsepa paisu kalapääs asub jõe vasakul kaldal vana veskihoone kõrval.

Foto 8. Vaade Ala-Raudsepa (Kaugu) paisule ülavee poolt. Vasakul turbiinikanali sissevool võrega, selle kõrval kalapääsu sissevool, järgneb kividega kindlustatud pinnaspaisu osa ja seejärel jõe paremas servas liigveelase (R. Järvekülg, 10.12.2019).

Foto 9. Turbiini ja kalapääsu sissevoolude vahel oleval betoonpostil on algeline mõõdulatt, kuhu on 0,5 m vahega märgitud normaal- ja maksimaalpaisutuse tasemed. Vaatluspäeval oli ülavee tase 0,2 m allpool NPT-d. On kaheldav, kas mõõdulati paigaldamisel on osalenud ka geodeet. Pigem on paisu omanik märkinud latile talle sobivana tunduvad kõrgused (R. Järvekülg, 10.12.2019).

Foto 10. Vaade paisult ülesvoolu paisutusalale. Kaldavööndi järgi on näha, et tavapäraselt on veetase olnud ca 0,5 m kõrgemal vaatluspäeva omast. Paisutusala ilmet see aga oluliselt ei muuda. Paisjärve pole, on vaid paisutatud jõe osa (R. Järvekülg, 10.12.2019).

Foto 11. Paisu liigveelask on lagunenud. Lip-lipi, lap-lapi peal konstruktsioon pole vee survele vastu pidanud. Tõenäoliselt on paisu omanik jäänud hiljaks paisu varjade eemaldamisega jõe veetaseme kerkides (R. Järvekülg, 10.12.2019).

Foto 11. Vaade paisult allavoolu kalapääsule. Esialgselt rajati kalapääs kiviläbivoolude kaskaadina. Praeguseks on kivivallid enamasti juba hajusaks kärestikuks lagunenud (R. Järvekülg, 10.12.2019).

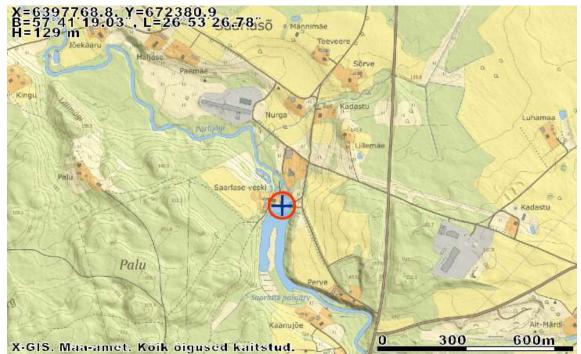
Foto 12. Vaade paisu poole alavee poolt. Vasak haru (fotol all) on HEJ⁵ väljavoolukanal, keskel on kalapääsu alumine osa ning parem haru (fotol üleval) tuleb liigveelasu juurest (R. Järvekülg, 10.12.2019).

Foto 13. Kalapääsu ülemine osa. Esialgsed kiviastmed on lagunenud kärestikuks. Kalapääsu sissevoolule on tekitatud kividest kuhjatis, mis tõkestab tõusval rändel olevate kalade rändetee. Kalapääs pole praegu kaladele läbitav (R. Järvekülg, 10.12.2019).

⁵ HEJ- hüdroelektrijaam

Saarlase pais

Olukord, probleemid:


Paisu paisutuskõrgus oli välitööpäeval (10.12.2019) 2,4 m. Tavaoludes on paisu paisutuskõrgus ca 3,0 m. Pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu. Veekasutus paisu juures on hetkel minimaalne (võetakse vett paisust allavoolu asuva kalatiigi ja purskkaevu jaoks). Varem on paisu juures töötanud HEJ, praegu pole turbiin töökorras ning keskkonnaluba hüdroenergia kasutamiseks paisul pole. Omanik peab hetkel turbiini remonti liigselt kulukaks ja majanduslikult ebaotstarbekaks.

Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3). Paisude inventuuril 2011-2012 hinnati kalade läbipääs vajalikuks, kuid olemasoleva paisutuskõrguse (2011. a 3,2 m) säilimise puhul tehniliselt teostamatuks. Antud hinnanguga tuleb nõustuda.

Pais asub eramaal.

Vajalikud tegevused:

Paisu omaniku sõnul (10.12.2019 seisuga) on ta nõus paisu paisutuskõrgust alandama 1 m võrra. 2 m kõrguse paisutuse puhul on reaalne toimiva kalapääsu rajamine. Paisu omaniku hinnangul võiks kalapääsu rajada paisu alavee poolele liigveelasust vasakule. Projekti hinnanguline maksumus koos vajalike lisatöödega oleks ca 300 000 EUR. Alternatiivideks oleks paisu lammutamine (sellega paisu omanik enda sõnul ei nõustu) või määruse nr 73 muutmine, mis ühtlasi tähendaks loobumist Pärlijõe Natura ala kaitseeesmärkide saavutamisest jõeosas ülalpool Saarlase paisu.

Joonis 7. Pärlijõe Saarlase paisu paiknemine põhikaardil.

Joonis 8. Saarlase pais ja selle lähiümbrus hübriidkaardil.

Foto 14. Vaade Saarlase paisule ja paisjärvele (R. Järvekülg, 10.12.2019).

Foto 15. Panoraamfoto Saarlase paisult allavoolu (R. Järvekülg, 10.12.2019).

Foto 16. Vaade Saarlase paisule alavee poolt. Vaatluspäeval oli paisutuskõrgus 2,45 m ning ülaveetase oli ca 0,5 m allpool tavapärast taset (R. Järvekülg, 10.12.2019).

