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a b s t r a c t

Micro-hydropower has been highlighted as a potential technology suitable for installation in irrigation
networks to reduce system overpressures and to reduce the net energy consumption of the irrigation
process. However, the full impact of this technology on a large regional scale is unknown. Artificial
Neural Networks and regression models were used in this research to predict the energy recovery po-
tential for micro-hydropower in on-demand pressurised irrigation networks across a large spatial scale.
Predictors of energy recovery potential across spatial unit areas included: Irrigated land surface area,
irrigation crop water requirements, rainfall, evapotranspiration, and mean topographical slope. The
model was used to predict the energy recovery potential across the 164,000 ha of the Spanish provinces
of Seville and Cordoba in the absence of hydraulic models. A total of 21.05 GWh was identified as the
energy potential which could have been recovered using micro-hydropower during the 2018 irrigation
season. This amount of energy would have potentially reduced the energy consumption of the irrigation
process in this region by approximately 12.8%. A reduction in energy consumption in the agriculture
sector of this magnitude could have significant impacts on food production and climate change. The main
novelty of this paper lies in the assessment of micro hydropower resources in operating irrigation
networks on a large geographical scale, in areas where no information is available. It provides an
approximation of the existing potential using computational methods.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The water industry became one of the most energy intensive
sectors during the last decades, consuming 4% of global electricity
in 2014 for the extraction, distribution and treatment processes.
This consumption is projected to more than the double, with more
than 100 million tonnes of oil equivalent of thermal energy in 2040
[1]. Focusing on irrigation, some research carried out in Southern
Spain studied how the water costs have changed due to energy
consumption, when the irrigation districts started using pressur-
ised pipelines systems. The analysis of numerous pressurised irri-
gation districts concluded that the energy cost comprised around
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40% of the total water costs on average, reaching peaks of 65% in
some cases [2,3]. To counteract these high percentages represented
by energy, previous investigations have focused on the analysis of
different measures to reduce energy costs and energy dependency.
Different investigations reported that important energy savings
could be achieved applying irrigation scheduling and improve-
ments in the configuration of the hydraulic network with savings
varying from 3.5% to 36.4% [4e8]. Renewable energy was also
applied in other research to improve the energy efficiency in irri-
gation systems, developing smart solar irrigation management
systems able to fulfil the water requirements during the entire
irrigation season, thus avoiding 100% of the CO2 emissions [9].

During the last years, several investigations have also studied
micro hydropower (MHP) as a solution for offsetting this growing
trend of energy dependency in the water industry. This technology
provides a potential solution in water networks by taking the
advantage of existing system overpressures. Within drinking water
supply networks, Corcoran et al. [10] assessed the energy recovery
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Nomenclature

ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
GHG Greenhouse Gases
MAE Mean Absolute Error
MHP Micro Hydropower
MSE Mean Squared Error
PAT Pump-as-Turbine
R2 Coefficient of Determination
ReLU Rectified Linear Unit
VOS Variable Operating Strategy
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potential of applying MHP at 95 sites in Ireland and the UK to
reduce overpressures and produce electricity. A yearly energy of
6.75 GWh could be recovered, just considering the 12 highest po-
wer output sites assessed in Dublin city, during 2011. Power et al.
[11] evaluated the existing potential in the wastewater sector,
analysing data from 100 wastewater treatment plants, reporting a
total hydropower potential of 1.75 GWh in just 14 of them, which
was said to be equivalent to the energy demand of 350 households
in Ireland, avoiding over 900 t eCO2. Gallagher et al. [12] estimated
an annual energy recovery potential of 20.1 GWh in 238 sites in
water and wastewater networks in Ireland and the UK, which
would be capable of supplying energy to 4702 households in
Ireland andWales. However, these studies were limited to drinking
water and assessing the potential frommeasured flow and pressure
data in networks with existing hydraulics models in some cases.
These investigations also covered just a small part of the existing
infrastructure in those locations. Different studies also assessed the
potential of MHP as measure to improve the energy efficiency in
pressurised irrigation networks. These reported energy potential
which varied between 2.12 MWh year�1 and 281 MWh year�1 in
different individual case studies with irrigated surface areas from
68 to 2691 ha [13e18]. Nonetheless, each of them used different
approaches to quantify the potential, and different input flow and
head data. These encompassed predicted or recorded annual mean
values, or predicted or annual recorded values. This fact makes
joining all these results in one study to assess the large-scale po-
tential, significantly complex.