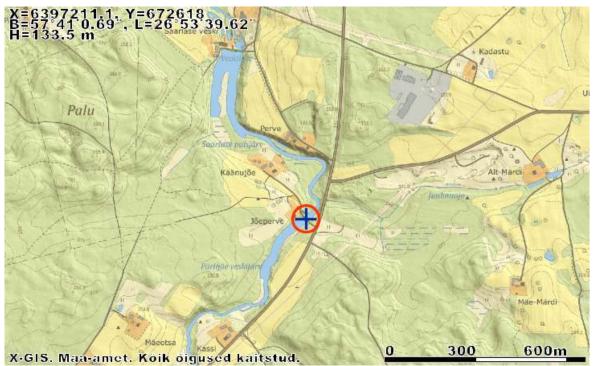
Foto 17. Vaade paisu liigveelaskmele ülavee poolt. Liigveelaskme tehniline seisund on hea (R. Järvekülg, 10.12.2019).

Foto 18. Varem on Saarlase paisu juures töötanud HEJ turbiini veetarbega ca 0,8 m³/s. Omaniku sõnul rikkus turbiini sinna sattunud puunott. Turbiini sissevoolu ees on võre, mille algsed avad on olnud 5...7 cm, pärast loodusjõudude toimet on aga avad suurenenud kuni 15 cm-ni. On selge, et selline võre ei takistanud turbiini sattumast mitte ühtki kala, ega toiminud kuigi efektiivselt ka prahitõkkena (R. Järvekülg, 10.12.2019).

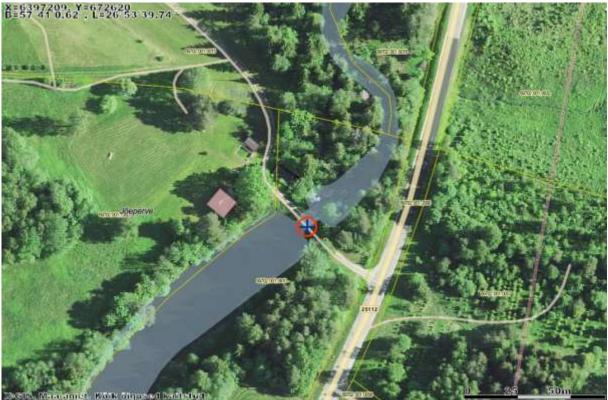
Foto 19. Kalapääsu rajamise teeb keeruliseks see, et jõe kaldad on paisu juures kõrged ning järsud. Vaade paisult jõe paremale kaldale. Kalapääsu rajamine on võimalik, kui alandada ülavee taset 3 m-lt 2 m-le. Paisu omanik on oma sõnul toimiva kalapääsu lahenduse leidmisest huvitatud ning valmis alandama praegust paisutustaset (R. Järvekülg, 10.12.2019).

Pärlijõe pais

Olukord, probleemid:


Paisu paisutuskõrgus oli välitööpäeval (10.12.2019) 2,8 m. Pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu. Veekasutus paisu juures puudub. Paisu liigveelasu varjad ja varjabaasid on amortiseerunud ja vajavad vahetamist. Pais asub eramaal, kuid paisu juures püsiv elamine puudub.

Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3). Paisude inventuuril 2011-2012 hinnati kalade läbipääs vajalikuks, kuid olemasoleva paisutuskõrguse (2011. a 2,85 m) säilimise puhul tehniliselt teostamatuks. Antud hinnanguga tuleb nõustuda.


Vajalikud tegevused:

Paisu paisutuskõrgust tuleks vähendada 1,5 m-le. Seejärel on võimalik rajada toimiv kalapääs kas jõe paremale või vasakule kaldale. Projekti hinnanguline maksumus koos vajalike lisatöödega oleks ca 200 000 EUR.

Alternatiivideks on paisu lammutamine või määruse nr 73 muutmine, mis tähendaks ühtlasi loobumist Pärlijõe Natura ala kaitse-eesmärkide saavutamisest jõeosas ülalpool Pärlijõe paisu.

Joonis 9. Pärlijõel asuv Pärlijõe pais asub Saarlase paisust ca 1 km ülesvoolu.

Joonis 10. Pärlijõe pais hübriidkaardil. Jõgi on paisu juures kõrgete kallastega. Vaatamata paisu kõrgusele (2,8 m) paisjärv sisuliselt puudub.

Foto 20. Pärlijõe pais asub Saarlase paisust ca 1 km ülesvoolu (R. Järvekülg, 10.12.2019).

Foto 21. Vaade Pärlijõe paisult ülesvoolu. Kõrgete järskude kallaste tõttu võib paisjärve pidada pigem paisutatud potamaalseks jõeosaks (R. Järvekülg, 10.12.2019).

Foto 22. Vaade pärlijõe paisult allavoolu. Jõe vasak kallas on madal, parem järsk ja kõrge (R. Järvekülg, 10.12.2019).

Foto 23. Pärlijõe paisu paisutuskõrgus on 2,8...2,9 m. Kalapääsu rajamine on võimalik juhul kui paisu kõrgust alandada ½ võrra. Kuna paisu juures püsielamine puudub, siis on pidevaks ohuks see, et jõe vooluhulkade tõustes pole kedagi, kes õigeaegselt paisult varje eemaldaks (R. Järvekülg, 10.12.2019).

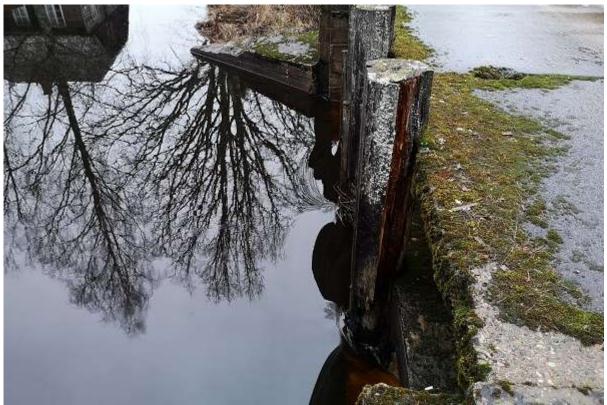


Foto 24. Paisu liigveelaskme seisund on halb. Kõrgvee ajal võib paisu liigveelase laguneda ja põhjustada allavoolu tulvavee probleeme (R. Järvekülg, 10.12.2019).