As previously mentioned, none of the previous investigations
examined this impact beyond a single case study or on a large
regional scale. The difficulty in obtaining the detailed water
network information required for such investigations is a major
barrier to conducting large-scale assessments. Network informa-
tion on pipe size, layout, water demands and pressure, are often
absent, not recorded, or not publicly available. As such, an alter-
native approach to MHP potential prediction is required using
proxy measures of key variables. Mitrovic et al. [19] analysed the
linear correlation between MHP power potential and different
proxy variables, such as population, population density and land
topography, as predictors of water demand and system over-
pressure, key variables in MHP potential for drinking water net-
works. The 238 sites studied by Gallagher et al. [12], were analysed
by Mitrovic et al. [16] with a view to predicting large scale energy
potential in the absence of network data in Ireland. The results
showed a coefficient of determination (R2) of 0.26 for the popula-
tion as a proxy measure of MHP potential, and in general failed to
offer a reliable prediction of MHP potential for the drinking water
sector using this method. Nevertheless, these works were focussed
on drinking water and there are not previous investigations for the
irrigation sector.
This paper aims to develop a model to predict the energy re-
covery potential in pressurised irrigation networks on a large-scale
using proxy indicators of irrigation demand and network pressure.
Its main novelty falls on being the first paper exploring the large
geographical scale energy recovery prediction in pressurised irri-
gation networks using hydropower, providing an approximation of
the existing resources for such technology. Furthermore, two ap-
proaches were assessed: Single linear regression models, as well as
non-linear analysis through artificial neural networks (ANNs), were
evaluated. These models were evaluated using a database with 177
observations obtained from the detailed hydraulic model of 18
irrigation networks employing data from the 2018 irrigation sea-
son. Three different variables were utilised to evaluate their rela-
tionship with the energy recovery potential, measuring distinct
statistical metrics in each model. ANNs provided the best results
and were finally applied to prediction of large-scale the energy
recovery potential. The prediction was conducted for every mu-
nicipality forming the provinces of Seville and Cordoba, in Southern
Spain. The potential in more than 160,000 ha of irrigated surface
was evaluated, assessing the economic and environmental benefits.

2. Materials and methods

2.1. Study area

The observations required to develop and test a prediction
model were obtained from 18 pressurised on-demand irrigation
networks, most of them located within the provinces of Cordoba
and Seville, in Southern Spain. Two of the networks were out of this
region, one located in Southern Portugal and the other in South
Western Spain (see Fig. 1). The annual energy recovery potential
was calculated for these networks for the 2018 irrigation season,
using the methodology developed and validated by Crespo Chacon
et al. [17,18]. The aforementioned methodology aimed to predict
the flow distribution along the irrigation season, assessing every
possible flow value predicted as a best efficiency flow for different
theoretical hydropower turbines. The methodology in particular
relies on the use of pump-as-turbines (PATs), conventional pumps
operated in reverse as turbines, which have been shown to be
suited to themicro scale applications present in irrigation networks
[16e21], and also be to be economically viable in this setting due to
their low-cost nature [20]. The Crespo Chacon et al. [17,18] meth-
odology enables the selection of the PAT that returned the mini-
mum payback period from all possible best efficiency flows within
the analysed network. It used a simplified variable operating
strategy (VOS) [21,22], which considered the whole flow and head
distribution, simulating the theoretical behaviour of the machine
for these values.

The 18 networks irrigated a total surface of 36,536 ha, where a
wide distribution of crops were cultivated. The infrastructure was
either gravity fed or supplied through direct pumping, depending
on the network. The service pressure required at hydrant level in
every case was 35 m. The irrigation networks worked as 18 inde-
pendent hydraulic infrastructures, corresponding to nine different
irrigation districts. Eight of the networks belonged to nine different
districts, while the other tenwere different sectors within the same
district. The different districts analysed were: Genil Margen
Izquierda (GMI), Bemb�ezar Margen Izquierda (BMI), Bemb�ezar
Margen Derecha (BMD), El Villar (EV), Genil-Cabra (GC), Gua-
dalmellato (GU), Fuente Palmera (FP), Aboro (AB) and Zújar (ZJ). A
summary of each irrigation district, their crops and characteristics,
can be seen in Table 1. In addition, all the networks analysed were
fed by surface water coming from different infrastructures (rivers
or irrigation channels), fromwhich the water was pumped either to
a reservoir, if the network was gravity fed, or straight pumped into



Fig. 1. Location and summary of the networks analysed to obtain the observations.

Table 1
Summary of the main properties of the irrigation districts assessed.

District Networks Analysed Irrigated Surface (ha) Dominant Crops Feeding system Country

Genil Margen Izquierda 1 4450 Citrus, Almond, Olive, Walnuts Gravity Spain
Bemb�ezar Margen Izquierda 1 3900 Citrus, Maize, Olive, Sunflower Pumping Spain
Bemb�ezar Margen Derecha 10 11,163 Citrus, Maize, Cotton, Sunflower Pumping Spain
El Villar 1 2726 Cereals, Cotton Pumping Spain
Genil-Cabra 1 4320 Cotton, Sunflower, Wheat Pumping Spain
Guadalmellato 1 475 Maize, Cotton, Sunflower, Wheat Pumping Spain
Fuente Palmera 1 5611 Cotton, Sunflower, Wheat Pumping Spain
Aboro 1 1200 Olive, Maize, Almond Gravity Portugal
Zujar 1 2691 Tomatoes, Maize, Vine, Fruit, Rice Pumping Spain

M. Crespo Chac�on et al. / Renewable Energy 155 (2020) 396e406398
the network. The networks were designed for a high demand,
1e1.2 l s�1 ha�1 on demand (24 h per day) and simultaneity of
100%, which means that all the hydrants could be open at the same
time. Lastly, the dominant irrigation system in all the networks was
drip irrigation.
2.2. Potential MHP locations

Applying the Crespo Chacon et al. [17,18] methodology to the 18
irrigation networks resulted in the identification of 177 specific
locations where the installation of a PAT was economically viable.
The irrigated surface encompassed by the 177 potential points for
micro-hydropower energy recovery was 27,417 ha, accounting for
an energy recovery potential of 6.11 GWh. Table 2 shows a sum-
mary of the results obtained for each independent irrigation
network, showing among others the number of viable points for
MHP application, total energy potential or percentage of surface
where potential was found. Relating the irrigated surface, where
energy recovery potential was found, with the total irrigated sur-
face analysed in the 18 networks, resulted in a ratio of 0.75. How-
ever, looking individually to each network analysed, the average
value of this factor decreased up to 0.70. This factor showed the
portion of irrigated surface where MHP potential was found with a
payback period less than 10 years. The mean power found per
observation was 12.6 kW, with minimum and maximum power of
1.6 kW and maximum of 62.3 kW respectively. With respect to
energy, the average amount found per locationwas 29.1MWh, with
minimum and maximum values of 3.8 MWh and 214.7 MWh
respectively.

These 177 potential MHP installations were used as the basis for
the assessment of the large-scale prediction methodology
described in the following sections. Using linear and non-linear
techniques, proxy variables were used to attempt to predicted
this potential energy production in the absence of specific
measured irrigation network data on flow, pressure, pipe layout,
pipe diameter, etc.
2.3. Proxy variables definition

Like in any prediction model, the definition of one or several
explanatory variables, determined as inputs, was required to pre-
dict the output or response variable. To allow the application of this
model to regions with pressurised irrigation networks, the
explanatory variables were chosen considering the possibility of
easily gathering these independently of the area studied. The
output variable used was the MHP energy recovery potential. The
explanatory variables selected in this model were selected to
characterise different aspects of the area where the potential was



Table 2
Results summary obtained for the 18 irrigation networks.

Network Points Energy (MWh) Surface (ha) Surface with MHP potential Average Power (kW) Average Energy (MWh)

GMI 17 662 4450 62.0% 15.4 39.0
BMI 15 744 3900 88.7% 24.5 49.6
BMD-S3 4 46 631 56.8% 2.9 11.4
BMD-S4 8 98 1679 48.6% 5.5 12.3
BMD-S5 3 59 1186 47.8% 8.4 19.5
BMD-S6.1 15 452 726 92.9% 17.1 30.1
BMD-S6.2 3 107 924 92.5% 11.3 35.5
BMD-S7 5 94 922 66.3% 5.0 18.8
BMD-S8.1 4 123 1141 70.1% 9.9 30.8
BMD-S8.2 8 127 1686 53.7% 15.8 15.8
BMD-S9 5 132 1275 83.0% 7.1 26.5
BMD-S10 3 80 993 70.2% 8.9 26.7
EV 13 917 2726 94.3% 28.8 70.5
GC 34 1165 4320 88.4% 24.9 34.3
GU 1 16 475 21.1% 6.5 16.3
FP 26 934 5611 91.0% 20.0 35.9
AB 4 79 1200 74.6% 6.4 19.7
ZJ 9 281 2691 58.2% 8.1 31.2

Total/Average 177 6114 36,536 70% 16.9 34.6
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analysed. Therefore, these variables were: the irrigated surface
area; theoretical irrigation requirements; and mean slope. The
irrigated surface area, in hectares, was the first variable considered,
since the larger surface, the higher the probability to find MHP
potential. Irrigated surface area was a proxy measure of pipe flow
rate as large surface areas will require greater flows and therefore
could have a higher potential for hydropower production. The
irrigation requirements, in m3 year�1, depended on the crops
cultivated and on the agro-climatic parameters (rainfall and
evapotranspiration) of the area studied. Crops with higher irriga-
tion requirements would lead to a greater irrigation time, which
would again affect flow rates and potential energy production in a
turbine. On the other hand, in areas with high rainfall and low
evapotranspiration, the irrigation requirements would be lower
and so the irrigation time and vice versa. Therefore, this variable
also considered climatic conditions as a proxy. Finally, the mean
slope in percentage was introduced in the model to represent how
the terrains topography affected the energy recovery potential. It
was assumed that the mean ground slope would be related to po-
tential overpressure within the network and areas with higher
slopes were more likely to contain overpressures. In this way, the
model was applied in each area analysed, once the proxy variables
were gathered, identifying more or less potential depending on the
distribution of these variables in each specific site.