VAIDVA JÕGI

Vastse-Roosa pais

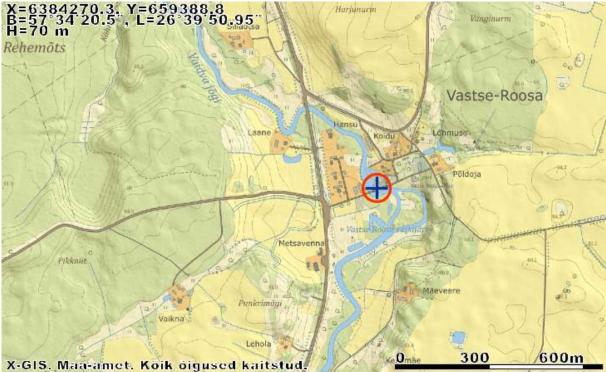
Olukord, probleemid:

Paisu paisutuskõrgus on tavapärastes oludes ca 3,0 m. Paisu juures on antud luba hüdroenergia kasutamiseks. Teadaolevalt on veskihoones 2 turbiini, mis töötavad vooluhulkadega 1,1 ja 0,5 m³/s. Jõe loodusliku äravoolu reguleerimine pole hüdroenergia kasutamisel lubatud. Konkreetne teave hüdroenergia kasutamise kohta paisu juures puudub. Teada on vaid see, et hüdroenergiat on vahetevahel kasutatud. Vastavalt keskkonnaloale peab turbiinikanali sissevoolul olema võre avadega ≤ 25 mm. Ülevaatusel 10.12.2019 selgus, et võre algsed avad on olnud vahemikus 24...28 mm. Deformatsioonide tõttu on võre praegused avad vahemikus 22...30 mm.

Paisu juurde on 2014. aastal rajatud kalapääs. Paisu ebakorrektse opereerimise (õigeaegselt ei eemaldatud paisult varje veetaseme tõustes) tõttu rikkus tulvavesi 2015. aastal lõiguti kalapääsu. 2015. kuni 2018. aastani kalapääs ei töötanud seoses paisu liigveelasu lagunemisega (kalapääsus puudus vesi). Praeguseks on paisu liigveelase remonditud, paisjärv taastatud ning vesi uuesti kalapääsu juhitud. Kalapääsu efektiivsust uuritud pole. 10.12.2019 tehtud vaatluste põhjal on kalapääs hea ujumisvõimega kaladele läbitav. Mõned kohad kalapääsus vajavad korrigeerimist. Kalapääsu alumises osas tuleks lisada paiguti voolurahustuskive, kalapääsu ülemises osas on veeaste, mille kaotamiseks tuleks korrigeerida voolurahustuskivide paigutust.

Paisu liigveelaskme purunemise tõttu 2014. aastal põhjustati paisust allavoolu jäävas jõeosas ulatuslik setetereostus, mille negatiivsed mõjud olid selgelt näha mitme aasta jooksul pärast avariid. Täpne ülevaade praegusest olukorrast puudub.

Vaatluste ajal 10.12.2019 oli ülaveetase paisu juures 70,3 abs (keskkonnaloa järgi NPT 69,9, KPT⁶ 70,5 m abs), seega 40 cm üle NPT ja 10 cm alla suurveega lubatavat KPT.


Vajalikud tegevused:

Vajalikud on korrigeerimistööd kalapääsul (voolurahustuskivide lisamine kalapääsu alumises osas, kokku 10 tk Ø 50...70 cm; kivide ümberpaigutamine lõigus 8...20 m kalapääsu sissevoolust allavoolu; maksumus ca 500 EUR). Seejärel tuleks kalapääsu efektiivsust seirata. Seire peaks hõlmama kalade kevadist ja sügisest rändeperioodi 2 aasta jooksul, lisaks kalade tõusvale rändele, tuleks läbi viia ka laskuva rände seire HEJ töötamisel (seire maksumus ca 10 000 EUR).

Võre HEJ sissevoolul tuleb asendada tihedamaga ja ühtlasi konstruktsioonilt tugevamaga (maksumus 2 000 EUR). Praegu lähevad võrest läbi kalad pikkusega kuni 30 cm ning selliste kalade suremus turbiinide läbimisel on suur. TÜ EMI uuringud on näidanud, et kui soovime säästa lõhe ja meriforelli laskujaid, peaks võre avad olema ≤ 15 mm. Sel juhul üle 15 cm pikkused kalad turbiinidesse reeglina enam ei satu.

Keskkonnaamet kui vee erikasutusloa andja peaks paisu omanikult nõudma andmete esitamist HEJ töötamise aja kohta, samuti veetaseme mõõturite andmeid aegade kohta, kui HEJ töötab. See võimaldab teostada järelevalvet keskkonnaloa tingimuste täitmise üle (HEJ töö ei tohi muuta jõe looduslikku äravoolu).

⁶ KPT- kõrgeim paisutustase

Joonis 1. Vaidva jõel asuva Vastse-Roosa paisu asukoht põhikaardil.

Joonis 2. Vastse-Roosa pais ortofotol. Vasakul laiemal harul asub liigveelask, keskel HEJ hoone kohal turbiinikanali sisse- ja väljavool (väljavoolukanal jätkub pärast ca 15 m maa-aluse toruna kuni jõeni) ning paremal kitsama haruna on kalapääs, mis suubub jõkke paarkümmend m allpool liigveelasku.

Foto 1. Panoraamfoto Vastse-Roosa paisust ja paisu alusest jõeosast (R. Järvekülg, 10.12.2019).

Foto 2. Vastse-Roosa paisu liigveelask (R. Järvekülg, 10.12.2019).

Foto 3. Vaade paisult Vastse-Roosa paisjärvele (R. Järvekülg, 10.12.2019).