Downstream of the 177 potential MHP locations found in each
network, the irrigated surface was considered as a unique plot,
independent of the number of hydrants found. Therefore, the irri-
gated surface, defined as one of the explanatory variables, was
obtained. To calculate theoretical irrigation requirements for every
location, the crop distribution as well as the agro-climatic param-
eters (rainfall and evapotranspiration) were required. The crop
distributionwas known for every location from the development of
the 18 hydraulic models. Regarding the agro-climatic parameters,
the information was gathered from the closest weather stations in
each case. The theoretical irrigation requirements were then
calculated applying the method proposed by Allen et al. [23] using
the CROPWAT software [24]. The mean slope in percentage was
calculated for each point considering the distance and the height
difference between the water source and the most critical hydrant
for each location. This was the hydrant with the lowest head
available of the branch assessed, when 100% of the hydrants were
open simultaneously.
2.4. Linear analysis

The first stage of the study was conducted assuming the rela-
tionship among variables was linear, which reduced the complexity
of the problem. Thus, single linear analysis was first carried. The
input variables were related one on one to the response variable.
The correlation coefficient (r), coefficient of determination (R2), the
mean squared error and the mean absolute error (MAE) were used
as statistical metrics to evaluate the existing relationship. High
values of the coefficient of determination would indicate linearity,
against low values, which would indicate no linearity in their
relationship. The entire sample of 177 locations was used to do this
analysis. The different linear models evaluated followed Equation
(1), where xi referred to the different input variables used.

YðxiÞ¼ aþ bxi (1)
2.5. Non-linear analysis

In order to consider non-linearity among the variables selected,
Artificial Neural Networks (ANNs) were used for this analysis. ANNs
are structures or models used for the learning process carried out in
machine and deep learning approaches, structured in layers
stacked on top of each other [25]. The general structure of these
models is composed by an input layer, which corresponds to the
explanatory variables, hidden layers, used to transform the inputs
into outputs, and an output layer, which is the expected value. Each
of these layers has a number of neurons, which should be defined
specifically for each problem. ANNs are able to predict an output
using different input variables, capable of adapting to non-linear
relationship between output and input. ANNs have been applied
in several engineering fields, such as rainfall forecasting, time
variables prediction or water demand forecasting in irrigation
networks [26e37].
2.5.1. Data transformation
As the different inputs variables had different units, this fact

could lead to some difficulties during the ANN learning process,
since the range of values for each input variable could be widely
different. There are several methods to avoid such problems while
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improving the accuracy of the model, such as normalisation or
transformation. In this case, logarithmic transformation was
applied just for the irrigation requirements, since the range of
values found for this variable was normally much higher than the
other two variables. Using this transformation, the values were
brought into a more similar value range to the other explanatory
variables, following Equation (2).

X’ ¼ logðXÞ (2)

Where X ’ is the value transformed, X is the actual input data.
2.5.2. ANN network structure
During the model definition, we have to set, among others, the

number of neurons on each layer, the number of hidden layers and
the number of epochs. In addition, inputs and outputs were pre-
viously defined. The number of hidden layers tested varied be-
tween one and two, in which different numbers of neurons were
tried, varying between 2 and 64. The sample was divided into a
training and validation set. Different size distributions of these sets
were tested, analysing the minimum squared error (MSE) for each
distribution in each fold and selecting the one returning the min-
imum mean value. Four different folds were randomly selected,
optimising the objective function for each number of hidden layer,
neurons and sample distribution in every fold. Since the size of the
sample was small, the scores obtained for each fold could vary from
one fold to another. Thus, average results for the four folds were
considered in order to obtain more accurate results. The minimum
average of the four folds was calculated, whose structure was fixed
as the optimal. The number of epochs tried oscillated between 1
and 300 for each possible configuration.

The gradient descent optimisation algorithm ADAM (Adaptive
Moment Estimation) [38] was implemented in Python for the
learning process, aiming to obtain an optimal prediction of the
energy recovery existing potential. The objective functionwas used
to measure the performance on the training and validation data.
The MSE was used as the objective function (Equation (3)), which
measured the average of the square of the errors. The optimal
configuration was provided by the structure whose MSE was the
minimum. The relationship between the input and output in a
neuronwas analysed using an activation function. To consider non-
linearity, the Rectified Linear Unit function (ReLU) was used, since it
was more computationally efficient than other non-linear func-
tions. Mathematically, this function is expressed as per Equation
(4).

MSE¼ 1
N

X
ðyi � byiÞ2 (3)

f ðxÞ¼maxð0; xÞ (4)
2.5.3. K-fold cross validation
The validation of the ANNmodel was carried out running k-fold

cross validation, consisting of the partition of the whole sample
into k equal sets randomly selected. For this purpose, the obser-
vations were split into training and validation sets, corresponding
to the distribution, which returned the best results during the
network architecture definition. For each fold, the input data cor-
responded to the training data of the explanatory variables and the
output to the energy recovery potential of the same set. Using the
validation data, the output variable was predicted inputting the
data corresponding to the explanatory variables of the same set.
Comparing the predicted values with the observed ones, two
statistical metrics were calculated: the mean absolute error,
expressed in the same units to the output variable; and the coef-
ficient of determination, whose value varies within the range [0e1].

2.6. Application to large geographical scale predictions

Finally, the models were compared, selecting the one that pro-
vided the bestmetrics. This was used to predict the energy recovery
potential in every municipality in the whole province of Seville and
the province of Cordoba. The potential of 180 municipalities was
predicted, 105 of them corresponded to Seville and 75 to Cordoba.
The input variables were gathered for thesemunicipalities from the
SIGPAC platform [39], where different information, such as crop
cultivated, mean slope or irrigation coefficient were found for all
the plots of each municipality. A database with around 20 million
data points was compiled and analysed for the whole region. Thus,
the surfaces with crop cultivations were extracted, calculating the
theoretical irrigation requirements for all of them. The agro-
climatic parameters were obtained from 29 weather stations
distributed around Seville and Cordoba. For the mean slope of each
municipality, a weighted measure was calculated, considering the
mean slope for each plot containing crops, as per Equation (5). The
irrigated surface found in every municipality was corrected with
the average relation factor aforementioned, which showed the ratio
of surface area with viable energy recovery potential found for the
networks analysed individually (0.70). This correction was neces-
sary, since otherwise the whole irrigated surface found for each
municipality would have potential, which is unrealistic. The
dominant crops found were olive trees and citrus, which occupied
66.7% and 23.4% of the total irrigated surface respectively.

Sm ¼A1

AT
S1 þ

A2

AT
S2 þ…þ An

AT
Sn (5)

Where Sm is the mean slope for each municipality; A1, A2, An
correspond to the area of the plots 1,2 and n respectively, where
crops were found; AT is the total irrigated area with crops; and S1,
S2, Sn were the mean slope for the plots 1, 2 and n.

2.7. Energetic and economic analysis

To assess the potential benefits associated with the adoption of
MHP technology, two analyses were carried out for the outputs
predicted for Seville and Cordoba. For the energy analysis, a general
comparison between the energy consumption and the potential
recovery was conducted. Rodriguez et al. [2] estimated an average
energy consumption per unit of irrigated area of 1003 kW ha�1 for
ten pressurised irrigation districts located in Southern Spain, which
contained 11 of the networks used in this research, all of them
located in Andalusia. Regarding the economic analysis, the poten-
tial savings for the energy cost per irrigated surface unit was
calculated. Fernandez Garcia et al. [3] studied how the energy cost,
related to the total water cost, per unit of irrigated area, changed
after the modernisation process. Its value was reported for five
pressurised irrigation districts, including some of the networks
analysed in this research. This value for pressurised infrastructure
varied betweenV48.9 ha-1 andV147.6 ha-1. A meanweighted value
of V127.5 ha-1 was used.

3. Results

3.1. Linear analysis

The results of simple linear regression approach varied widely
depending on the variable considered. The highest r and R2 were



Table 3
Linear analysis results for single models.

Single a b r R2 MSE MAE

Irrigated Surface 9.691 0.157 0.754 0.569 479.67 15.27
Irrigation Requirement �249.464 48.95 0.609 0.37 700.36 18.85
Slope 36.754 �2.749 0.071 0.005 1106.92 22.69
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obtained for the irrigated surface area (0.754 and 0.569 respec-
tively) whilst the lowest was obtained for the slope (0.0071 and
0.005). Nevertheless, it could be seen that the relationship between
the irrigated surface area and the energy potential was not strongly
linear. Concerning the MSE and MAE, the model using the irrigated
surface area as an input returned the best results for both metrics,
with 479.67 MWh and 15.27 MWh respectively. The outcomes of
this analysis were shown in Table 3.
3.2. Non-linear analysis

The different results from the non-linear analysis carried out to
define the ANN network structure can be seen in Fig. 2, where each
line represented a different number of neuron configurations. The
averageMSE for the four folds is represented for each configuration
for every number of epochs run for two hidden layers. The obser-
vation distributions among training and validation sets that pro-
vided the best results yielded 74%e26% respectively. In order to
evaluate how this distribution could affect the model performance,
the mean and standard deviation was calculated for each fold,
obtaining slight differences between the training and validation
sets. More specifically, the maximum differences were obtained in
fold 2 for the mean value (17.6%) and in fold 4 for the standard
deviation (17%). Therefore, the training data set included 130 ob-
servations and the validation set included 47. Two hidden layers
composed the structure with the minimum MSE, with 26 and 18
neurons respectively. The minimum MSE obtained by the afore-
mentioned structure can be seen and compared with the rest of the
structures tested in the zoom plot of Fig. 2. Concerning the over-
fitting, all of the lines trended to increase their slope after reaching
a certain number of epochs, so a greater number of epochs for those
would be translated in an overfitting on the model. The minimum
MSE was achieved by the previously defined structure after
running 36 epochs, with an average value of 383.3 MWh for the
four folds.
Fig. 2. Average MSE of the four folds for each configuration of neurons in each epoch.
Once the structure of network was defined, the validation was
carried out. The results of MSE, which was the objective function,
was obtained for each epoch and fold run. The metrics R2 and MAE
were also calculated for every fold. The predicted values compared
to the validation ones can be graphically seen in Fig. 3. The results
showed how the R2 changed as per the training and validation data.
The best approach was obtained using the sets configured in the
third fold, with an R2 of 0.736. The fourth fold prediction was the
weakest with R2 equal to 0.462. The average R2 obtained from the
four folds was 0.631. On the other hand, the MAE of the different
folds varied between 13.25 MWh and 15.59 MWh, with an average
value of 14.52 MWh. This average obtained from the four folds MAE
was used to correct the predicted values of each the municipality in
Seville and Cordoba, since it represented a more reliable metric
than using the MAE obtained from a unique fold. The correction
was carried out considering both, positive and negative MAE, thus
adding or subtracting it to the value predicted.