Foto 4. Vastse-Roosa pais alavee poolt vaadates. Kalapääsu väljavool asub paarkümmend meetrit liigveelaskmest allavoolu (R. Järvekülg, 10.12.2019).

Foto 5. Kalapääsu alumises osas on paiguti voolurahustuskive liiga vähe ning vool seetõttu väga kiire. Puuduvad kalade varjepaigad (R. Järvekülg, 10.12.2019).

Foto 6. Lokaalselt suurema languga ning väheste voolurahustuskividega on ka kalapääsu lõik, kus kalapääsu säng teeb tagasipöörde paisu poole (R. Järvekülg, 10.12.2019).

Foto 7. Kalapääsu ülemine osa (R. Järvekülg, 10.12.2019).

Foto 8. Kalapääsu ülaosas vajab korrigeerimist voolurahustuskivide paigutus. Tekkinud on veeaste, mida saab hajutada voolurahustuskive ümber paigutades (R. Järvekülg, 10.12.2019).

Foto 9. Ülaveetase oli vaatluspäeval 0,4 m üle NPT ja 0,1 m allpool maksimaalset suurvee aegset lubatud paisutustaset (R. Järvekülg, 10.12.2019).

Foto 10. Turbiinikanali sissevoolul olev võre tuleks asendada tihedama ning konstruktsioonilt tugevamaga. Praegu on osaliselt deformeerunud võre avad 22...30 mm (R. Järvekülg, 10.12.2019).

Foto 11. Turbiini väljavoolukanali avaosa pikkus on ca 15 m. Seejärel jätkub kanal maa-aluse toruna kuni jõeni (R. Järvekülg, 10.12.2019).

ÕHNE JÕGI

Alates 2007. aastast on Õhne jõge seiratud kokku 10 korral, kuid sellest 8 on seiratud jõge Tõrvast allavoolu. Vaid 2 korda on seiratud Õhne jõge Tõrva paisust ülesvoolu. Need 2 korda on olnud 2012. a ja 2017. a ning mõlemal korral on siis seiratud Õhne jõge Roobe lõigus.

Paisud ja seire kohad Õhne jõel alamjooksu poolt alates (seirekoha taga seirekordade arv ja kalastiku seisund):

<u>Pais</u>	Seirekoht	<u>Seirekordi</u>	Seisundi hinnangud
	Härma	7 korda	hea (2015, 2017, 2018), kesine (2012, 2013, 2014, 2016)
	Tõrva linn	1 kord	hea (2010)
Tõrva pais			
	Roobe	2 korda	kesine (2017) halb (2012)
Koorküla pais			
Paisuvare (Jeti-Kiinimäe tee sillast 50 m allavoolu)			
(Dzirnavase pais, Läti)			
Holdre pais			
Taagepera pais			

Tõrva pais on Õhne jõel alamjooksu poolt alates 1. pais. Varem oli allpool Tõrvat veel Leebiku pais, kuid see likvideeriti 2012. a.

Nagu eelnevast näha, on aastatel 2010-2018 allpool Tõrva paisu kalastiku seisund kõikunud *hea* ja *kesise* vahel, seejuures on viimastel aastatel seisund olnud sagedamini *hea*. Senine seire näitab trendi seisundi paranemise suunas.

Ülalpool Tõrva paisu on kalastikku seiratud vaid 2 korral Roobe lõigus ja seisund on olnud *halb* või *kesine*.

Ülalpool Koorküla paisu pole Õhne jõe kalastikku alates 2007. aastast kordagi seiratud (2007. a võeti kasutusele praegune kalastiku seire metoodika).

Kuigi kalastiku seiret pole Koorküla paisust ülesvoolu tehtud, ütlevad senine kogemus ja loogika, et eeldatavasti on kalastiku seisund ülalpool Koorküla paisu kas kesine või halb.

Senine seire Õhne jões on olnud ebapiisav ja on olnud keskendunud ainult jõe alamjooksule, seirest pole täie selgusega välja tulnud jõe tõkestatuse probleem

Seirega tuleks edaspidi hõlmata kõik teadaolevad olulised survetegurid. Lisaks jõe alamjooksule on seire vajalik ka jõe kesk- ja ülemjooksul. Peaks olema vähemalt üks seirekoht igast paisust alla- ja ülesvoolu. Kokku peaks Õhne jõel olema vähemalt 6 seirekohta.

Tõrva paisu kalapääs

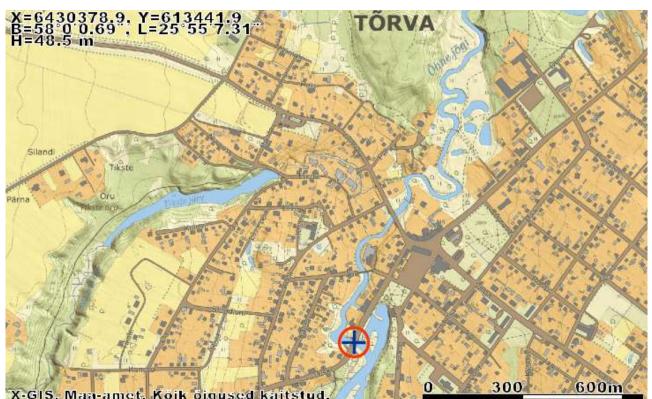
Olukord, probleemid:

Ülevaatus 08.12.19 näitas, et kalapääsu sissevool on probleemne. Probleeme põhjustab veetasemete suur erinevus kalapääsu sissevoolu regulaatori üla- ja alavees. Regulaatoriks on alaavaga betoonsein kalapääsu sissevoolul. Kui veetase paisjärves tõuseb oluliselt kõrgemale kalapääsu sissevoolu regulaatori ava ülaservast, siis tekib läbi sissevoolu ava surveline veevool, voolukiirus avas suureneb ja kalad ei suuda ava läbida.