Comparing the test and predicted values for the folds considered
and analysing the errors aforementioned, it was found that the sum
of energy of the test set was lower than the predicted for the first
fold and greater for the three remaining. The difference found be-
tween the total amount of energy for both, test and predicted sets,
varied between 5% and 18%. Although the MAE showed high rela-
tive errors for single observations (44% in the worst case), when the
whole set was compared, these errors significantly decreased.
Furthermore, when the total average energy value, for test and
predicted sets, of the four folds were compared, the difference
found was just 6.5%, which could be considered acceptable for
prediction purposed. This overall error was also used to correct the
potential forecasted in the municipalities.

The objective function (MSE) got its minimum in the third fold
(320.90MWh), with an average value of 383.3 MWh. The difference
between the results obtained for first three folds and the fourth one
could come from different distribution of MHP locations on the
training set used. The distribution of MHP turbine energy around
the mean value is uniform in the first three folds (see Fig. 4), with a
percentage of observations below and over the mean value of
62.3%e37.7%, 61.5%e38.5% and 63.8%e36.2% respectively. Although
for the fourth fold this percentage is similar to the other folds
(64.6%e35.4%), analysing the standard deviation (in MWh), it could
be deduced where this difference in the coefficient of determina-
tion is coming from. The values obtained for the first three folds
were 32.4, 32.8 and 32.4, while for the last one it was 34.8. This fact
showed a wider distribution of the training set points of the fourth
fold from its mean value.

On the other hand, when the validation sets were analysed the
results showed opposite trends than in the training sets. Thus, the
standard deviation of the first three folds was 35.6, 34.4 and 35.8
respectively, while for the fourth it was 28.9. A summary for each
fold for the different results is shown in Table 4, as well as the mean
and standard deviation values for the train and test sets.

Comparing the results obtained using ANNs with the linear
analysis, it can be seen how the MSE values are significantly lower.
The MSE achieved in the third fold was around 36% lower than the
MSE accomplished in the multivariate linear analysis using all the
variables. This difference kept increasing when the number of
variables decreased. The four folds averageminimumMSE achieved
in this last model was 20.5% lower than the MSE obtained in the
three variables linear multivariate analysis. When other metrics
were compared, ANN also showed better results. The maximum R2

attained in the third fold was almost 30% greater than the best
value achieved in the linear analysis. When the average result was
equated, the results improved by 10%. However, a 10% improve-
ment could be considered large in this case, as the sample was split
into two sets for the ANN model but used in its entirety for the



Fig. 3. Comparison between test observations and predicted values for each fold.

Fig. 4. Training set distributions from the mean value for each fold.
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linear analysis. Finally, the MAE obtained in the first fold was 13.5%
smaller than the best result obtained in the linear analysis,
decreasing this difference down to 5% when the average MAE was
compared.

3.3. Prediction in municipalities

With the network already defined and validated, the energy
recovery potential for every municipality of the provinces of Seville
and Cordobawas predicted. The pressurised irrigated surface raised
up to 163,472 ha, composing around 6% of the total surfaced
encompassed in both provinces, from which 114,430 ha were
analysed, obtained after applying the correction factor outlined in
the Materials and Methods Section (0.7).

The total energy potential predicted for the whole region varied
between 19.64 and 22.38 GWh, depending on the fold used. The
average potential predicted was 21.05 GWh for 2018. Applying
corrections for the previous errors observed between test and



Table 4
Mean values and standard deviations obtained for each fold for the train and test
sets.

K R2 MAE MSE Mean Standard Deviation

Train Test Train Test

1st Fold 0.698 13.25 369.8 35.9 30.8 32.4 35.6
2nd Fold 0.627 15.43 396.8 36.3 29.9 32.8 34.4
3rd Fold 0.7361 13.82 320.9 34.5 34.7 32.4 35.8
4th Fold 0.462 15.59 445.8 34.5 34.8 34.8 28.9

Average 0.631 14.52 383.3 e e e e
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predicted sets for the four folds, 6.5%, the energy varied between
19.7 and 22.4 MWh. Applying the average MAE from the folds
analysis, 14.52 MWh to the average value obtained for each mu-
nicipality as correction measure, a minimum andmaximum energy
of 18.95 GWh and 23.70 GWh were obtained. This value was
distributed among the 180 municipalities, among which, six were
found not to have irrigated surface or energy recovery potential
(see Fig. 5). It can be observed how the different values obtained
after applying different correction measures were similar, with
differences oscillating between 6.5% and 12.5%. An average value of
114.4 MWh per municipality was found.