Projektlahenduse järgi on kalapääsu sissevoolu regulaatori ava ülaserva kõrgus 48,75 m abs (kõrgused siin kõik Kroonlinna 0 järgi), ava enda kõrgus on 30 cm. Paisjärve NPT on kalapääsu projektlahenduse ja kehtiva keskkonnaloa (L.VV/326076) järgi 49,00 m abs, min ja maks PT-d vastavalt 48,80 ja 49,30 m abs. Toodud arvudest on näha, et paisjärve NPT korral tekib kalapääsu sissevooluregulaatori juures veetasemete vahe 25 cm ning see põhjustab survelise veevoolu tekke ja suure voolukiiruse sissevoolu avas. Sellistes oludes nõrgema ujumisvõimega kalad regulaatorit läbida ei suuda. Maksimaalse lubatud paisutustaseme korral on regulaatori ala- ja ülavee tasemete vahe juba 55 cm ning siis on ava läbimine jõukohane vaid üksikutele väga hea ujumisvõimega kaladele. Normaalse, kõigile kaladele sobiva, voolukiiruse sissevoolu avas tagaks veetasemete erinevus kuni 10 cm. Seega peaks NPT sissevooluregulaatorist tulenevalt olema mitte suurem kui 48,85 m abs.

Vaatluspäeval (08.12.19) oli veetasemete vahe kalapääsu sissevooluregulaatori ala- ja ülavees 25 cm.

Järeldus: arvestades olemasolevat kalapääsu sissevoolu regulaatorit on paisjärve NPT liiga kõrge. Praegustes oludes oleks põhjendatud paisjärve NPT 48,80 m abs (Kroonlinna 0 järgi).


Lisaks vajavad parandamist (korrigeerimist) mõned kividest ülevoolud kalapääsus. Praegu kõigub veetasemete vahe kivilävendite juures vahemikus 7-30 cm. Mõned suurema veeastmega kohad kalapääsus on kaladele raskesti läbitavad. Paaris kohas on vajalik voolurahustusrahnude asukohtade korrigeerimine. Põhimõtteliselt lihtsa ja väikesemahulise töö teostamist raskendab asjaolu, et projektlahenduse järgi on kivilävendid ja voolurahustusrahnud kalapääsu põhja betoneeritud. Tegelik olukord ja võimalused voolurahustusrahnude asukohtade ja kivilävendite korrigeerimiseks selguvad siis, kui kalapääs ajutiselt sulgeda.

Visuaalsel hinnangul on kalapääs hetkel läbitav hea ujumisvõimega kaladele (suuremad forellid, harjused), kuid kehvema ujumisvõimega kalad tõenäoliselt enamiku ajast kalapääsu läbida ei suuda.

Vajalikud tegevused:

Arvestades eeltoodud asjaolusid oleks vajalik läbi viia kalapääsu seire, mis hõlmaks nii kalade rände uuringut kui ka kalapääsu hüdrauliliste olude kirjeldust ning vastavalt vajadustele konkreetseid ettepanekuid kalapääsu efektiivsuse parandamiseks. Seire kestus peaks olema 2 aastat. Seire eeldatav maksumus 8000 EUR + km.

Ajutise meetmena tuleks muuta keskkonnaloaga lubatud paisutustasemeid. NPT peaks olema 48,80 abs (Kroonlinna 0 järgi), min paisutustasemeks peaks olema 48,70 abs ja maksimaalseks 49,0 abs.

X-GIS. Maa-amet. Koik oigused kaitstud. Joonis 1. Õhne jõe Tõrva paisu paiknemine põhikaardil.

Joonis 2. Tõrva paisu kalapääsu, liigveelasu ja HEJ sissevoolude paiknemine ortofotol.

Foto 1. Tõrva paisjärve ümbrus on heakorrastatud, paisjärves domineerib avaveepind, paisjärv on oluline linna maastikukomponent (R. Järvekülg, 08.12.2019).

Foto 2. Tõrva paisu liigveelask vaatega ülavee poolt. Liigveelasu juures peaks olema mõõdulatt paisjärve veetaseme hindamiseks (R. Järvekülg, 08.12.2019).

Foto 3. Tõrva paisu liigveelask alavee poolt. Kalade laskuv ränne liigveelasu kaudu on ohutu, sest liigveelasu all on piisav veetäide (R. Järvekülg, 08.12.2019).

Foto 4. Liigveelasu äravool (ülal vasakul) ja kalapääsu väljavool (ülal paremal) asuvad lähestikku. Tõusval rändel olevatel kaladel on kalapääsu leidmine lihtne (R. Järvekülg, 08.12.2019).

Foto 5. Kalapääsu alumises osas (paisust allavoolu) on rändetingimused kalade jaoks soodsad (R. Järvekülg, 08.12.2019).

Foto 6. Probleemne koht kalapääsus on vahetult paisust (Veski tänava sillas) ülesvoolu jääv lõik, kus lang on ülejäänud kalapääsuga võrreldes suurem ning kivilävendite veeastmed erineva languga. Lõik vajab korrigeerimist (R. Järvekülg, 08.12.2019).

Foto 7. Tõrva kalapääsu keskosa, sissevoolu ja Veski tänava vahel. Sellel lõigul on kalade rändetingimused rahuldavad kuni head, kuid mõned kivilävendid vajaksid siiski korrigeerimist (R. Järvekülg, 08.12.2019).

Foto 8. Kalapääsu ülemises osas on hüdraulilised tingimused kalade jaoks valdavalt rahuldavad (R. Järvekülg, 08.12.2019).

Foto 9. Kalapääsu sissevoolu regulaator on praegu probleemseks kohaks. Vaatluspäeval (08.12.2019) oli veetasemete vahe regulaatori ala- ja ülavee vahel ca 25 cm. Veevool läbi regulaatori põhjaava oli surveline ja voolukiirus avas suur. Kaladele on regulaatori ava hästi läbitav, kui veeaste regulaatori ala- ja ülavee vahel oleks ≤ 10 cm. Paisjärve NPT-d tuleks alandada (R. Järvekülg).

Foto 10. HEJ sissevoolul on suhteliselt korralik võre keskmiste ava läbimõõtudega 20...21 mm. Mõnes kohas on võre veidi deformeerunud ning seal on avad vahemikus 13...26 mm. Võrede juures on ka toru (Ø 0,5 m) kalade laskuva rände võimaldamiseks (R. Järvekülg, 08.12.2019).

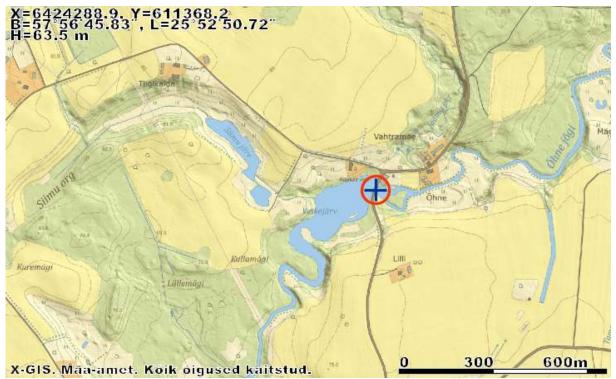
Foto 11. HEJ hoone ja turbiinikanali väljavool. Praegu keskkonnaluba hüdroenergia kasutamiseks jaama omanikul pole ning HEJ ei tööta (R. Järvekülg, 08.12.2019).

Koorküla Veskijärve pais

Olukord, probleemid:

Paisu paisutuskõrgus 2,7 m, pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu. Veekasutus paisu juures praegu puudub, kuid on säilinud turbiinikanal ning võimalused hüdroenergia kasutamiseks.

Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3). Paisude inventuuril 2011-2012 hinnati kalade läbipääs vajalikuks, kuid tehniliselt raskesti teostatavaks. Antud hinnangut pole põhjust muuta.


Vajalikud tegevused:

Möödaviikpääsu rajamine on võimalik jõe paremale kaldale, aga praeguse paisutuskõrguse juures oleks rajatav kalapääs väga töömahukas ja kallis (hinnanguliselt ca 0,5 milj EUR). Kalapääs tuleks rajada eramaadele, eeldatavasti tuleks maa eraomanikult välja osta.

Arvestades paisjärve ümbrust ja maakasutust tuleks kaaluda paisu likvideerimise võimalust (hinnanguline maksumus 0,2 milj EUR). Paisjärve ääres on ainult üks elamine, paisjärv väärtus maastiku komponendina on madal.

Alternatiivina võib kaaluda paisutuskõrguse alandamist 1,5 m-ni ning seejärel kalapääsu rajamist (eeldatav maksumus 0,2 milj EUR).

Hüdroenergia kasutamise taasalustamine tuleb välistada. Vastasel korral puudub võimalus kalade rändetee avamiseks.

Joonis 3. Koorküla paisu asukoht põhikaardil. Paisjärv näeb kaardil välja oluliselt suurem kui tegelikkuses.

Joonis 4. Paisjärve madalamad osad on tegelikult kinni kasvanud, osaliselt maastunud ja kaetud mättalise rohttaimestikuga. Seda näitab ka ortofoto.

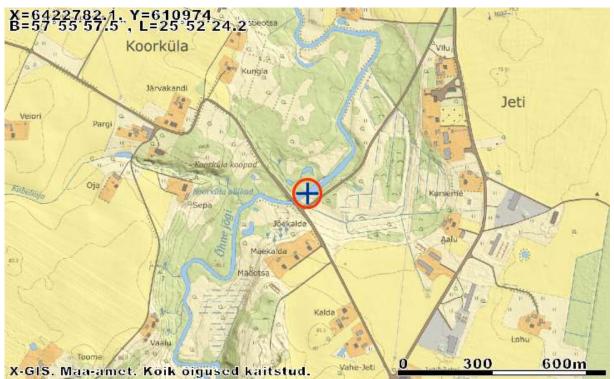
Foto 12. Vaade Koorküla paisule alavee poolt. Paisu kõrgus on ca 2,7 m. Praeguse paisutustaseme juures on kalapääsu rajamine äärmiselt keeruline, töömahukas ja kallis. Mõistlikeks lahendusteks oleks kas paisu lammutamine või paisutuskõrguse alandamine 1,5 m-le ning seejärel kärestikulise möödaviikpääsu rajamine jõe vasakule või paremale kaldale (R. Järvekülg, 08.12.-2019).

Foto 13. Koorküla paisu juures on varem toimunud hüdroenergia kasutamine. Praegu keskkonnaluba selleks puudub ning HEJ ei tööta, kuid valmidus selleks on olemas. HEJ töö taastamist keskkonnaamet lubada ei tohiks. See välistaks täielikult võimalused kalade rändetee avamiseks ning ohustaks jõeelustikku paisust allavoolu jäävas jõeosas (R. Järvekülg, 08.12.2019).

Foto 14. Koorküla veski ja HEJ äravoolukanal (R. Järvekülg, 08.12.2019).

Paisuvare Jeti-Kiinimäe tee sillast ca 50 m allavoolu

Olukord, probleemid:


Paisuvare paisutuskõrgus oli vaatluspäeval (08.12.2019) 0,5 m ning seda jõe kõrge veetaseme tingimustes (veetase 0,5-1 m üle madalvee taseme). Madalvee tingimustes on veeastme kõrgus oluliselt suurem.

Paisuvare on jõe keskmiste ja suuremate vooluhulkade korral ületatav hea ujumisvõimega kaladele (suured forellid, harjused). Kehvema ujumisvõimega kaladele ja madalvee tingimustes on paisuvare vastuvoolu kaladele ületamatu.