The greatest potential was predicted to be found in Ecija (Sev-
ille), with an annual value of 1.63 GWh. If the variables were ana-
lysed, it seems rational that the maximum potential was found
there, since more than 9000 ha were found to be irrigated, whilst
the average irrigated surface per municipality was 636 ha. Its
average slope was 7.8%, whilst the average slope of the munici-
palities was 5.5% However, most of the municipalities showed a
potential lower than the average, accounting for around 71.7%, with
a potential lower than 100 MWh per year. More than 50% of the
potential predicted was concentrated in 20 of the sites analysed,
which irrigated around 60% of the surface considered. Evaluating
the case of Ecija and inputting a slope of zero, the energy potential
estimated increases in every fold, giving an average value of
1.82 GWh per year. Therefore, it could be extracted that high slope
Fig. 5. Energy recovery potential found for every munic
values return lower values of predicted energy recovery. The map
showing the predicted potential is presented in Fig. 5.
3.4. Energetic and economic analysis

Considering the energy consumed in the entire irrigated surface
found in Seville and Cordoba, the percentage of energy that could
have been saved in 2018 in the irrigation sector was 12.8%. Intro-
ducing this percentage of energy savings into the energy cost index
per unit of irrigated surface area, it was estimated that this index
could be reduced fromV127.5 ha-1 to V111.1 ha-1 using the average
value given by Fernandez Garcia et al. [3].

However, it would be optimistic to suggest that all of this energy
potential could be directly introduced to the grid or used at the
point of production as self-consumption. In the irrigation sector
located in agricultural and often rural areas, the likelihood lack of
grid connections or local energy demands close to points where
MHP turbines could be installed is only moderate.
4. Discussion

Sustainability requires, among others factors, enhancement of
the use of non-fossil fuel energy sources. The existing water net-
works present, in many cases, an overpressure that is being dissi-
pated in different ways. Micro hydropower (MHP) appears as a
potential solution for renewable energy to be implemented in
different fields within the water industry, transforming part of the
potential energy, represented in the form of overpressure in pipe-
lines, into electricity. Previous research for assessing MHP potential
were focused in the analysis of those locations where detailed
network information was gathered. However, the lack of larger
scale assessment in the different sectors encompassed within this
industry makes having a clear idea of the existing potential and its
benefits more difficult.

An analysis for Andalusia’s historical electricity consumption,
GHG emissions and renewable energy generation was made from
2013 to 2018 (see Fig. 6). The Spanish emission factors for the
different years were used to quantify the emissions of Andalusia
ipality of Seville and Cordoba during the year 2018.



Fig. 6. Historical levels of electricity consumption, renewable energy generation rate
and emissions for Andalusia.
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[40]. The energy consumption tended to decrease related to 2013
levels, however from 2014 onwards, it kept increasing by around
1 TWh per year until 2017. The 2018 levels kept constant when
compared to 2017. Nevertheless, the GHG emissions, measured in
Mt eCO2 did not follow the same trend as the consumption. They
were more related to the ratio of renewable energy generation.
When this ratio decreased, it could be seen how the emissions for
that year increased and vice versa. Thus, both parameters had a
variable trend along those years. Considering that irrigation is the
main economic and energy consuming activity in Andalusia and
that more activities are included within the water industry, MHP
could make an important contribution for the renewable energy
sector and the sustainability of irrigation activities.

Although the methodology used in this research provided
theoretical results, which might not be fully exploited or may not
completely match with the actual existing resources in reality, it
helped to have an approximated idea of these resources. Large-
scale assessments estimating the existing resources could help to
foster hydropower as potential solution to improve the energy ef-
ficiency in water industry. In this research, the estimated energy
savings would affect the operational cost of irrigation networks,
which suffered an increase of 500% after replacing traditional open
channels with pressurised networks in Andalusia [41]. Going
further, Andalusia accounts for more than a million ha of irrigated
surface, of which 84% is pressurised [42]. However, the prediction
here was carried out just for 15% of this pressurised irrigated sur-
face. The method proposed in this research was employed in re-
gions with similar irrigation infrastructures and design parameters
for networks. All of them were design for 100% simultaneity and a
high design demand, which ranged between 1 and 1.2 l s�1 ha�1, as
previously stated. Thus, the application of the trained ANN ob-
tained would be limited to regions with similar networks’ proper-
ties, where the water source was superficial and the same
simultaneity index and design demand. The method could also be
applied to others areas with different networks’ characteristics, but
the ANN would have to be defined again using networks typical
from the region to be analysed. Future research could be focused on
the analysis of networks from different regions and the quantifi-
cation of MHP’s benefits in the whole Andalusia.