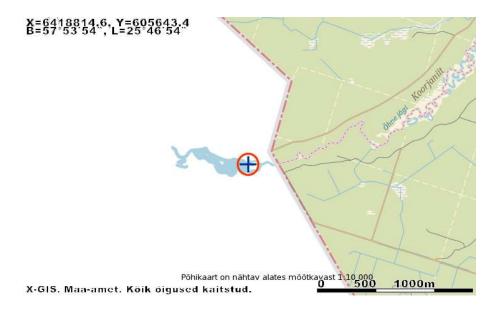
Kalade läbipääs on vajalik tulenevalt seadusest (LKS § 51, määrus nr 73, VeeS § 174 lg 3). Paisuvare olemasolu pole varem teadvustatud, paisude inventuuril tõkestusrajatist ei käsitletud. Kalade läbipääs paisuvare juures on vajalik.

Vajalikud tegevused:

Sobivaks lahenduseks on paisuvare likvideerimine või kujundamine kärestikuks. Tegevuse eeldatav maksumus kuni 30 000 EUR. Jõe paremal kaldal on riigimaa, vasakul kaldal eramaa. Paisuvare läheduses pole elamuid ega hooldatud maid. Vastuväited paisuvare likvideerimiseks on ebatõenäolised. Ligipääs tööde teostamiseks on soodne ja võimalik riigimaa kaudu.

Joonis 5. Jeti–Kiinimäe tee sillast ca 50 m allavoolu asub vana paisuvare, mis takistab kalade rännet.

Foto 15. Paisuvare Jeti–Kiinimäe teest ca 50 m allavoolu. Vaatluspäeval oli vare paisutuskõrgus 0,5 m. Madalvee tingimustes on vare paisutuskõrgus oluliselt suurem. Vare takistab kalade rännet (R. Järvekülg, 08.12.2019).


Dzirnavase pais (Läti)

Olukord, probleemid:

Paisu paisutuskõrgus 2,1 m, pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu. Veekasutus paisu juures puudub. Kalade läbipääs on vajalik, kuid Lätis on seni rajatud vaid üksikuid kalapääse. Paisu omanik on valmis kalapääsu rajama, kui Läti riik tegevust rahastaks.

Vajalikud tegevused:

Kalapääsu rajamine on tehniliselt teostatav (töömahukus ja maksumus keskmine). Möödaviikpääsu rajamine on võimalik jõe paremale kaldale paisu alavee poolele. Kalapääsu hinnanguline maksumus 0,3 milj EUR. Kalapääs tuleks rajada eramaale. See oleks konkreetne meede, mis parandaks koos Eesti poolel rakendatavate meetmetega Õhne jõe seisundit.

Joonis 6. Dzirnavase pais Lätis baaskaardilt ja hübriidkaardilt vaadates.

Foto 16. Vaade Dzirnavase paisule ja selle juures olevale paisuomaniku elamisele (R. Järvekülg, 08.12.2019).

Foto 17. Vaade Dzirnavase paisule ja sellest allavoolu jäävale jõeosale. Veekasutus paisu juures praegu puudub, kuid paisust ülesvoolu asuv paisjärv on kogu ulatuses eramaal ja omanik toob sinna sisse kalu ning püüab neid (R. Järvekülg, 08.12.2019).

Foto 18. Dzrirnavase paisu paisutuskõrgus on ca 2,1 m. Suurvee ajal on osa varjasid eemaldatud ja paisutustase madalam. Vaatluspäeval oli varjadega avatud vaid vasak liigveelaskme osa. Paisu omanikule on mureks ootamatud Holdre paisu avamised, misjärel Dzirnavase paisul tekib uputusoht (R. Järvekülg, 08.12.2019).

Foto 19. Liigveelaskmelt varjade eemaldamine on kaskadöörlik ettevõtmine, eriti talvel, kui lauad on jäised või lumised ja varjad on kõvasti kinni kiilunud. See on muide tavaline ka paljude Eesti paisude puhul – kui vaja kiiresti varju avada, siis pole seda sageli teha võimalik (R. Järvekülg, 08.12.2019).

Holdre Vanaveski pais

Olukord, probleemid:


Paisu paisutuskõrgus 1,6 m, pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu. Veekasutus paisu juures puudub. Kalade läbipääs on vajalik. Paisude inventuuril 2011-2012 hinnati kalade läbipääs vajalikuks, kuid tehniliselt raskesti teostatavaks.

Paisjärv on madal ning osaliselt kinnikasvanud, paisjärve väärtus maastikulise elemendina on madal. Pais on lagunenud ja tulvaohtlik. Paisu ootamatu avamise järel on põhjustatud korduvalt uputusi allavoolu asuva Dzirnavase paisu juures, kuhu viimase omanik on pidanud appi kutsuma päästeameti. Paisu ääres elamised puuduvad. Varem elas paisu juures üksik vana naine, nüüd enam mitte. Pais asub eramaal.

Vajalikud tegevused:

Mõistlik lahendus oleks paisu likvideerimine. Meetme maksumus sõltuvalt lisanduvatest tegevustest 50 000 kuni 100 000 EUR.

Alternatiivina võib kaaluda ka veetaseme alandamist ja möödaviikpääsu rajamist jõe paremale kaldale paisust allavoolu (maksumus koos paisu renoveerimisega ning sõltuvalt säiliva veeastme kõrgusest 150 000 – 300 000 EUR).

Joonis 7. Holdre pais põhikaardil ja ortofotol.

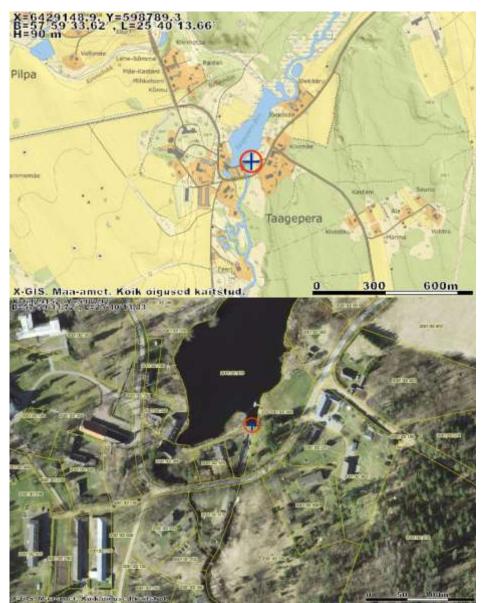
Foto 20. Holdre pais on rajatud madalale laiale jõe lammile ning seetõttu ulatub pinnaspaisu pikkus mitmesaja meetrini. Esiplaanil vana veskihoone (R. Järvekülg, 08.12.2019).

Foto 21. Holdre paisjärv on suurelt osalt kinnikasvanud madal veekogu, mis maastikulist väärtust ei oma. Elamised praegu paisjärve ääres puuduvad (R. Järvekülg, 0812.2019).

Foto 22. Paisu liigveelase on kehvas seisundis, veetaseme reguleerimine toimub siis kui keegi selleks aega saab, ka liigveelaskme parandamine meenutab "lip-lipi peal, lap-lapi peal" tehnoloogiat (R. Järvekülg, 08.12.2019).

Foto 23. Holdre pais vaadatuna alavee poolt.

Taagepera pais


Olukord, probleemid:

Paisu paisutuskõrgus 1,6 m, pais on vastuvoolu kõigile kaladele ületamatu rändetõke. Kalade laskuv ränne on võimalik liigveelasu kaudu, kuid tingimused kalade laskumiseks ebasoodsad (pais šahtkaevudega). Veekasutus paisu juures puudub. Kalade läbipääs on vajalik. Paisude inventuuril 2011-2012 hinnati kalade läbipääs vajalikuks, kuid tehniliselt raskesti teostatavaks.

Paisjärv on kogukonna jaoks oluline maastikuline element. Paisjärve ja paisu juurde on rajatud park. Paisu ääres on mitmeid elamisi.

Vajalikud tegevused:

Sobivaks lahenduseks on kalapääsu rajamine jõe paremale või vasakule kaldale (eeldatav maksumus 200 000 – 300 000 EUR). Pais ja jõe vasak kallas paisust allavoolu on riigi omandis, jõe vasak kallas paisust allavoolu on eraomand. Kalapääsu rajamine riigimaale on võimalik aga suhteliselt kallis.

Joonis 8. Taagepera pais põhikaardil ja ortofotol.

Foto 24. Taagepera paisu liigveelaskmeks on kaheosaline šahtkaev (R. Järvekülg, 08.12.2019).

Foto 25. Vaade šahtkaevude sissevooludele (R. Järvekülg, 08.12.2019).

Foto 26. Vaade liigveelaskmele alavee poolt (R. Järvekülg, 08.12.2019).

Foto 27. Paisu alavee poolel on ruumi kalapääsu rajamiseks nii jõe vasakul kui paremal kaldal. Kuna tegemist on eramaadega, siis probleemiks võib olla eelkõige omanike nõusolek kalapääsu rajamiseks (R. Järvekülg, 08.12.2019).

Foto 28. Vasakule kaldale (fotol paremal) on nii ala- kui ülavee poolele rajatud park ning puhkeala. Paisjärv on kohaliku kogukonna jaoks miljööväärtusega ala ja paisu likvideerimine pole võimalik (R. Järvekülg, 08.12.2019).

Dzirnavas dam (in English)

Status, problems:

The dam's water level is raised by 2,1 meters and the dam is impassable migration barrier for all fish swimming upstream. Downstream migration of fish is possible by using the excess water outlet. There is no water use at the dam. The fish pass is necessary, but so far there are only few fish passes constructed in Latvia. The owner of the dam is willing to construct fish pass, if the Latvian government finances the construction.

Necessary actions:

Construction of the fish pass is technically achievable (labor intensity and cost is medium). It is possible to construct a bypass channel to the right side of the river to the low water part of the dam. The estimated cost of the fish pass is 0,3 million euros. The fish pass should be constructed on a private property. This would be a certain measure, which with measures that are implemented in the Estonian side, would improve the status of the River of Õhne.

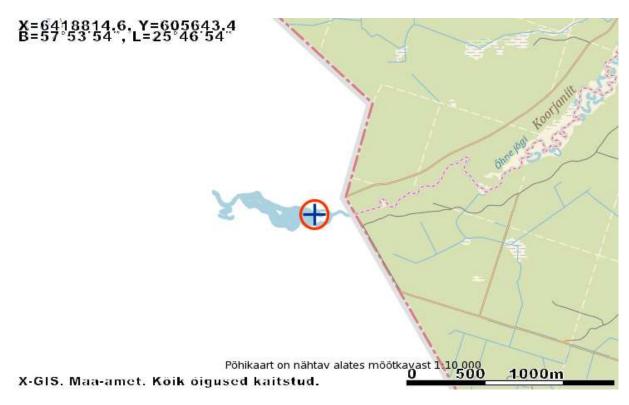


Figure 6. Dzirnavas dam in Latvia viewed from basic map and hybrid map.

Photo 16. View of the Dzirnavas dam and the owner's residence (R. Järvekülg, 08.12.2019).

Photo 17. View of the Dzirnavas dam and downstream part of the river. Right now there is no water use at the dam, but the reservoir which is located upstream from the dam is entirely on a private property and the owner of the property brings fish into the reservoir and then fishes them (R. Järvekülg, 08.12.2019).

Photo 18. Dzirnavas dam's water level is raised by *ca* 2,1 meters. During high water some of the stoplogs are removed and therefore the expansion level is lower. On the day of the observation only the left excess water outlet was partly open which is achieved by removal of the stoplogs. Dam's owner is concerned with the unexpected openings of the Holdre dam, after which there is a risk of flooding in the Dzirnavas dam (R. Järvekülg, 08.12.2019).

Photo 19. Removing stoplogs from the excess water outlet is a life threatening operation, especially in the winter, when logs are frozen or snowy and the stoplogs are stuck. By the way, this is usual for many of the Estonian dams – if there is a fast need to remove stoplogs, then often it is not possible (R. Järvekülg, 08.12.2019).