The results obtained in this research showed a mean R2 of 0.63,
which reached its highest value (0.74) in the third fold of the cross
validation. The potential predicted for provinces accounted
21.05 GWh found in an irrigated surface of 163,472 ha during 2018.
The potential found per irrigated unit area was 0.129 MWh ha�1.
This compares well with the measured potential of 0.167 MWh
ha�1 in the 18 detailed hydraulic networks. The difference between
the observations and the predicted values was of 0.038 MW ha�1.
Comparing the MAE corrected potential, the energy recovery per
unit irrigated area varied from 0.116 MWh ha�1 to 0.145 MWh ha�1.
The energy recovery potential per unit irrigated surface indices
found in previous research, in MWh ha�1, varied as 0.65, 0.08, 0.10
and 0.11 in Ref. [14,16e18] respectively. The results obtained in this
research remained within acceptable values when compared to
these previous ratios. If the index extracted from the 18 networks
would have been used to predict the existing potential in the irri-
gated surface for both provinces, 7.5 GWh more would be esti-
mated. Thus, the method proposed in this research, is able to go
beyond the simple assumption of a linear trend between the irri-
gated surface and the existing potential, through a deep learning
process and the introduction of other proxy variables. In addition,
the correction factor of 0.7 was used to limit the predicted output to
show just energy recovery potential which was economically
viable. Therefore, the surface taken into account in Seville and
Cordoba could be increased if the economical parameters used in
the methodology developed by Crespo Chacon et al. [17] changed
(i.e. economical savings per energy unit, installation costs, grants,
etc).

On the other hand, it would be very complex to find points with
existing potential within the irrigation sector where the energy
recovered could be directly sold to the grid, stored or used for direct
purposes, such as pumping. For either use, the installation costs
could be importantly increased, making too many of the plants not
economically attractive for investors. MHP solutions together with
storage systems could be a potential way to apply the energy
recovered at points where energy is required. Nevertheless, costs
and logistic make this solution unviable currently for those points
where no energy is needed. An attractive use for recovering energy
could be at farm levels, where farmers with no access to electric
grid tend to use diesel generators if some energy consumption is
required. Adopting this alternative would reduce the amount of
energy to be recovered using MHP as turbines located at farm level
will inevitably have less flow and pressure available than those
located higher up in the pipe network. However, this could still be
considered as a potential measure to reduce the energy de-
pendency of irrigation networks.

Comparing the energy savings obtained by MHP with other
measures for improving the energy dependency in irrigation, the
results obtained here showed that MHP could be an important
solution. Furthermore, it could also be applied in tandem with the
different energy saving measures previously highlighted in the
introduction. For example, irrigation scheduling together withMHP
could be a potential solution to improve energy dependency.
Concerning the photovoltaic solution, this is limited for power
production just during the sunlight hours. In big irrigation in-
frastructures, pumping using photovoltaic energy is considered as a
potential solution to reduce the energy dependency. The addition
of MHP to this solution in the networks could lead to an important
reduction of the energy consumption in this sector. Coupling both
technologies could be of special interest for future research.

5. Conclusion

Sustainable development requires clean energy sources for GHG
emissions to be reduced in the short term, and completely avoided
in the long term. Hydropower accounted for almost 40% of the total
renewable generation in the EU [43]. Nonetheless, micro hydro
resources are not very well exploited yet. It is first necessary to
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conduct a large geographical scale assessment of these available
resources in different sectors, quantifying the existing potential and
its intrinsic environmental and economic benefits, in order to allow
targeted investment in micro-hydropower.

This research explored energy recovery in pressurised irrigation
networks on a large geographical scale using hydropower without
flow or head information. This is the main novelty of this paper, as
previous studies were focused on specific locations with available
information, providing an approximation of the existing resources
and potential impacts on a small geographical scale. Linear models,
single and multivariate, and ANNs were studied in this research for
predicting the MHP energy recovery in pressurised irrigation net-
works. Three variables that could be easily obtained for the
different irrigated areas in many regions around the world were
used as input data, through which the energy recovery potential
was predicted. Irrigated surface area of pressurised systems, irri-
gation requirements (directly related to the crops and the agro-
climatic parameters), and mean slope of the area were the input
variables. Inputs and outputs, were first obtained for 18 irrigation
networks, using detailed hydraulic models, where 177 potential
MHP installation (as observations), composed the database of
economically viable sites. ANNs showed the best results and was
used for large-scale prediction in two provinces in Andalusia. Using
the ADAM optimisation algorithm and minimising the mean
squared error as objective function, the networkwas able to predict
the energy recovery potential with a R2 varying from 0.46 to 0.74,
with an average value of 0.63. The minimum MSE varied between
320.9 and 445.8 MWh, with a mean value of 383.3 MWh. Two
hidden layers with 26 neurons in the first and 18 in the second
composed the network’s structure. A total potential of 21.05 GWh
during 2018 for the regions of Seville and Cordoba, in Southern
Spain, was predicted. Important environmental and economic
benefits would be linked to this energy recovery, with more than
5000 t eCO2 per year and more than 12% of reduction in energy
costs in irrigation.
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